搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火星大气条件下基态CO2放电简化集合

张泰恒 王绪成 张远涛

引用本文:
Citation:

火星大气条件下基态CO2放电简化集合

张泰恒, 王绪成, 张远涛

Numerical study on simplified reaction set of ground state species in CO2 discharges under Martian atmospheric conditions

Zhang Tai-Heng, Wang Xu-Cheng, Zhang Yuan-Tao
PDF
HTML
导出引用
  • 近年来, 人类对火星的探索活动不断掀起新的热潮. 研究表明, 火星尘暴内的强电场可能引发CO2大气放电现象. 对其中的放电机理进行分析不但有助于深化对火星地表演化的认识, 也为基于放电等离子体技术实现火星原位制氧提供了可能. 本文在深入分析火星CO2放电过程的基础上, 基于图论与粒子依赖性分析的方法, 结合整体模型, 提出了一种定量确定火星大气条件下CO2放电简化集合的方法. 首先从反应粒子构成的网络拓扑图及粒子间相互作用关系入手, 筛除C2O, $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $, $ {\mathrm{O}}_{4}^{-} $等低活跃粒子, 得到CO, $ {\mathrm{C}\mathrm{O}}_{2}^{+} $, $ {\mathrm{C}\mathrm{O}}_{3}^{-} $等主要粒子, 实现对粒子种类的选取; 随后基于反应速率分析, 定量获得各反应对CO2放电过程的贡献比重, 最终确定包含16种粒子、67种反应的基态CO2放电反应简化集合. 数值模拟表明, 使用简化集合与初始集合的计算结果一致, 这也给出了火星大气条件下CO2放电的关键过程. 从方法学上来讲, 本文的研究为进一步实现复杂化学等离子体体系中, 反应粒子与反应种类的自动化、精确化与智能化选择提供依据, 同时本文提供的方法能够定量分析反应粒子之间的相互关系, 从而为精确研究火星CO2放电中的各种产物, 实现基于放电等离子体技术的火星原位制氧奠定理论基础.
    The exploration of Mars has attracted increasing interest in these years. The experiments and simulations show that strong electric field triggered by the dust storms in the Martian atmosphere may cause CO2 discharge. Studies on this phenomenon will not only help deepen our comprehension on the evolution of Martian surface, but also provide a possibility to realize the in-situ oxygen generation on Mars based on plasma chemistry. In this paper, a zero-dimensional global model is used to simplify the complicated description of CO2 chemical kinetics, therefore a reduced chemistry can be obtained for detailed numerical simulation in the near future. At the beginning of simplification, the graph theoretical analysis is used to pre-treat the original model by exploring the relationship between reacting species. Through the study of connectivity and the topological network, species such as O2, e, and CO prove to be important in the information transmission of the network. While gaining a clearer understanding of the chemistry model, dependence analysis will be used to investigate numerical simulation results. In this way a directed relation diagram can be obtained, where the influence between different species is quantitively explained in terms of numerical solutions. Users could keep different types of species correspondingly according to their own needs, and in this paper, some species with low activeness such as C2O, $ {\mathrm{O}}_{5}^{+} $, $ {\mathrm{O}}_{4}^{-} $ and species with uncertainties such as $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $, $ {\mathrm{C}\mathrm{O}}_{4}^{+} $ are removed from the original model. As for the reduction of specific reactions among species, the reaction proportion analysis based on the calculation of reaction rates is used to obtain the contribution of each reaction to the entire process of CO2 discharge, through which the important reactions can be selected. Finally, a simplified chemistry model of CO2 discharge based on Martian atmospheric conditions, including 16 species and 67 reactions, is established. The numerical simulations show that the trends of species densities based on the simplified chemistry model are highly consistent with those based on the original one, and considerations about the CO2 conversion and the energy efficiency are also in line with expectations, which can help deepen the understanding of the essential process of CO2 discharge under Martian atmospheric conditions. In addition, the quantitative results of the relationship between reactive species will lay a theoretical foundation for the accurate analysis of various products in Martian dust storm discharges and the realization of Mars in-situ oxygen generation technology based on plasma chemistry.
      通信作者: 张远涛, ytzhang@sdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11975142)资助的课题
      Corresponding author: Zhang Yuan-Tao, ytzhang@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975142)
    [1]

    史建魁, 张仲谋, 刘振兴 1997 地球物理学进展 04 98Google Scholar

    Shi J K, Zhang Z M, Liu Z X 1997 Prog. Geophys. 04 98Google Scholar

    [2]

    Thomas P, Gierasch P J 1985 Science 230 175Google Scholar

    [3]

    Sullivan R, Banfield D, Bell J F 2005 Nature 436 58Google Scholar

    [4]

    Bougher S W, Murphy J, Haberle R M 1997 Adv. Space Res. 19 1255Google Scholar

    [5]

    Lämmel M, Kroy K 2017 Phys. Rev. E 96 052906Google Scholar

    [6]

    Read P L, Lewis S R, Mulholland D P 2015 Rep. Prog. Phys. 78 125901Google Scholar

    [7]

    Barth E L, Farrell W M, Rafkin S C R 2016 Icarus 268 253Google Scholar

    [8]

    Esposito F, Molinaro R, Popa C I 2016 Geophys. Res. Lett. 43 5501Google Scholar

    [9]

    Schmidt D S, Schmidt R A, Dent J D 1998 J. Geophys. Res. 103 8997Google Scholar

    [10]

    Melnik O, Parrot M 1998 J. Geophys. Res. 103 29107Google Scholar

    [11]

    Eden H F, Vonnegut B 1973 Science 180 962Google Scholar

    [12]

    Farrell W M, McLain J L, Collier M R 2015 Icarus 254 333Google Scholar

    [13]

    Farrell W M, McLainb J L, Collier M R 2017 Icarus 297 90Google Scholar

    [14]

    Hecht M, Hoffman J, Rapp D 2021 Space Sci. Rev. 217 9Google Scholar

    [15]

    Keudell A V, Volker S 2017 Plasma Sources Sci. Technol. 26 113001Google Scholar

    [16]

    Guerra V, Silva T, Ogloblina P 2017 Plasma Sources Sci. Technol. 26 11LT01Google Scholar

    [17]

    Bogaerts A, Kozak T, Laer K V 2015 Faraday Discuss. 183 217Google Scholar

    [18]

    Kozák T, Bogaerts A 2014 Plasma Sources Sci. Technol. 23 045004Google Scholar

    [19]

    Aerts R, Martens T, Bogaerts A 2012 J. Phys. Chem. C 116 23257Google Scholar

    [20]

    Berthelot A, Bogaerts A 2017 J. Phys. Chem. C 121 8236Google Scholar

    [21]

    Sun R, Wang H X, Bogaerts A 2020 Plasma Sources Sci. Technol. 29 025012Google Scholar

    [22]

    Hurlbatt A, Gibson A, Schröter S 2017 Plasma Processes Polym. 14 1600138Google Scholar

    [23]

    Lazarou C, Belmonte T, Chiper A 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar

    [24]

    Wang W, Berthelot A, Kolev S 2016 Plasma Sources Sci. Technol. 25 065012Google Scholar

    [25]

    Takana H, Nishiyama H 2014 Plasma Sources Sci. Technol. 23 034001Google Scholar

    [26]

