Skip to main content
Log in

Solenomeris: from biomineralization patterns to diagenesis

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Microstructural and diagenetic patterns in acervulinid foraminifers are investigated through detailed petrographical, SEM, and geochemical analyses of Recent and fossil Acervulina and Eocene Solenomeris. The acervulinid test is composed of an optically radial hyaline magnesian calcite. The chessboard-chamber arrangement represents an efficient way for minimizing the volume accretion rate of cytoplasm, this being probably an important requirement for foraminifera with no predesigned external shape, such as the encrusting forms. Several newly described skeletal features reflect directly adaptation and responses to environmental constraints, such as microborer pressure, water energy, adaptation to substrate shape, skeleton repair, and compartmentalization of cytoplasm. The Eocene Solenomeris from the Pyrenees have recorded in their skeletons several diagenetic processes comprising two different phases of cementation followed by recrystallization. These events are accompanied by a marked loss of magnesium content and preceded or followed by an alteration of the Primary Organic Membrane. These diagenetic processes, in particular the early cementation, alter the overall layered pattern typical of foraminifera and produce a pseudo-file arrangement, mimicking an algal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adams AE (1984) Development of algal-foraminiferal-coral reefs in the Lower Carboniferous of Furness, northwest England. Lethaia 17:233–249. doi:10.1111/j.1502-3931.1984.tb01623.x

    Article  Google Scholar 

  • Aissaoui DM (1986) Diagenèse carbonatée en domaine récifal. Thesis Doctorat Es Sciences, Université Paris-Sud, Orsay

  • Aissaoui DM, Purser BH (1985) Reef diagenesis: cementation at Mururoa Atoll (French Polynesia). In: Proceedings of the fifth international Coral Reef Congress, Tahiti, vol 3, pp 257–262

  • Aissaoui DM, Buigues D, Purser BH (1986) Model of reef diagenesis: Mururoa atoll, French Polynesia. In: Schroeder JH, Purser BH (eds) Reef diagenesis. Springer, Berlin Heidelberg New York, pp 27–52

    Google Scholar 

  • Bé AWH, Hemleben C, Anderson OR, Spindler M (1979) Chamber formation in planktonic foraminifera. Micropaleontology 25:294–307. doi:10.2307/1485304

    Article  Google Scholar 

  • Belka Z (1981) The alleged algal genus Aphralysia is a foraminifer. Neues Jb Geol Paläont Mh 5:257–266

    Google Scholar 

  • Bellemo S (1974) Ultrastructures in Recent radial and granular calcareous Foraminifera. Bull Geol Inst Univ Uppsala NS 4(7):117–122

    Google Scholar 

  • Bender ML, Lorens RB, Williams DF (1975) Sodium, magnesium and strontium in the tests of planktonic foraminifera. Micropaleontology 21:448–449. doi:10.2307/1485293

    Article  Google Scholar 

  • Bentov S, Erez J (2005) Novel observations on biomineralization processes in foraminifera and implications for Mg/Ca ratio in the shells. Geology 33:841–844. doi:10.1130/G21800.1

    Article  Google Scholar 

  • Berbey H (1989) Sédimentologie et géochimie de la transition substrat volcanique-couverture sédimentaire de l’Atoll de Mururoa. PhD Thesis, Université Paris-Sud, Orsay

  • Blackmon PD, Todd R (1959) Mineralogy of some foraminifera as related to their classification and ecology. J Paleontol 33:1–15

    Google Scholar 

  • Brown SJ, Elderfield H (1996) Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: evidence of shallow Mg-dependent dissolution. Paleoceanography 11:543–551. doi:10.1029/96PA01491

    Article  Google Scholar 

  • Bursch JG (1947) Mikropaläontologische Untersuchungen des Tertiär von Gross Kei (Molukken). Schweiz Pal Abh 65:1–169

    Google Scholar 

  • Cherchi A, Schroeder R (1979) Koskinobullina n. gen., microorganisme en colonie incertae sedis (algues?) du Jurassique–Crétacé de la région méditerranéenne. Bull Cent Rech Explor Prod Elf-Aquitaine 3:519–523

    Google Scholar 

  • Collen JD, Burgess CJ (1979) Calcite dissolution, overgrowth and recrystallization in the benthic foraminiferal genus Notorotalia. J Paleontol 6:1343–1353

    Google Scholar 

  • Collins MJ, Muyzer G, Curry GB et al (1991) Macromolecules in brachiopod shells: characterization and diagenesis. Lethaia 24:387–397. doi:10.1111/j.1502-3931.1991.tb01491.x

    Article  Google Scholar 

  • Cushman JA (1950) Foraminifera, their classification and economic use, 4th edn. Harvard University Press, Cambridge, p 605

    Google Scholar 

  • Debenay J-P, Guillou J-J, Geslin E, Lesourd M (2000) Crystallization of calcite in foraminiferal tests. Micropaleontology 46(suppl 1):87–94

    Google Scholar 

  • Dekens PS, Lea DW, Pak DK, Spero HJ (2002) Core top calibration of Mg/Ca in tropical foraminifera: refining paleotemperature estimation. Geochem Geophys Geosyst 3:1–29. doi:10.1029/2001GC000200

