Osteoporotic Fracture: Bone age is not just for kids

More informed discussions between physicians and older adults about the consequences of an initial osteoporotic fracture could encourage more patients to consider treatments that protect against future fracture.
  1. Jane A Cauley  Is a corresponding author
  2. Dolores M Shoback
  1. Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, United States
  2. Endocrine Research Unit, San Francisco Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, United States

Chronological age and "bone age" are the same in most people, but sometimes they are different. For decades pediatricians have used bone age – which can be estimated from X-rays – as a tool to assess health and development in children (Creo and Schwenk, 2017). For physicians treating the elderly, improved methods for estimating bone age of older adults would be helpful when assessing the risk of osteoporotic fractures: this is important because osteoporosis is under-diagnosed, under-treated and under-appreciated as a factor that influences both life expectancy and quality of life. Now, in eLife, Thao Phuong Ho-Le, Tuan Nguyen and colleagues at the Garvan Institute of Medical Research in Sydney and other institutions in Australia and Viet Nam report that they have developed a model that can estimate bone age in older adults and provide improved estimates of the risks of subsequent osteoporotic fractures and death following an initial fracture (Ho-Le et al., 2021).

The data come from a well-established population-based study, the Dubbo Osteoporosis Epidemiology Study, which has been following around 3500 men and women in Dubbo, a city in south-west Australia, who were 60 or over in 1989. Ho-Le et al. developed a multi-state model to provide prediction estimates for fracture, refracture and death. In this model individuals can be in one of five states – no fracture, first fracture, second fracture, third fracture and death – and can transition through all five states, or move directly from any of the first four states to death. Ho-Le et al. report that, during the 20 year follow-up, the risk of a second fracture was higher in women (36%) than in men (22%), but the mortality risk was higher in men (41%) than women (25%). The risk of transitioning from any state to death was also much higher in men than women.

As mentioned above, chronological age and bone age are usually the same. But given a low bone mineral density coupled with other risk factors for fracture, the age of your bones can be greater than your chronological age. Physicians use a tool called the Fracture Risk Assessment tool (FRAX) to decide if a patient should receive treatment to protect against osteoporotic fractures: in general, if the probability of hip fracture over the next ten years is 3% or higher, or if the risk of a major osteoporotic fracture (that is, a fracture to the spine, forearm, hip or shoulder) is 20% or higher, treatment is recommended. While the 3% risk threshold for hip fracture prevention was deemed cost-effective when FRAX was developed (Tosteson et al., 2008), a patient might think: "But I have a 97% chance of not fracturing". However, if the physician could reply, "You may be 70, but you have the bones of an 80 year old", the patient may be more willing to consider treatment.

The results of this study are important for other reasons. Existing risk assessment tools do not take into account the increased chances of further fractures, let alone death (Rubin et al., 2013), but the model developed by Ho-Le et al. can estimate the 5 year individual probability of transitioning from no fracture to fracture or to death. For example, for a 70-year-old woman with low bone mineral density but no other risk factors, the probability of transitioning from no fracture to first fracture (10%) was similar to the risk of death (8.6%). However, once she experiences a first fracture, the risk of another fracture goes up dramatically (16.5%) and exceeds the risk of dying (10.4%). With this information, the patient may be more likely to consider treatment.

There are several unanswered questions and inherent limitations. Older folks fear institutionalization, so the possibility of transitioning to disability outcomes and assisted living could be added to the model. The Dubbo study is also a single cohort from one city, so the model needs to be validated in cohorts around the world. Moreover, since Dubbo residents are 98% white, the model needs to be tested in other race/ethnicities. Lastly, the model is only adjusted for comorbidities at baseline. It is highly likely that the participants developed other chronic diseases over the 20 year follow-up, but such diseases are not included in the model, so the risk of refracture and death may have been underestimated.

Screening for high-risk patients who may benefit from therapy is important because prevention of future fractures and their consequences is possible with the armamentarium of treatments that are available. Future pragmatic randomized clinical trials are needed to test whether screening in the community, using this type of multistate model, can increase treatment rates and ultimately reduce fractures and their consequences.