    Dubin D H E, Jin D Z 2003 Phys. Plasmas 10 1338Google Scholar

    [27]

    Kelly S, Golda J, Turner M 2015 J. Phys. D:Appl. Phys. 48 444002Google Scholar

    [28]

    Iqbal M M, Stallard C P, Dowling D P, Turner M M 2014 Plasma Processes Polym. 12 201Google Scholar

    [29]

    Stagni A, Frassoldati A, Cuoci A 2015 Combust. Flame 163 382Google Scholar

    [30]

    Rabitz H, Kramer M, Dacol D 2003 Annu. Rev. Phys. Chem. 34 419Google Scholar

    [31]

    Tomlin A S, Pilling M J, Meriting J H 1995 Ind. Eng. Chem. Res. 34 3749Google Scholar

    [32]

    Brown N J, And G L, Koszykowski M L 2015 Int. J. Chem. Kinet. 29 393Google Scholar

    [33]

    Lehmann R 2004 J. Atmos. Chem. 47 45Google Scholar

    [34]

    Strogatz S, Steven H 2003 SIAM Rev. 45 167Google Scholar

    [35]

    Kolaczyk E D 2009 Statistical Analysis of Network Data: Methods and Models (New York: Springer) pp79−120

    [36]

    Boccaletti S, Bianconi G, Criado R 2014 Phys. Rep. 544 1Google Scholar

    [37]

    Estrada E, Hatano N, Benzi M 2012 Phys. Rep. 514 89Google Scholar

    [38]

    Klamt S, Hädicke O, Kamp A V 2014 Large-Scale Networks in Engineering and Life Sciences (Cham: Birkhäuser Basel) pp263−316

    [39]

    Sakai O, Nobuto K, Miyagi S 2015 AIP Adv. 5 107140Google Scholar

    [40]

    Mizui Y, Kojima T, Miyagi S 2017 Symmetry 9 309Google Scholar

    [41]

    Lu T F, Law C K 2005 Proc. Combust. Inst. 30 1333Google Scholar

    [42]

    Lu T F, Law C K 2006 Combust. Flame 146 472Google Scholar

    [43]

    Snoeckx R, Bogaerts A 2017 Chem. Soc. Rev. 46 5805Google Scholar

    [44]

    Aerts R, Somers W, Bogaerts A 2015 ChemSusChem 8 702Google Scholar

    [45]

    Zhang Y T, Wang Y H 2018 Phys. Plasmas 25 023509Google Scholar

    [46]

    高书涵, 王绪成, 张远涛 2020 物理学报 69 115204Google Scholar

    Gao S H, Wang X C, Zhang Y T 2020 Acta Phys. Sin. 69 115204Google Scholar

    [47]

    Bogaerts A, Wang W Z 2016 Plasma Sources Sci. Technol. 25 055016Google Scholar

    [48]

    Ponduri S, Becker M M, Welzel S 2016 J. Appl. Phys. 119 093301Google Scholar

    [49]

    Stijn H, Luca M M, Giorgio D 2019 J. Phys. Chem. C 123 12104Google Scholar

    [50]

    Phelps A V www.lxcat.net [2020-3-21]

    [51]

    Lowke J J, Phelps A V, Irwin B W 1973 J. Appl. Phys. 44 4664Google Scholar

    [52]

    Beuthe T G, Chang J S 1997 Jpn. J. Appl. Phys. 36 4997Google Scholar

    [53]

    Eliasson B, Kogelschatz U 1986 Brown Boveri Research Report KLR 86-11C

    [54]

    Roberson G, Roberto M, Verboncoeur J 2015 Braz. J. Phys. 37 457Google Scholar

    [55]

    Spencer L F 2012 Ph. D. Dissertation (Ann Arbor: University of Michigan)

    [56]

    Berthelot A, Bogaerts A 2017 Plasma Sources Sci. Technol. 26 115002Google Scholar

    [57]

    Wang W, Snoeckx R, Zhang X 2018 J. Phys. Chem. C 122 8704Google Scholar

    [58]

    Berthelot A, Bogaerts A 2016 Plasma Sources Sci. Technol. 25 045022Google Scholar

    [59]

    Moss M S 2017 Plasma Sources Sci. Technol. 26 035009Google Scholar

    [60]

    Harder N D, Bekerom D C M V D, Al R S 2017 Plasma Processes Polym. 14 1600120Google Scholar

    [61]

    Vermeiren V, Bogaerts A 2018 J. Phys. Chem. C 122 25869Google Scholar

    [62]

    Cheng C, Ma M, Zhang Y, Liu D 2020 J. Phys. D: Appl. Phys. 53 144001Google Scholar

    [63]

    Li J, Fang C, Chen J, Li H P 2021 J. Appl. Phys. 129 133302Google Scholar

  • 图 1  地球大气环境下CO2放电转化率对比

    Fig. 1.  Comparations of CO2 discharge conversion in the earth atmosphere.

    图 2  各粒子所参与的反应数目

    Fig. 2.  Number of reactions that each species participates in

    图 3  可通过反应直接建立联系的粒子种类数目

    Fig. 3.  Number of species that can be directly connected by reactions.

    图 4  各粒子度数 (a)出度、入度的条形堆积图; (b)粒子在出度-入度空间的分布情况

    Fig. 4.  Degrees of species: (a) Stacked bars of in-degree and out-degrees; (b) distribution of species in the out-degree-in-degree space.

    图 5  粒子网络拓扑图

    Fig. 5.  Species network topology.

    图 6  粒子在临近-相间中心性空间的分布图

    Fig. 6.  Distribution of species in the closeness-betweenness centrality space.

    图 7  粒子在集聚系数-度数空间的分布

    Fig. 7.  Distribution of species in the clustering coefficient-degree space.

    图 8  基于CO2的各中性粒子间的相互关系有向图

    Fig. 8.  Directed relation graph among neutral species based on CO2.

    图 9  基于e的各带电粒子间的相互关系有向图

    Fig. 9.  Directed relation graph among charged species based on electrons.

    图 10  初始集合所有粒子间相互关系有向图

    Fig. 10.  Directed relation graph of the original model among all species.

    图 11  $ {\mathrm{C}\mathrm{O}}_{2}^{+} $在所参与的各项反应中的反应速率

    Fig. 11.  Reaction rates of $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ in each reaction involved.

    图 12  初始集合中由碰撞截面描述的电子碰撞电离反应的比重

    Fig. 12.  Proportion of electron impact ionization reactions described by collision cross sections in the original model.

    图 13  初始集合(实线)与简化集(虚线)关于粒子浓度的数值模拟结果比较 (a)中性粒子; (b)正离子; (c)电子与负离子

    Fig. 13.  Comparison of the numerical simulation results of particle concentration between the original model (solid line) and the simplified model (dashed line): (a) Neutrals; (b) positive ions; (c) electron and negative ions.

    图 14  3 ms时引起(a) CO和(b) O2浓度变化的主要反应

    Fig. 14.  Main reactions at 3 ms which cause density changes of (a) CO and (b) O2.

    图 15  作为比能量输入的函数, 简化集合与初始集合关于转化率与能量方面的比较 (a) CO2转化率; (b)能量效率; (c)能量损耗

    Fig. 15.  As a function of SEI, comparations of original and simplified model on (a) conversion of CO2, (b) energy efficiency, (c) energy cost.