    Article  Google Scholar 

  • Erez J (2003) The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Rev Mineral Geochem 54:115–149. doi:10.2113/0540115

    Article  Google Scholar 

  • Ferràndez-Cañadell C (2002) Multicellular-like compartmentalization of cytoplast in fossil larger foraminifera. Lethaia 35:130–212

    Google Scholar 

  • Gautret P (2000) Matrices organiques intrasquelettiques des scléractiniaires récifaux: évolution diagénétique précoce de leurs caractéristiques biochimiques et conséquences pour les processus de cimentation. Geobios-Lyon 33:73–78. doi:10.1016/S0016-6995(00)80150-3

    Article  Google Scholar 

  • Hagn H, Wellnhofer P (1967) Ein erratisches Vorkommen von kalkalpinen Obereozän in Pfaffind bei Wasserburg. Geol Bavarica 57:205–288

    Google Scholar 

  • Hansen HJ, Reiss Z (1971) Electron microscopy of rotaliacean wall structures. Bull Geol Soc Den 20:329–346

    Google Scholar 

  • Hottinger L (1984) Foraminifères de grande taille: signification des structures complexes de la coquille. In: Benthos’83, 2nd Symp. Benthic Foraminifera (Pau, Avril 1983), pp 309–315

  • Hottinger L (2000) Functional morphology of benthic foraminiferal shells, envelopes of cells beyond measure. Micropaleontology 46(Suppl):57–86

    Google Scholar 

  • Hover VC, Walter LM, Peacor DR (2001) Early marine diagenesis of biogenic aragonite and Mg-calcite: new constraints from high-resolution STEM and AEM analyses of modern platform carbonates. Chem Geol 175:221–248. doi:10.1016/S0009-2541(00)00326-0

    Article  Google Scholar 

  • King K, Hare PE (1972) Amino acid composition of the test as a taxonomic character for living and fossil planktonic foraminifera. Micropaleontology 18:285–293. doi:10.2307/1485009

    Article  Google Scholar 

  • Le Calvez J (1938) Recherches sur les Foraminifères. I. Développement et reproduction. Arch Zool Exp Gen 80:163–333

    Google Scholar 

  • Leutenegger S (1977) Ultrastructure de foraminifères perforés et imperforés ainsi que de leurs symbiotes. Cah Micropal 3:1–51

    Google Scholar 

  • Loeblich AR, Tappan H (1964) Sarcodina chiefly ‘Trecamoebians” and Foraminiferida. In: Moore RC (ed) Treatise on invertebrate paleontology, Part C, Protista 2(2). Geological Society of America and University of Kansas Press, New York, Lawrence, p 900

    Google Scholar 

  • Loeblich AR, Tappan H (1984) Suprageneric classification of the Foraminiferida (Protozoa). Micropaleontology 30:1–70. doi:10.2307/1485456

    Article  Google Scholar 

  • Moshier SO, Kirkland BL (1993) Identification and diagenesis of a phylloid alga: Archaeolithophyllum from the Pennsylvanian Providence Limestone, western Kentucky. J Sediment Petrol 63:1032–1041

    Google Scholar 

  • Munnecke A, Servais T, Vachard D (2000) A new family of calcareous microfossils from the Silurian of Gotland, Sweden. Palaeontology 43:1153–1172. doi:10.1111/1475-4983.00165

    Article  Google Scholar 

  • Nürnberg D, Bijma J, Hemleben C (1996) Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochim Cosmochim Acta 60:803–814. doi:10.1016/0016-7037(95)00446-7

    Article  Google Scholar 

  • Perrin C (1987) Solenomeris: un Foraminifère Acervulinidae constructeur de récifs. Rev Micropal 30:197–206

    Google Scholar 

  • Perrin C (1989) Rôle des organismes dans l’édification et l’évolution de l’atoll de Mururoa (Polynésie Française). PhD Thesis, Université Paris-Sud, Orsay

  • Perrin C (1990) Genèse de la morphologie des atolls: le cas de Mururoa (Polynésie Française). C R Acad Sci II 31:671–678

    Google Scholar 

  • Perrin C (1992) Signification écologique des foraminifères acervulinidés et leur rôle dans la formation de faciès récifaux et organogènes depuis le Paléocène. Geobios-Lyon 25:725–751. doi:10.1016/S0016-6995(92)80054-H

    Article  Google Scholar 

  • Perrin C (1994) Morphology of encrusting and free living acervulinid Foraminifera: Acervulina, Gypsina, and Solenomeris. Palaeontology 37:425–458

    Google Scholar 

  • Perrin C (2003) Compositional heterogeneity and microstructural diversity of coral skeletons as potential controls on their early diagenesis. Coral Reefs 22:109–120. doi:10.1007/s00338-003-0291-8

    Article  Google Scholar 

  • Perrin C (2004) Diagenèse précoce des biocristaux carbonatés: transformations isominérales de l’aragonite corallienne. Bull Soc Géol Fr 175:95–106