References

Article and author information

Author details

  1. Jane A Cauley

    Jane A Cauley is in the Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, United States

    For correspondence
    jcauley@edc.pitt.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0752-4408
  2. Dolores M Shoback

    Dolores M Shoback is in the Endocrine Research Unit, San Francisco Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, San Francisco, United States

    Competing interests
    No competing interests declared

Publication history

  1. Version of Record published: March 2, 2021 (version 1)

Copyright

© 2021, Cauley and Shoback

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 395
    Page views
  • 20
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jane A Cauley
  2. Dolores M Shoback
(2021)
Osteoporotic Fracture: Bone age is not just for kids
eLife 10:e66916.
https://doi.org/10.7554/eLife.66916
  1. Further reading

Further reading

    1. Ecology
    2. Epidemiology and Global Health
    Aleksandra Kovacevic, David RM Smith ... Lulla Opatowski
    Research Article

    Non-pharmaceutical interventions implemented to block SARS-CoV-2 transmission in early 2020 led to global reductions in the incidence of invasive pneumococcal disease (IPD). By contrast, most European countries reported an increase in antibiotic resistance among invasive Streptococcus pneumoniae isolates from 2019 to 2020, while an increasing number of studies reported stable pneumococcal carriage prevalence over the same period. To disentangle the impacts of the COVID-19 pandemic on pneumococcal epidemiology in the community setting, we propose a mathematical model formalizing simultaneous transmission of SARS-CoV-2 and antibiotic-sensitive and -resistant strains of S. pneumoniae. To test hypotheses underlying these trends five mechanisms were built into the model and examined: (1) a population-wide reduction of antibiotic prescriptions in the community, (2) lockdown effect on pneumococcal transmission, (3) a reduced risk of developing an IPD due to the absence of common respiratory viruses, (4) community azithromycin use in COVID-19 infected individuals, (5) and a longer carriage duration of antibiotic-resistant pneumococcal strains. Among 31 possible pandemic scenarios involving mechanisms individually or in combination, model simulations surprisingly identified only two scenarios that reproduced the reported trends in the general population. They included factors (1), (3), and (4). These scenarios replicated a nearly 50% reduction in annual IPD, and an increase in antibiotic resistance from 20% to 22%, all while maintaining a relatively stable pneumococcal carriage. Exploring further, higher SARS-CoV-2 R0 values and synergistic within-host virus-bacteria interaction mechanisms could have additionally contributed to the observed antibiotic resistance increase. Our work demonstrates the utility of the mathematical modeling approach in unraveling the complex effects of the COVID-19 pandemic responses on AMR dynamics.

    1. Epidemiology and Global Health
    Olivera Djuric, Elisabetta Larosa ... The Reggio Emilia Covid-19 Working Group
    Research Article

    Background:

    The aim of our study was to test the hypothesis that the community contact tracing strategy of testing contacts in households immediately instead of at the end of quarantine had an impact on the transmission of SARS-CoV-2 in schools in Reggio Emilia Province.

    Methods:

    We analysed surveillance data on notification of COVID-19 cases in schools between 1 September 2020 and 4 April 2021. We have applied a mediation analysis that allows for interaction between the intervention (before/after period) and the mediator.

    Results:

    Median tracing delay decreased from 7 to 3.1 days and the percentage of the known infection source increased from 34–54.8% (incident rate ratio-IRR 1.61 1.40–1.86). Implementation of prompt contact tracing was associated with a 10% decrease in the number of secondary cases (excess relative risk –0.1 95% CI –0.35–0.15). Knowing the source of infection of the index case led to a decrease in secondary transmission (IRR 0.75 95% CI 0.63–0.91) while the decrease in tracing delay was associated with decreased risk of secondary cases (1/IRR 0.97 95% CI 0.94–1.01 per one day of delay). The direct effect of the intervention accounted for the 29% decrease in the number of secondary cases (excess relative risk –0.29 95%–0.61 to 0.03).

    Conclusions:

    Prompt contact testing in the community reduces the time of contact tracing and increases the ability to identify the source of infection in school outbreaks. Although there are strong reasons for thinking it is a causal link, observed differences can be also due to differences in the force of infection and to other control measures put in place.

    Funding:

    This project was carried out with the technical and financial support of the Italian Ministry of Health – CCM 2020 and Ricerca Corrente Annual Program 2023.