    表 A1  初始反应集合中的粒子构成

    Table A1.  Composition of particles in the original model.

    初始集合粒子构成
    中性粒子CO2, CO, C, O, O2, O3, C2O
    正离子$ {\mathrm{C}\mathrm{O}}_{4}^{+} $, $ {\mathrm{C}\mathrm{O}}_{2}^{+} $, CO+, C+, O+, $ {\mathrm{O}}_{2}^{+} $, $ {\mathrm{O}}_{4}^{+} $,
    $ {\mathrm{O}}_{5}^{+} $, $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $, $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $, $ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $
    负离子$ {\mathrm{C}\mathrm{O}}_{4}^{-} $, $ {\mathrm{C}\mathrm{O}}_{3}^{-} $, O, $ {\mathrm{O}}_{2}^{-} $, $ {\mathrm{O}}_{3}^{-} $, $ {\mathrm{O}}_{4}^{-} $
    下载: 导出CSV

    表 A2  初始集合中由碰撞截面描述的电子碰撞反应

    Table A2.  Electron impact reactions described by collision cross sections in the original model.

    序号反应文献
    (X01)e + CO2 $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + 2e[50]
    (X02)e + CO2 $ \Rightarrow $ CO + O + e[50]
    (X03)e + CO2 $ \Rightarrow $ CO + O[50]
    (X04)e + CO2 $ \Rightarrow $ 2e + O + CO+[50]
    (X05)e + CO2 $ \Rightarrow $ 2e + CO + O+[50]
    (X06)e + CO2 $ \Rightarrow $ 2e + C+ + O2[50]
    (X07)e + CO2 $ \Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + C + 2e[51, 52]
    (X08)e + CO $ \Rightarrow $ C + O[50]
    (X09)e + CO $ \Rightarrow $ e + C + O[50]
    (X10)e + CO $ \Rightarrow $ 2e + CO+[50]
    (X11)e + CO $ \Rightarrow $ 2e + C + O+[50]
    (X12)e + CO $ \Rightarrow $ 2e + C+ + O[50]
    (X13)e + O3 $ \Rightarrow $ $ {{\mathrm{O}}_{2}^{-}}^{-} $ + O[50]
    (X14)e + O3 $ \Rightarrow $ O2 + O[50]
    (X15)e + O3 $ \Rightarrow $ O + O2 + e[53]
    (X16)e + O3 $ \Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + O + 2e[53]
    (X17)e + O3 $ \Rightarrow $ O+ + O + O + e[53]
    (X18)e + O2 $ \Rightarrow $ 2 O + e[50]
    (X19)e + O2 $ \Rightarrow $ O + O[50]
    (X20)e + O2 $ \Rightarrow $ 2e + $ {\mathrm{O}}_{2}^{+} $[50]
    (X21)e + O2 $ \Rightarrow $ 2e + O + O+[50]
    (X22)e + O2 $ \Rightarrow $ e + O+ + O[50, 54]
    (X23)e + O $ \Rightarrow $ 2e + O+[50]
    (X24)e + C $ \Rightarrow $ 2e + C+[50]
    下载: 导出CSV

    表 A5  初始集合中的离子-中性和离子-离子反应, 其中Tg为气体温度, 单位是K, 速率系数的单位在二体或三体反应中分别是m3/s或m6/s

    Table A5.  Ion-neutral and ion-ion reactions in the original model. Tg is the gas temperature in K. The rate coefficients are in m3/s or m6/s for binary or ternary reactions.