    Article  Google Scholar 

  • Perrin C, Smith DC (2007) Decay of organic skeletal matrices as control on early diagenesis of coral skeletons. C R Palevol 6:253–260. doi:10.1016/j.crpv.2007.02.003

    Article  Google Scholar 

  • Pingitore NE Jr (1994) Identification and diagenesis of a phylloid alga: Archaeolithophyllum from the Pennsylvanian Providence Limestone, western Kentucky—Discussion. J Sediment Petrol 64:923–924

    Google Scholar 

  • Pingitore NE Jr, Meitzner G, Love KM (1995) Identification of sulfate in natural carbonates by X-ray absorption spectroscopy. Geochim Cosmochim Acta 59:2477–2483. doi:10.1016/0016-7037(95)00142-5

    Article  Google Scholar 

  • Plaziat J-C (1984) Stratigraphie et évolution paléogéographique du domaine pyrénéen de la fin du Crétacé (phase maastrichtienne) à la fin de l’Eocène (phase pyrénéenne). Thesis Doctorat Es Sciences, Université Paris-Sud, Orsay

  • Plaziat J-C, Perrin C (1992) Multikilometer-sized reefs built by foraminifera (Solenomeris) from the early Eocene of the Pyrenean domain (S. France, N. Spain): palaeoecologic relations with coral reefs. Palaeogeogr Palaeoclimatol Palaeoecol 96:195–231. doi:10.1016/0031-0182(92)90103-C

    Article  Google Scholar 

  • Raja R, Saraswati PK, Rogers K, Iwao K (2005) Magnesium and strontium composition of recent symbiont-bearing foraminifera. Mar Micropaleontol 58:31–44. doi:10.1016/j.marmicro.2005.08.001

    Article  Google Scholar 

  • Reiss Z, Hottinger L (1984) The Gulf of Aqaba, ecological micropaleontology. Ecological Studies 50, Springer, Berlin Heidelberg New York, 362 pp

  • Robbins LL, Brew K (1990) Proteins from the organic matrix of the core-top and fossil planktonic foraminifera. Geochim Cosmochim Acta 54:2285–2292. doi:10.1016/0016-7037(90)90052-M

    Article  Google Scholar 

  • Robbins LL, Ostrom PH (1995) Molecular isotopic and biochemical evidence of the origin and diagenesis of shell organic material. Geology 23:345–348. doi:10.1130/0091-7613(1995)023<0345:MIABEO>2.3.CO;2

    Article  Google Scholar 

  • Robbins LL, Toler SK, Donachy JE (1993) Immunological and biochemical analysis of test matrix proteins in living and fossil foraminifers. Lethaia 26:269–273. doi:10.1111/j.1502-3931.1993.tb01530.x

    Article  Google Scholar 

  • Rosenthal Y, Lohmann GP, Lohmann KC, Sherrell RM (2000) Incorporation and preservation of Mg in Globigerinoides sacculifer: implications for reconstructing the temperature and 18O/16O of seawater. Paleoceanography 15:135–145. doi:10.1029/1999PA000415

    Article  Google Scholar 

  • Schlagintweit F (2004) Iberopora bodeuri Granier and Berthou 2002 (incertae sedis) from the Plassen Formation (Kimmeridgian–Berriasian) of the Tethyan realm. Geol Croat 57:1–13

    Google Scholar 

  • Schmid DU, Leinfelder RR (1995) Lithocodium aggregatum Elliott n’est pas une algue mais un foraminifère encroûtant, commensalisé par le foraminifère Troglotella incrustans Wernli et Fookes. C R Acad Sci II 320:531–538

    Google Scholar 

  • Schultze MS (1854) Ueber den Organismus der Polythalamien (Foraminiferen). nebst Bemerkungen über die Rhizopoden im Allgemeinen, Wilhelm Engelman, Leipzig, p 68

    Google Scholar 

  • Towe KM (1971) Lamellar wall construction in planktonic foraminifera. In: Hare PE, Hoering TC, King K Jr (eds) Biogeochemistry of amino acids. Wiley, New York, pp 65–74

  • Towe KM, Cifelli R (1967) Wall ultrastructure in the calcareous Foraminifera: crystallographic aspects and a model for calcification. J Paleontol 41:742–762

    Google Scholar 

  • Towe KM, Hemleben C (1976) Diagenesis of magnesian calcite: evidence from miliolacean foraminifera. Geology 4:337–339. doi:10.1130/0091-7613(1976)4<337:DOMCEF>2.0.CO;2

    Article  Google Scholar 

  • Weiner S, Erez J (1984) Organic matrix of the shell of the foraminifer, Heterostegina depressa. J Foramin Res 14:206–212

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to the French Commissariat à l’Energie Atomique, for providing the cored material of Mururoa. I sincerely thank Dr. J.-C. Plaziat for numerous fruitful discussions and suggestions on this topic at the early stage of this study. This paper has benefited from reviews by Simon Beavington-Penney and Christian Betzler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Perrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrin, C. Solenomeris: from biomineralization patterns to diagenesis. Facies 55, 501–522 (2009). https://doi.org/10.1007/s10347-009-0180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10347-009-0180-x

Keywords