Journal of the Japan Society for Technology of Plasticity
Online ISSN : 1882-0166
Print ISSN : 0038-1586
ISSN-L : 0038-1586
Papers
Ductility and Deformation Structure of Mg-La-Zr Alloys
Junji TACHIBANAKIYosuke TAMURAHiroshi SODAAlexander McLEAN
Author information
JOURNAL OPEN ACCESS

2015 Volume 56 Issue 648 Pages 60-65

Details
Abstract

In order to gain insight for developing fine-grained magnesium alloy materials through plastic deformation, Mg-Zr, Mg-La, and Mg-La-Zr alloys, prepared from pure magnesium and lanthanum metals, and a Mg-33Zr master alloy were tensile tested at room temperature and 150ºC. The microstructures were examined by optical microscopy, X-ray diffraction analysis, and EBSD analysis to establish the characteristics of deformed portions of the tensile-tested specimens. Whereas the elongation values of Mg-La and Mg-La-Zr materials tested at room temperature decreased with lanthanum content, the materials tested at 150ºC maintained a similar level of elongation regardless of lanthanum content. EBSD analysis of the deformed materials of the Mg-La-Zr alloys tensile-tested at room temperature and 150ºC revealed that the microstructures of primary αMg consisted of approximately 50% ultrafine grains of 0.5 to 1.5 μm in size. About 70% of the eutectic αMg grains was found to be approximately 0.1 μm in size, suggesting that microstructural transformations that take place through deformation processes may help to enhance ductility.

Content from these authors
© 2015 The Japan Society for Technology of Plasticity
Previous article
feedback
Top