    序号反应反应速率系数文献
    (I01)O + CO2 $ \Rightarrow$ O + CO2 + e4.0 × 10–18[48]
    (I02)O + CO2 + CO $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO1.5 × 10–40[61]
    (I03)O + CO2 + O2 $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O23.1 × 10–40[61]
    (I04)O + CO2 + CO2 $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO29.0 × 10–41[52]
    (I05)$ {\mathrm{O}}_{2}^{-} $ + CO2 + O2 $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O24.7 × 10–41[52]
    (I06)$ {\mathrm{O}}_{3}^{-} $+ CO2 $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O25.5 × 10–16[18]
    (I07)$ {\mathrm{O}}_{4}^{-} $ + CO2 $ \Rightarrow$ O2 + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $4.8 × 10–16[18]
    (I08)O+ + CO2 $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + CO9.4 × 10–16[18]
    (I09)O+ + CO2 $ \Rightarrow$ O + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $4.5 × 10–16[18]
    (I10)C+ + CO2 $ \Rightarrow$ CO+ + CO1.1 × 10–15[18]
    (I11)$ {\mathrm{O}}_{2}^{+} $ + CO2 + M $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{4}^{+} $ + M2.3 × 10–41[18]
    (I12)$ {\mathrm{O}}_{5}^{+} $ + CO2 $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{4}^{+} $ + O31.0 × 10–17[52]
    (I13)CO+ + CO2 $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + CO1.0 × 10–15[56]
    (I14)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + CO2 + M $ \Rightarrow$ $ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + M3.0 × 10–40[18]
    (I15)O+ + CO $ \Rightarrow$ O + CO+4.9 × 10–18(Tg/298)0.5exp(–4580/Tg)[18]
    (I16)C+ + CO $ \Rightarrow$ CO+ + C5.0 × 10–19[18]
    (I17)$ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + CO $ \Rightarrow$ CO2 + $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $1.1 × 10–15[18]
    (I18)$ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + CO $ \Rightarrow$ CO2 + $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $9.0 × 10–16[18]
    (I19)$ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + CO + M $ \Rightarrow$ CO2 + $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + M2.6 × 10–38[18]
    (I20)$ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + CO + M $ \Rightarrow$ CO2 + $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + M4.2 × 10–38[18]
    (I21)O + CO $ \Rightarrow$ CO2 + e5.5 × 10–16[44]
    (I22)$ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO $ \Rightarrow$ 2CO2 + e5.0 × 10–19[58]
    (I23)$ {\mathrm{O}}_{2}^{+} $ + C $ \Rightarrow$ CO+ + O5.2 × 10–17[18]
    (I24)$ {\mathrm{O}}_{2}^{+} $ + C $ \Rightarrow$ C+ + O25.2 × 10–17[18]
    (I25)CO+ + C $ \Rightarrow$ CO + C+1.1 × 10–16[18]
    (I26)O + C $ \Rightarrow$ CO + e5.0 × 10–16[57]
    (I27)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + CO1.638 × 10–16[52]
    (I28)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow$ CO2 + O+9.62 × 10–17[18]
    (I29)CO+ + O $ \Rightarrow$ CO + O+1.4 × 10–16[18]
    (I30)$ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O21.1 × 10–16[18]
    (I31)$ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow$ CO2 + O2 + O1.4 × 10–17[18]
    (I32)$ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow$ CO2 + $ {\mathrm{O}}_{3}^{-} $1.4 × 10–16[18]
    (I33)$ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow$ CO2 + $ {\mathrm{O}}_{2}^{-} $8.0 × 10–17[58]
    (I34)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O2 $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + CO26.4 × 10–17[52]
    (I35)CO+ + O2 $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + CO1.2 × 10–16[18]
    (I36)C+ + O2 $ \Rightarrow$ CO + O+6.2 × 10–16[18]
    (I37)C+ + O2 $ \Rightarrow$ CO+ + O3.8 × 10–16[18]
    (I38)$ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + O2 $ \Rightarrow$ 2CO + $ {\mathrm{O}}_{2}^{+} $5.0 × 10–18[18]
    (I39)$ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O3 $ \Rightarrow$ CO2 + $ {\mathrm{O}}_{3}^{-} $ + O21.3 × 10–16[18]
    (I40)$ {\mathrm{C}\mathrm{O}}_{4}^{+} $ + O3 $ \Rightarrow$ $ {\mathrm{O}}_{5}^{+} $ + CO21.0 × 10–16[52]
    (I41)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow$ O + CO21.0 × 10–13[62]
    (I42)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow$ CO + O2 + O6.0 × 10–13[44]
    (I43)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ $ \Rightarrow$ 2CO2 + O5.0 × 10–13[58]
    (I44)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow$ 2CO2 + O25.0 × 10–13[18]
    (I45)CO+ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow$ CO + O22.0 × 10–13[55]
    (I46)C+ + O $ \Rightarrow$ C + O5.0 × 10–14[55]
    (I47)C+ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow$ C + O25.0 × 10–14[55]
    (I48)O+ CO+ $ \Rightarrow$ CO + O1.0 × 10–13[62]
    (I49)$ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ CO2 + O2 + O3.0 × 10–13[18]
    (I50)$ {\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow$ CO2 + 2O23.0 × 10–13[18]
    (I51)$ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + M $ \Rightarrow$ CO+ + CO + M1.0 × 10–18[18]
    (I52)$ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{3}^{-} $$ \Rightarrow$ CO2 + 2CO + O5.0 × 10–13[18]
    (I53)$ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow$ CO2 + 2CO + O25.0 × 10–13[18]
    (I54)$ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ + $ {\mathrm{O}}_{2}^{-} $$ \Rightarrow$ 2CO + O26.0 × 10–13[18]
    (I55)$ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ $ \Rightarrow$ 2CO2 + CO + O5.0 × 10–13[18]
    (I56)$ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow$ 2CO2 + CO + O25.0 × 10–13[18]
    (I57)$ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow$ CO2 + CO + O26.0 × 10–13[18]
    (I58)$ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + M $ \Rightarrow$ $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + CO2 + M1.0 × 10–20[18]
    (I59)$ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{3}^{-} $$ \Rightarrow$ 3CO2 + O5.0 × 10–13[18]
    (I60)$ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow$ 3CO2 + O25.0 × 10–13[18]
    (I61)$ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow$ 2CO2 + O26.0 × 10–13[18]
    (I62)O+ O3 $ \Rightarrow$ 2O2 + e3.0 × 10–16[44]
    (I63)O+ O3 $ \Rightarrow$ $ {\mathrm{O}}_{3}^{-} $ + O8.0 × 10–16[18]
    (I64)$ {\mathrm{O}}_{2}^{-} $ + O3 $ \Rightarrow$ $ {\mathrm{O}}_{3}^{-} $ + O24.0 × 10–16[18]
    (I65)$ {\mathrm{O}}_{3}^{-} $ + O3 $ \Rightarrow$ 3O2 + e3.0 × 10–16[18]
    (I66)O+ + O3 $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + O21.0 × 10–16[18]
    (I67)O + O2 $ \Rightarrow$ O3 + e1.0 × 10–18[44]
    (I68)O + O2 $ \Rightarrow$ $ {\mathrm{O}}_{2}^{-} $ + O1.5 × 10–18[55]
    (I69)O + O2 $ \Rightarrow$ O + e + O26.9 × 10–16[52]
    (I70)O + O2 + O2 $ \Rightarrow$ $ {\mathrm{O}}_{3}^{-} $ + O21.1 × 10–42(Tg/300)[52]
    (I71)$ {\mathrm{O}}_{2}^{-} $ + O2 $ \Rightarrow$ 2O2 + e2.7 × 10–16(Tg/300)0.5exp(–5590/Tg)[52]
    (I72)$ {\mathrm{O}}_{2}^{-} $ + O2 + M $ \Rightarrow$ $ {\mathrm{O}}_{4}^{-} $ + M3.5 × 10–43[18]
    (I73)$ {\mathrm{O}}_{3}^{-} $ + O2 $ \Rightarrow$ O2 + O3 + e2.3 × 10–17[18]
    (I74)O+ + O2 $ \Rightarrow$ O + $ {\mathrm{O}}_{2}^{+} $1.9 × 10–17(Tg/298)–0.5[18]
    (I75)$ {\mathrm{O}}_{2}^{+} $ + O2 + O2 $ \Rightarrow$ $ {\mathrm{O}}_{4}^{+} $ + O24.0 × 10–42(Tg/300)–2.93[52]
    (I76)$ {\mathrm{O}}_{4}^{+} $ + O2 $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + O2 + O21.8 × 10–19[52]
    (I77)O+ + O + O2 $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + O21.0 × 10–41[52]
    (I78)O + O $ \Rightarrow$ O2 + e2.3 × 10–16[21]
    (I79)$ {\mathrm{O}}_{2}^{-} $ + O $ \Rightarrow$ O2 + O3.31 × 10–16[21]
    (I80)$ {\mathrm{O}}_{2}^{-} $ + O $ \Rightarrow$ O3 + e3.3 × 10–16[18]
    (I81)$ {\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow$ O3 + O1.0 × 10–19[18]
    (I82)$ {\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow$ 2O2 + e1.0 × 10–19[18]
    (I83)$ {\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow$ $ {\mathrm{O}}_{2}^{-} $ + O22.5 × 10–16[18]
    (I84)$ {\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow$ $ {\mathrm{O}}_{3}^{-} $ + O24.0 × 10–16[18]
    (I85)$ {\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow$ O + 2O23.0 × 10–16[18]
    (I86)$ {\mathrm{O}}_{4}^{+} $ + O $ \Rightarrow$ $ {\mathrm{O}}_{2}^{+} $ + O33.0 × 10–16[18]
    (I87)O + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ O2 + O2.6 × 10–14(300/Tg)0.44[21]
    (I88)O + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ 3O4.2 × 10–13(300/Tg)0.44[21]
    (I89)O + $ {\mathrm{O}}_{2}^{+} $ + O2 $ \Rightarrow$ O3 + O22.0 × 10–37[57]
    (I90)O + O+ + O $ \Rightarrow$ O2 + O2.0 × 10–37[57]
    (I91)O + O+ + O2 $ \Rightarrow$ 2O22.0 × 10–37[57]
    (I92)O + O+ $ \Rightarrow$ 2O4.0 × 10–14[18]
    (I93)$ {\mathrm{O}}_{2}^{-} $ + O+ $ \Rightarrow$ O + O22.7 × 10–13[18]
    (I94)$ {\mathrm{O}}_{2}^{-} $ + O+ + O2 $ \Rightarrow$ O3 + O22.0 × 10–37[57]
    (I95)$ {\mathrm{O}}_{2}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ 2O22.01 × 10–13(300/Tg)0.5[21]
    (I96)$ {\mathrm{O}}_{2}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ O2 + 2O4.2 × 10–13[21]
    (I97)$ {\mathrm{O}}_{2}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ + O2 $ \Rightarrow$ 3O22.0 × 10–37[57]
    (I98)$ {\mathrm{O}}_{3}^{-} $ + O + M $ \Rightarrow$ O3 + O + M2.0 × 10–37(Tg/300)–2.5[57]
    (I99)$ {\mathrm{O}}_{3}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ + M $ \Rightarrow$ O3 + O2 + M2.0 × 10–37(Tg/300)–2.5[57]
    (I100)$ {\mathrm{O}}_{3}^{-} $ + O+ $ \Rightarrow$ O3 + O1.0 × 10–13[18]
    (I101)$ {\mathrm{O}}_{3}^{-} $+ $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ O2 + O32.0 × 10–13[18]
    (I102)$ {\mathrm{O}}_{3}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow$ 2O + O31.0 × 10–13[18]
    (I103)$ {\mathrm{O}}_{4}^{-} $ + M $ \Rightarrow$ $ {\mathrm{O}}_{2}^{-} $ + O2 + M4.0 × 10–18[18]
    下载: 导出CSV

