DOI QR코드

DOI QR Code

Three-dimensional Finite-difference Time-domain Modeling of Ground-penetrating Radar Survey for Detection of Underground Cavity

지하공동 탐지를 위한 3차원 시간영역 유한차분 GPR 탐사 모델링

  • Jang, Hannuree (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Kim, Hee Joon (Department of Energy Resources Engineering, Pukyong National University) ;
  • Nam, Myung Jin (Department of Energy and Mineral Resources Engineering, Sejong University)
  • 장한누리 (세종대학교 에너지자원공학과) ;
  • 김희준 (부경대학교 에너지자원공학과) ;
  • 남명진 (세종대학교 에너지자원공학과)
  • Received : 2016.01.25
  • Accepted : 2016.02.24
  • Published : 2016.02.29

Abstract

Recently many sinkholes have appeared in urban areas of Korea, threatening public safety. To predict the occurrence of sinkholes, it is necessary to investigate the existence of cavity under urban roads. Ground-penetrating radar (GPR) has been recognized as an effective means for detecting underground cavity in urban areas. In order to improve the understanding of the governing physical processes associated with GPR wave propagation, and interpret underground cavity effectively, a theoretical approach using numerical modeling is required. We have developed an algorithm employing a three-dimensional (3D) staggered-grid finite-difference time-domain (FDTD) method. This approach allows us to model the full electromagnetic wavefield associated with GPR surveys. We examined the GPR response for a simple cavity model, and the modeling results showed that our 3D FDTD modeling algorithm is useful to assess the underground cavity under urban roads.

최근 우리나라 도심지에서 도로 일부가 갑자기 함몰되는 현상이 빈번하게 발생하고 있으며, 이에 의한 피해를 예방하기 위해서는 도로하부의 지하공동의 존재 여부를 조사하는 것이 필요하다. 현재 지표 투과 레이더 탐사(ground-penetrating radar, GPR)가 도심지 도로하부 지하공동을 탐지하기 위한 효과적인 수단으로 인식되고 있다. GPR 탐사방법에 대한 물리적인 과정을 보다 잘 이해하고 지하공동에 대한 효과적인 해석을 위하여 GPR 수치모델링을 통한 이론적인 접근이 필요하다. 이 연구에서는 엇갈린 격자(staggered-grid)를 이용한 3차원 시간영역 유한차분(finite-difference time-domain, FDTD) 법을 사용한 GPR 모델링 알고리듬을 개발하였다. 개발된 3차원 모델링 알고리듬을 이용하여 간단한 공동모델에 대한 GPR 반응을 검토하여 도심지 도로하부 공동 탐사에서 지하공동 부존 정보를 얻는데 효과적으로 적용될 수 있음을 확인하였다.

Keywords

References

  1. Berenger, J., 1994. A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, 114, 185-200. https://doi.org/10.1006/jcph.1994.1159
  2. Bergmann, T., Robertsson, J. O. A., and Holliger, K., 1998. Finitedifference modeling of electromagnetic wave propagation in dispersive and attenuating media, Geophysics, 63, 856-867. https://doi.org/10.1190/1.1444396
  3. Bourgeois, J. M., and Smith, G. S., 1996. A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment, IEEE Transactions on Geoscience and Remote Sensing, 34, 36-44. https://doi.org/10.1109/36.481890
  4. Cassidy, N. J., 2007. A review of practical numerical modelling methods for the advanced interpretation of ground-penetrating radar in near-surface environments, Near Surface Geophysics, 5, 5-21.
  5. Chew, W. C., and Weedon, W. H., 1994. A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates, Microwave and Optical Technology Letters, 7, 599-604. https://doi.org/10.1002/mop.4650071304
  6. Choi, Y-G., Seoul, S-J., and Suh, J-H., 2001. Dipole antennas and radiation patterns in the three-dimensional GPR modeling, Jigu-Mulli-wa-Mulli-Tamsa, 4, 45-54. (in Korean with English abstract)
  7. Giannakis, I., Giannopoulos, A., and Warren, C., 2016. A realistic FDTD numerical modeling framework of ground penetrating radar for landmine detection, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 37-51. https://doi.org/10.1109/JSTARS.2015.2468597
  8. Giannopoulos, A., and Diamanti, N., 2008. Numerical modelling of ground-penetrating radar response from rough subsurface interfaces, Near Surface Geophysics, 6, 357-369.
  9. Holliger, K., and Bergmann, T., 2002. Numerical modeling of borehole georadar data, Geophysics, 67, 1249-1257. https://doi.org/10.1190/1.1500387
  10. Jang, H., Park, M. K., and Kim, H. J., 2007. Numerical modelling of electromagnetic waveguide effects on crosshole radar measurements, Exploration Geophysics, 38, 69-76. https://doi.org/10.1071/EG07008
  11. Jomoto, M., Aoki, M., and Takeuchi, Y., 2013. Examination on road surface lower cavity investigation method using portable FWD and GPR, Journal of Japan Society of Civil Engineers, 69, 167-173. (in Japanese with English abstract)
  12. Kang, D-H., 2014. Patent Application for Sinkhole Prevent Technologies, Journal of the Korean Society of Civil Engineers, 62, 42-48. (in Korean)
  13. Katz, D. S., Thiele, E. T., and Taflove, A., 1994. Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes, IEEE Microwave and Guided Wave Letters, 4, 268-270. https://doi.org/10.1109/75.311494
  14. Nishioka, Y., Maeshima, O., Uno, T., and Adachi, S., 1999. FDTD analysis of resistor-loaded bow-tie antennas covered with ferrite-coated conducting cavity for subsurface radar, IEEE Transactions on Antennas and Propagation, 47, 970-977. https://doi.org/10.1109/8.777119
  15. Radzevicius, S. J., Chen, C-C., Peters, L., and Daniels, J. J., 2003. Near-field dipole radiation dynamics through FDTD modelling, Journal of Applied Geophysics, 52, 75-91. https://doi.org/10.1016/S0926-9851(02)00241-0
  16. Roberts, R. L., and Daniels, J. J., 1997. Modeling near-field GPR in three dimensions using the FDTD method, Geophysics, 62, 1114-1126. https://doi.org/10.1190/1.1444212
  17. Sullivan, D. M., 2000. Electromagnetic Simulation Using the FDTD Method, IEEE Press.
  18. Taflove, A., and Umashankar, K. R., 1989. Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section, Proceedings of the IEEE, 77, 682-699.
  19. Wang, T., and Tripp, A. C., 1996. FDTD simulation of EM wave propagation in 3-D media, Geophysics, 61, 110-120. https://doi.org/10.1190/1.1443930
  20. Yee, K. S., 1966. Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic material, IEEE Transactions on Antennas and Propagation, 14, 302-307. https://doi.org/10.1109/TAP.1966.1138693