Emergence of brain-like mirror-symmetric viewpoint tuning in convolutional neural networks

  1. Amirhossein Farzmahdi
  2. Wilbert Zarco
  3. Winrich A Freiwald
  4. Nikolaus Kriegeskorte
  5. Tal Golan  Is a corresponding author
  1. Rockefeller University, United States
  2. Columbia University, United States

Abstract

Primates can recognize objects despite 3D geometric variations such as in-depth rotations. The computational mechanisms that give rise to such invariances are yet to be fully understood. A curious case of partial invariance occurs in the macaque face-patch AL and in fully connected layers of deep convolutional networks in which neurons respond similarly to mirror-symmetric view (e.g., left and right profiles). Why does this tuning develop? Here, we propose a simple learning-driven explanation for mirror-symmetric viewpoint tuning. We show that mirror-symmetric viewpoint tuning for faces emerges in the fully connected layers of convolutional deep neural networks trained on object recognition tasks, even when the training dataset does not include faces. First, using 3D objects rendered from multiple views as test stimuli, we demonstrate that mirror-symmetric viewpoint tuning in convolutional neural network models is not unique to faces: it emerges for multiple object categories with bilateral symmetry. Second, we show why this invariance emerges in the models. Learning to discriminate among bilaterally symmetric object categories induces reflection-equivariant intermediate representations. AL-like mirror-symmetric tuning is achieved when such equivariant responses are spatially pooled by downstream units with sufficiently large receptive fields. These results explain how mirror-symmetric viewpoint tuning can emerge in neural networks, providing a theory of how they might emerge in the primate brain. Our theory predicts that mirror-symmetric viewpoint tuning can emerge as a consequence of exposure to bilaterally symmetric objects beyond the category of faces, and that it can generalize beyond previously experienced object categories.

Data availability

The stimulus set and the source code required for reproducing our results are available at https://gitfront.io/r/afarzmahdi/p666tmWy7YuY/AL-symmetry-manuscript-codes/.

The following data sets were generated

Article and author information

Author details

  1. Amirhossein Farzmahdi

    Laboratory of Neural Systems, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6926-546X
  2. Wilbert Zarco

    Laboratory of Neural Systems, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3599-0476
  3. Winrich A Freiwald

    Laboratory of Neural Systems, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8456-5030
  4. Nikolaus Kriegeskorte

    Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7433-9005
  5. Tal Golan

    Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
    For correspondence
    golan.neuro@bgu.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7940-7473

Funding

National Eye Institute (R01EY021594)

  • Winrich A Freiwald

National Eye Institute (R01EY029998)

  • Winrich A Freiwald

National Institute of Neurological Disorders and Stroke (RF1NS128897)

  • Nikolaus Kriegeskorte

Naval Research Laboratory (N00014-20-1-2292)

  • Winrich A Freiwald

Charles H. Revson Foundation

  • Tal Golan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mackenzie W Mathis, École Polytechnique Fédérale de Lausanne, Switzerland

Version history

  1. Received: June 19, 2023
  2. Accepted: April 25, 2024
  3. Accepted Manuscript published: April 25, 2024 (version 1)

Copyright

© 2024, Farzmahdi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 407
    views
  • 95
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amirhossein Farzmahdi
  2. Wilbert Zarco
  3. Winrich A Freiwald
  4. Nikolaus Kriegeskorte
  5. Tal Golan
(2024)
Emergence of brain-like mirror-symmetric viewpoint tuning in convolutional neural networks
eLife 13:e90256.
https://doi.org/10.7554/eLife.90256

Share this article

https://doi.org/10.7554/eLife.90256

Further reading

    1. Neuroscience
    He-Hai Jiang, Ruoxuan Xu ... Fujun Luo
    Research Article

    Neurexins play diverse functions as presynaptic organizers in various glutamatergic and GABAergic synapses. However, it remains unknown whether and how neurexins are involved in shaping functional properties of the glycinergic synapses, which mediate prominent inhibition in the brainstem and spinal cord. To address these issues, we examined the role of neurexins in a model glycinergic synapse between the principal neuron in the medial nucleus of the trapezoid body (MNTB) and the principal neuron in the lateral superior olive (LSO) in the auditory brainstem. Combining RNAscope with stereotactic injection of AAV-Cre in the MNTB of neurexin1/2/3 conditional triple knockout mice, we showed that MNTB neurons highly express all isoforms of neurexins although their expression levels vary remarkably. Selective ablation of all neurexins in MNTB neurons not only reduced the amplitude but also altered the kinetics of the glycinergic synaptic transmission at LSO neurons. The synaptic dysfunctions primarily resulted from an impaired Ca2+ sensitivity of release and a loosened coupling between voltage-gated Ca2+ channels and synaptic vesicles. Together, our current findings demonstrate that neurexins are essential in controlling the strength and temporal precision of the glycinergic synapse, which therefore corroborates the role of neurexins as key presynaptic organizers in all major types of fast chemical synapses.

    1. Neuroscience
    Simon Kern, Juliane Nagel ... Gordon B Feld
    Research Article

    Declarative memory retrieval is thought to involve reinstatement of neuronal activity patterns elicited and encoded during a prior learning episode. Furthermore, it is suggested that two mechanisms operate during reinstatement, dependent on task demands: individual memory items can be reactivated simultaneously as a clustered occurrence or, alternatively, replayed sequentially as temporally separate instances. In the current study, participants learned associations between images that were embedded in a directed graph network and retained this information over a brief 8 min consolidation period. During a subsequent cued recall session, participants retrieved the learned information while undergoing magnetoencephalographic recording. Using a trained stimulus decoder, we found evidence for clustered reactivation of learned material. Reactivation strength of individual items during clustered reactivation decreased as a function of increasing graph distance, an ordering present solely for successful retrieval but not for retrieval failure. In line with previous research, we found evidence that sequential replay was dependent on retrieval performance and was most evident in low performers. The results provide evidence for distinct performance-dependent retrieval mechanisms, with graded clustered reactivation emerging as a plausible mechanism to search within abstract cognitive maps.