    表 B1  简化集合中的粒子构成

    Table B1.  Composition of particles in the simplified model.

    简化集合粒子构成
    中性粒子CO2, CO, C, O, O2, O3
    正离子$ {\mathrm{C}\mathrm{O}}_{2}^{+} $, CO+, C+, O+, $ {\mathrm{O}}_{2}^{+} $
    负离子$ {\mathrm{C}\mathrm{O}}_{4}^{-} $, $ {\mathrm{C}\mathrm{O}}_{3}^{-} $, O, $ {\mathrm{O}}_{2}^{-} $, $ {\mathrm{O}}_{3}^{-} $
    下载: 导出CSV

    表 A3  初始集合中由反应速率系数描述的电子碰撞反应, 其中Te为电子温度, 单位是eV; Tg为气体温度, 单位是K; 速率系数的单位在二体或三体反应中分别是m3/s或m6/s

    Table A3.  Electron impact reactions described by rate coefficients in the original model. Te is the electron temperature in eV and Tg is the gas temperature in K. The rate coefficients are in m3/s or m6/s for binary or ternary reactions.

    序号反应反应速率系数文献
    (E01)e + e + C+ $\Rightarrow $ C + e5.0 × 10–39[55]
    (E02)e + CO+ $\Rightarrow $ C + O3.46 × 10–14Te–0.48[56]
    (E03)e + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ $\Rightarrow $ C + O23.94 × 10–13Te–0.4[21]
    (E04)e + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ $\Rightarrow $ CO + O2.0 × 10–11Te–0.5Tg–1[18]
    (E05)e + $ {\mathrm{C}\mathrm{O}}_{4}^{+} $ $\Rightarrow $ CO2 + O21.61 × 10–13Te–0.5[18]
    (E06)e + $ {\mathrm{C}}_{2}{\mathrm{O}}_{2}^{+} $ $\Rightarrow $ 2CO4.0 × 10–13Te–0.34[18]
    (E07)e + $ {\mathrm{C}}_{2}{\mathrm{O}}_{3}^{+} $ $\Rightarrow $ CO2 + CO5.4 × 10–14Te–0.7[18]
    (E08)e + $ {\mathrm{C}}_{2}{\mathrm{O}}_{4}^{+} $ $\Rightarrow $ 2CO22.0 × 10–11Te–0.5Tg–1[18]
    (E09)e + O2 + O2 $\Rightarrow $ $ {\mathrm{O}}_{2}^{-} $ + O22.2 × 10–41(300/Tg)1.5exp(-600/Tg)[52]
    (E10)e + O + O2 $\Rightarrow $ O + O21.0 × 10–43exp(300/Tg)[52]
    (E11)e + O3 + O2 $\Rightarrow $ $ {\mathrm{O}}_{3}^{-} $ + O24.6 × 10–40[52]
    (E12)e + O+ + M $\Rightarrow $ O + M6.0 × 10–39(Te × 38.67)–1.5[57]
    (E13)e + $ {\mathrm{O}}_{2}^{+} $ $\Rightarrow $ 2O6.0 × 10–13Te–0.5(1/Tg)0.5[21]
    (E14)e + $ {\mathrm{O}}_{2}^{+} $ + M $\Rightarrow $ O2 + M6.0 × 10–39(Te × 38.67)–1.5[57]
    (E15)e + $ {\mathrm{O}}_{2}^{+} $ + e $\Rightarrow $ O2 + e1.0 × 10–31(Te × 38.67)–4.5[57]
    (E16)e + O+ + e $\Rightarrow $ O + e7.2 × 10–32(Te × 38.67)–4.5[57]
    (E17)e + $ {\mathrm{O}}_{4}^{+} $ $\Rightarrow $ 2O22.25 × 10–13Te–0.5[18]
    (E18)e + $ {\mathrm{O}}_{5}^{+} $ $\Rightarrow $ O2 + O35.0 × 10–12(Te × 38.67)–0.6[52]
    下载: 导出CSV

    表 A4  初始集合中的中性粒子反应, 其中 Tg 为气体温度, 单位是 K; 速率系数的单位在二体或三体反应中分别是 m3/s 或 m6/s

    Table A4.  Reaction of neutrals in the original model. Tg is the gas temperature in K. The rate coefficients are in m3/s or m6/s for binary or ternary reactions.

    序号反应反应速率系数文献
    (N01)CO2 + O $ \Rightarrow$ CO + O22.8 × 10–17exp(–26500/Tg)[21]
    (N02)CO + O2 $ \Rightarrow$ CO2 + O4.2 × 10–18exp(–24000/Tg)[21]
    (N03)CO2 + C $ \Rightarrow$ 2CO1.0 × 10–21[21]
    (N04)C + O2 $ \Rightarrow$ O + CO3.0 × 10–17[21]
    (N05)C + O + M $ \Rightarrow$ M + CO2.14 × 10–41(Tg/300)–3.08exp(–2114/Tg)[21]
    (N06)CO + M $ \Rightarrow$ O + C + M1.52 × 10–10(Tg/298)–3.1exp(–129000/Tg)[58]
    (N07)CO + O3 $ \Rightarrow$ CO2 + O24.0 × 10–31[52]
    (N08)CO2 + CO2 $ \Rightarrow$ CO + O + CO23.91 × 10–16exp(–49430/Tg)[59]
    (N09)C + CO + CO2 $ \Rightarrow$ C2O + CO26.3 × 10–44[59]
    (N10)C2O + O $ \Rightarrow$ 2CO5.0 × 10–17[18]
    (N11)C2O + O2 $ \Rightarrow$ CO2 + CO3.3 × 10–19[18]
    (N12)O + O2 + CO2 $ \Rightarrow$ O3 + CO21.7 × 10–42Tg–1.2[48]
    (N13)O + O + CO2 $ \Rightarrow$ O2 + CO23.81 × 10–42Tg–1exp(–170/Tg)[48]
    (N14)O + CO + CO2 $ \Rightarrow$ 2CO21.6 × 10–45exp(–1510/Tg)[48]
    (N15)O + CO + CO $ \Rightarrow$ CO2 + CO6.54 × 10–45[60]
    (N16)O + O2 + CO $ \Rightarrow$ CO2 + O26.51 × 10–48[60]
    (N17)O + O + CO $ \Rightarrow$ O2 + CO2.76 × 10–46[60]
    (N18)O + O + O $ \Rightarrow$ O2 + O6.2 × 10–44exp(–750/Tg)[52]
    (N19)O + O + O2 $ \Rightarrow$ 2O21.3 × 10–44(Tg/300)–1exp(–170/Tg)[52]
    (N20)O + O3 $ \Rightarrow$ 2O23.1 × 10–20Tg0.75exp(–1575/Tg)[18]
    (N21)O2 + O3 $ \Rightarrow$ 2O2 + O7.26 × 10–16exp(–11400/Tg)[48]
    (N22)O2 + O + O2 $ \Rightarrow$ O3 + O28.61 × 10–43Tg–1.25[48]
    (N23)O2 + O2 $ \Rightarrow$ O + O32.1 × 10–17exp(–498000/Tg)[57]
    (N24)O2 + M $ \Rightarrow$ O + O + M3.0 × 10–12Tg–1exp(–59380/Tg)[57]
    下载: 导出CSV

    表 B2  简化集合中由碰撞截面描述的电子碰撞反应

    Table B2.  Electron impact reactions described by collision cross sections in the simplified model.

    序号反应文献 序号反应文献
    (Y01)e + CO2 $\Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + 2e[50] (Y11)e + O3 $\Rightarrow $ $ {\mathrm{O}}_{2}^{-} $ + O[50]
    (Y02)e + CO2 $\Rightarrow $ CO + O + e[50](Y12)e + O3 $\Rightarrow $ O2 + O[50]
    (Y03)e + CO2 $\Rightarrow $ CO + O[50](Y13)e + O3 $\Rightarrow $ O + O2 + e[53]
    (Y04)e + CO2 $\Rightarrow $ 2e + O + CO+[50](Y14)e + O3 $\Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + O + 2e[53]
    (Y05)e + CO2 $\Rightarrow $ 2e + CO + O+[50](Y15)e + O2 $\Rightarrow $ 2 O + e[50]
    (Y06)e + CO2 $\Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + C + 2e[51, 52](Y16)e + O2 $\Rightarrow $ O + O[50]
    (Y07)e + CO $\Rightarrow $ C + O[50](Y17)e + O2 $\Rightarrow $ 2e + $ {\mathrm{O}}_{2}^{+} $[50]
    (Y08)e + CO $\Rightarrow $ e + C + O[50](Y18)e + O $\Rightarrow $ 2e + O+[50]
    (Y09)e + CO $\Rightarrow $ 2e + CO+[50](Y19)e + C $\Rightarrow $ 2e + C+[50]
    (Y10)e + CO $\Rightarrow $ 2e + C+ + O[50]
    下载: 导出CSV

    表 B3  简化集合中由反应速率系数描述的电子碰撞反应, 其中Te为电子温度, 单位是eV; Tg为气体温度, 单位是K; 速率系数的单位在二体或三体反应中分别是m3/s或m6/s

    Table B3.  Electron impact reactions described by rate coefficients in the simplified model. Te is the electron temperature in eV and Tg is the gas temperature in K. The rate coefficients are in m3/s or m6/s for binary or ternary reactions.

    序号反应反应速率系数文献
    (F01)e + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ $\Rightarrow $ C + O23.94 × 10–13Te–0.4[21]
    (F02)e + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ $\Rightarrow $ CO + O2.0 × 10–11Te–0.5Tg–1[18]
    (F03)e + O3 + O2 $\Rightarrow $ $ {\mathrm{O}}_{3}^{-} $ + O24.6 × 10–40[52]
    (F04)e + $ {\mathrm{O}}_{2}^{+} $ $\Rightarrow $ 2O6.0 × 10–13Te–0.5(1/Tg)0.5[21]
    下载: 导出CSV

    表 B4  简化集合中的中性粒子反应, 其中, Tg 为气体温度, 单位是 K; 速率系数的单位在二体或三体反应中分别是 m3/s 或 m6/s

    Table B4.  Reaction of neutrals in the simplified model. Tg is the gas temperature in K. The rate coefficients are in m3/s or m6/s for binary or ternary reactions.

    序号反应反应速率系数文献
    (M01)CO2 + C $ \Rightarrow$ 2 CO1.0 × 10–21[21]
    (M02)C + O2 $\Rightarrow $ O + CO3.0 × 10–17[21]
    (M03)O + O2 + CO2 $\Rightarrow $ O3 + CO21.7 × 10–42Tg–1.2[48]
    (M04)O + O + CO2 $\Rightarrow $ O2 + CO23.81 × 10–42Tg–1exp(–170/Tg)[48]
    下载: 导出CSV

    表 B5  简化集合中的离子-中性和离子-离子反应, 其中Tg为气体温度, 单位是K; 速率系数的单位在二体或三体反应中分别是m3/s或m6/s

    Table B5.  Ion-neutral and ion-ion reactions in the simplified model. Tg is the gas temperature in K. The rate coefficients are in m3/s or m6/s for binary or ternary reactions.

    序号反应反应速率系数文献
    (H01)O + CO2 $ \Rightarrow $ O + CO2 + e4.0 × 10–18[48]
    (H02)O + CO2 + CO $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO1.5 × 10–40[61]
    (H03)O + CO2 + O2 $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O23.1 × 10–40[61]
    (H04)O + CO2 + CO2 $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO29.0 × 10–41[52]
    (H05)$ {\mathrm{O}}_{2}^{-} $ + CO2 + O2 $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O24.7 × 10–41[52]
    (H06)$ {\mathrm{O}}_{3}^{-} $ + CO2 $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O25.5 × 10–16[18]
    (H07)O+ + CO2 $ \Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + CO9.4 × 10–16[18]
    (H08)O+ + CO2 $ \Rightarrow $ O + $ {\mathrm{C}\mathrm{O}}_{2}^{+} $4.5 × 10–16[18]
    (H09)C+ + CO2 $ \Rightarrow $ CO+ + CO1.1 × 10–15[18]
    (H10)CO+ + CO2 $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + CO1.0 × 10–15[56]
    (H11)O + CO $ \Rightarrow $ CO2 + e5.5 × 10–16[44]
    (H12)$ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + CO $ \Rightarrow $ 2CO2 + e5.0 × 10–19[58]
    (H13)$ {\mathrm{O}}_{2}^{+} $ + C $ \Rightarrow $ CO+ + O5.2 × 10–17[18]
    (H14)$ {\mathrm{O}}_{2}^{+} $ + C $ \Rightarrow $ C+ + O25.2 × 10–17[18]
    (H15)O + C $ \Rightarrow $ CO + e5.0 × 10–16[57]
    (H16)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + CO1.638 × 10–16[52]
    (H17)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow $ CO2 + O+9.62 × 10–17[18]
    (H18)$ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow $ $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O21.1 × 10–16[18]
    (H19)$ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow $ CO2 + O2 + O1.4 × 10–17[18]
    (H20)$ {\mathrm{C}\mathrm{O}}_{4}^{-} $ + O $ \Rightarrow $ CO2 + $ {\mathrm{O}}_{3}^{-} $1.4 × 10–16[18]
    (H21)$ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow $ CO2 + $ {\mathrm{O}}_{2}^{-} $8.0 × 10–17[58]
    (H22)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O2 $ \Rightarrow $ $ {\mathrm{O}}_{2}^{+} $ + CO26.4 × 10–17[52]
    (H23)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + O $ \Rightarrow $ O + CO21.0 × 10–13[62]
    (H24)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{O}}_{2}^{-} $ $ \Rightarrow $ CO + O2 + O6.0 × 10–13[44]
    (H25)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{3}^{-} $ $ \Rightarrow $ 2CO2 + O5.0 × 10–13[58]
    (H26)$ {\mathrm{C}\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow $ 2CO2 + O25.0 × 10–13[18]
    (H27)$ {\mathrm{C}\mathrm{O}}_{3}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow $ CO2 + O2 + O3.0 × 10–13[18]
    (H28)$ {\mathrm{O}}_{2}^{+} $ + $ {\mathrm{C}\mathrm{O}}_{4}^{-} $ $ \Rightarrow $ CO2 + 2O23.0 × 10–13[18]
    (H29)O + O3 $ \Rightarrow $ 2O2 + e3.0 × 10–16[44]
    (H30)O + O3 $ \Rightarrow $ $ {\mathrm{O}}_{3}^{-} $ + O8.0 × 10–16[18]
    (H31)$ {\mathrm{O}}_{2}^{-} $ + O3 $ \Rightarrow $ $ {\mathrm{O}}_{3}^{-} $ + O24.0 × 10–16[18]
    (H32)O + O2 $ \Rightarrow $ O + e + O26.9 × 10–16[52]
    (H33)O + O $ \Rightarrow $ O2 + e2.3 × 10–16[21]
    (H34)$ {\mathrm{O}}_{2}^{-} $ + O $ \Rightarrow $ O2 + O3.31 × 10–16[21]
    (H35)$ {\mathrm{O}}_{2}^{-} $ + O $ \Rightarrow $ O3 + e3.3 × 10–16[18]
    (H36)$ {\mathrm{O}}_{3}^{-} $ + O $ \Rightarrow $ $ {\mathrm{O}}_{2}^{-} $ + O22.5 × 10–16[18]
    (H37)O+ $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow $ O2 + O2.6 × 10–14(300/Tg)0.44[21]
    (H38)O + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow $ 3O4.2 × 10–13(300/Tg)0.44[21]
    (H39)$ {\mathrm{O}}_{2}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow $ 2O22.01 × 10–13(300/Tg)0.5[21]
    (H40)$ {\mathrm{O}}_{2}^{-} $ + $ {\mathrm{O}}_{2}^{+} $ $ \Rightarrow $ O2 + 2O4.2 × 10–13[21]
    下载: 导出CSV
  • [1]

    史建魁, 张仲谋, 刘振兴 1997 地球物理学进展 04 98Google Scholar

    Shi J K, Zhang Z M, Liu Z X 1997 Prog. Geophys. 04 98Google Scholar

    [2]

    Thomas P, Gierasch P J 1985 Science 230 175Google Scholar

    [3]

    Sullivan R, Banfield D, Bell J F 2005 Nature 436 58Google Scholar

    [4]

    Bougher S W, Murphy J, Haberle R M 1997 Adv. Space Res. 19 1255Google Scholar

    [5]

    Lämmel M, Kroy K 2017 Phys. Rev. E 96 052906Google Scholar

    [6]

    Read P L, Lewis S R, Mulholland D P 2015 Rep. Prog. Phys. 78 125901Google Scholar

    [7]

    Barth E L, Farrell W M, Rafkin S C R 2016 Icarus 268 253Google Scholar

    [8]

    Esposito F, Molinaro R, Popa C I 2016 Geophys. Res. Lett. 43 5501Google Scholar

    [9]

    Schmidt D S, Schmidt R A, Dent J D 1998 J. Geophys. Res. 103 8997Google Scholar

    [10]

    Melnik O, Parrot M 1998 J. Geophys. Res. 103 29107Google Scholar

    [11]

    Eden H F, Vonnegut B 1973 Science 180 962Google Scholar

    [12]

    Farrell W M, McLain J L, Collier M R 2015 Icarus 254 333Google Scholar

    [13]

    Farrell W M, McLainb J L, Collier M R 2017 Icarus 297 90Google Scholar

    [14]

    Hecht M, Hoffman J, Rapp D 2021 Space Sci. Rev. 217 9Google Scholar

    [15]

    Keudell A V, Volker S 2017 Plasma Sources Sci. Technol. 26 113001Google Scholar

    [16]

    Guerra V, Silva T, Ogloblina P 2017 Plasma Sources Sci. Technol. 26 11LT01Google Scholar

    [17]

    Bogaerts A, Kozak T, Laer K V 2015 Faraday Discuss. 183 217Google Scholar

    [18]

    Kozák T, Bogaerts A 2014 Plasma Sources Sci. Technol. 23 045004Google Scholar

    [19]

    Aerts R, Martens T, Bogaerts A 2012 J. Phys. Chem. C 116 23257Google Scholar

    [20]

    Berthelot A, Bogaerts A 2017 J. Phys. Chem. C 121 8236Google Scholar

    [21]

    Sun R, Wang H X, Bogaerts A 2020 Plasma Sources Sci. Technol. 29 025012Google Scholar

    [22]

    Hurlbatt A, Gibson A, Schröter S 2017 Plasma Processes Polym. 14 1600138Google Scholar

    [23]

    Lazarou C, Belmonte T, Chiper A 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar

    [24]

    Wang W, Berthelot A, Kolev S 2016 Plasma Sources Sci. Technol. 25 065012Google Scholar

    [25]

    Takana H, Nishiyama H 2014 Plasma Sources Sci. Technol. 23 034001Google Scholar

    [26]

    Dubin D H E, Jin D Z 2003 Phys. Plasmas 10 1338Google Scholar

    [27]

    Kelly S, Golda J, Turner M 2015 J. Phys. D:Appl. Phys. 48 444002Google Scholar

    [28]

    Iqbal M M, Stallard C P, Dowling D P, Turner M M 2014 Plasma Processes Polym. 12 201Google Scholar

    [29]

    Stagni A, Frassoldati A, Cuoci A 2015 Combust. Flame 163 382Google Scholar

    [30]

    Rabitz H, Kramer M, Dacol D 2003 Annu. Rev. Phys. Chem. 34 419Google Scholar

    [31]

    Tomlin A S, Pilling M J, Meriting J H 1995 Ind. Eng. Chem. Res. 34 3749Google Scholar

    [32]

    Brown N J, And G L, Koszykowski M L 2015 Int. J. Chem. Kinet. 29 393Google Scholar

    [33]

    Lehmann R 2004 J. Atmos. Chem. 47 45Google Scholar

    [34]

    Strogatz S, Steven H 2003 SIAM Rev. 45 167Google Scholar

    [35]

    Kolaczyk E D 2009 Statistical Analysis of Network Data: Methods and Models (New York: Springer) pp79−120

    [36]

    Boccaletti S, Bianconi G, Criado R 2014 Phys. Rep. 544 1Google Scholar

    [37]

    Estrada E, Hatano N, Benzi M 2012 Phys. Rep. 514 89Google Scholar

    [38]

    Klamt S, Hädicke O, Kamp A V 2014 Large-Scale Networks in Engineering and Life Sciences (Cham: Birkhäuser Basel) pp263−316

    [39]

    Sakai O, Nobuto K, Miyagi S 2015 AIP Adv. 5 107140Google Scholar

    [40]

    Mizui Y, Kojima T, Miyagi S 2017 Symmetry 9 309Google Scholar

    [41]

    Lu T F, Law C K 2005 Proc. Combust. Inst. 30 1333Google Scholar

    [42]

    Lu T F, Law C K 2006 Combust. Flame 146 472Google Scholar

    [43]

    Snoeckx R, Bogaerts A 2017 Chem. Soc. Rev. 46 5805Google Scholar

    [44]

    Aerts R, Somers W, Bogaerts A 2015 ChemSusChem 8 702Google Scholar

    [45]

    Zhang Y T, Wang Y H 2018 Phys. Plasmas 25 023509Google Scholar

    [46]

    高书涵, 王绪成, 张远涛 2020 物理学报 69 115204Google Scholar

    Gao S H, Wang X C, Zhang Y T 2020 Acta Phys. Sin. 69 115204Google Scholar

    [47]

    Bogaerts A, Wang W Z 2016 Plasma Sources Sci. Technol. 25 055016Google Scholar

    [48]

    Ponduri S, Becker M M, Welzel S 2016 J. Appl. Phys. 119 093301Google Scholar

    [49]

    Stijn H, Luca M M, Giorgio D 2019 J. Phys. Chem. C 123 12104Google Scholar

    [50]

    Phelps A V www.lxcat.net [2020-3-21]

    [51]

    Lowke J J, Phelps A V, Irwin B W 1973 J. Appl. Phys. 44 4664Google Scholar

    [52]

    Beuthe T G, Chang J S 1997 Jpn. J. Appl. Phys. 36 4997Google Scholar

    [53]

    Eliasson B, Kogelschatz U 1986 Brown Boveri Research Report KLR 86-11C

    [54]

    Roberson G, Roberto M, Verboncoeur J 2015 Braz. J. Phys. 37 457Google Scholar

    [55]

    Spencer L F 2012 Ph. D. Dissertation (Ann Arbor: University of Michigan)

    [56]

    Berthelot A, Bogaerts A 2017 Plasma Sources Sci. Technol. 26 115002Google Scholar

    [57]

    Wang W, Snoeckx R, Zhang X 2018 J. Phys. Chem. C 122 8704Google Scholar

    [58]

    Berthelot A, Bogaerts A 2016 Plasma Sources Sci. Technol. 25 045022Google Scholar

    [59]

    Moss M S 2017 Plasma Sources Sci. Technol. 26 035009Google Scholar

    [60]

    Harder N D, Bekerom D C M V D, Al R S 2017 Plasma Processes Polym. 14 1600120Google Scholar

    [61]

    Vermeiren V, Bogaerts A 2018 J. Phys. Chem. C 122 25869Google Scholar

    [62]

    Cheng C, Ma M, Zhang Y, Liu D 2020 J. Phys. D: Appl. Phys. 53 144001Google Scholar

    [63]

    Li J, Fang C, Chen J, Li H P 2021 J. Appl. Phys. 129 133302Google Scholar

  • [1] 王松, 周闯, 李素文, 牟福生. 基于法布里-珀罗干涉仪测量大气环境CO2的方法. 物理学报, 2024, 73(2): 020702. doi: 10.7498/aps.73.20231224
    [2] 付强, 王聪, 王语菲, 常正实. 正弦交流电压驱动低气压CO2放电特性的对比: DBD结构与裸电极结构. 物理学报, 2022, 71(11): 115204. doi: 10.7498/aps.71.20220086
    [3] 孙冠文, 崔寒茵, 李超, 林伟军. 火星大气频散声速剖面建模方法及其对声传播路径的影响. 物理学报, 2022, 71(24): 244304. doi: 10.7498/aps.71.20221531
    [4] 孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明. 基于高分辨率激光外差光谱反演大气CO2柱浓度及系统测量误差评估方法. 物理学报, 2020, 69(14): 144201. doi: 10.7498/aps.69.20200125
    [5] 王振, 杜艳君, 丁艳军, 彭志敏. 波长调制-直接吸收方法在线监测大气中CH4和CO2浓度. 物理学报, 2020, 69(6): 064205. doi: 10.7498/aps.69.20191569
    [6] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [7] 王倩, 毕研盟, 杨忠东. 气溶胶对大气CO2短波红外遥感探测影响的模拟分析. 物理学报, 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [8] 单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清. 基于傅里叶变换红外光谱技术测量大气中CO2的稳定同位素比值. 物理学报, 2017, 66(22): 220204. doi: 10.7498/aps.66.220204
    [9] 王凯, 张文华, 刘凌云, 徐法强. VO2薄膜表面氧缺陷的修复:F4TCNQ分子吸附反应. 物理学报, 2016, 65(8): 088101. doi: 10.7498/aps.65.088101
    [10] 李志彬, 马宏亮, 曹振松, 孙明国, 黄印博, 朱文越, 刘强. 2μm波段高灵敏度离轴积分腔装置实际大气CO2测量. 物理学报, 2016, 65(5): 053301. doi: 10.7498/aps.65.053301
    [11] 陈洁, 张淳民, 王鼎益, 张兴赢, 王舒鹏, 栗彦芬, 刘冬冬, 荣飘. 地表反照率对短波红外探测大气CO2的影响. 物理学报, 2015, 64(23): 239201. doi: 10.7498/aps.64.239201
    [12] 刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华. 连续波差分吸收激光雷达测量大气CO2. 物理学报, 2014, 63(10): 104214. doi: 10.7498/aps.63.104214
    [13] 韩月琪, 钟中, 王云峰, 杜华栋. 梯度计算的集合变分方案及其在大气Ekman层湍流系数反演中的应用. 物理学报, 2013, 62(4): 049201. doi: 10.7498/aps.62.049201
    [14] 孙友文, 谢品华, 徐晋, 周海金, 刘诚, 王杨, 刘文清, 司福祺, 曾议. 采用加权函数修正的差分光学吸收光谱反演环境大气中的CO2垂直柱浓度. 物理学报, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [15] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征. 物理学报, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [16] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达. 物理学报, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [17] 许振嘉, 陈维德. CW CO2激光退火在硅中产生的氧沾污. 物理学报, 1984, 33(1): 9-15. doi: 10.7498/aps.33.9
    [18] 傅恩生, 王裕民, 程兆谷, 窦爱荣. 10.6μm的CO2激光的电光频移. 物理学报, 1979, 28(5): 24-31. doi: 10.7498/aps.28.24
    [19] 高智, 林烈, 孙文超. 横流放电CO2激光的理论分析. 物理学报, 1979, 28(6): 807-823. doi: 10.7498/aps.28.807
    [20] 林光海. 对流放电CO2激光器的饱和特性. 物理学报, 1978, 27(4): 396-412. doi: 10.7498/aps.27.396
计量
  • 文章访问数:  3072
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-09
  • 修回日期:  2021-06-04
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回