DOI QR코드

DOI QR Code

Capability of CO2 on Metal-Organic Frameworks-Based Porous Adsorbents and Their Challenges to Pressure Swing Adsorption Applications

금속-유기 골격계 다공성 흡착제의 이산화탄소 흡착성능과 압력순환흡착 공정 적용의 문제점

  • Kim, Moon Hyeon (Department of Environmental Engineering, Daegu University) ;
  • Choi, Sang Ok (Experiment & Research Team, Samsung-BP Chemicals Co. Ltd.) ;
  • Choo, Soo Tae (Experiment & Research Team, Samsung-BP Chemicals Co. Ltd.)
  • 김문현 (대구대학교 공과대학 환경공학과) ;
  • 최상옥 (삼성비피화학(주) 시험연구팀) ;
  • 추수태 (삼성비피화학(주) 시험연구팀)
  • Received : 2013.10.31
  • Accepted : 2013.12.02
  • Published : 2013.12.31

Abstract

This review has shown the capability of MOFs and ZIFs materials to adsorb $CO_2$ under typical PSA temperatures and pressures. The usual operating conditions are adsorption temperatures of $15{\sim}40^{\circ}C$ and adsorption pressures of 4~6 bar based on numerous PSA processes which are widely employed in gases industry for adsorptive separation of $CO_2$. The extent of $CO_2$ adsorption on the microporous materials depends on the metal species and organic linkers existing in the frameworks. The pore size and the surface area, and the process variables are the key parameters to be associated with the efficiency of the adsorbents, particularly adsorption pressures if other variables are comparable each other. The MOFs and ZIFs materials require high pressures greater than 15 bar to yield significant $CO_2$ uptakes. They possess a $CO_2$ adsorption capacity which is very similar to or less than that of conventional benchmark adsorbents such as zeolites and activated carbons. Consequently, those materials have been much less cost-effective for adsorptive $CO_2$ separation to date because of very high production price and the absence of commercially-proven PSA processes using such new adsorbents.

본 논고에서는 가스 흡착 분리 산업에서 광범위하게 적용되고 있는 압력순환흡착(pressure swing adsorption, PSA) 기술의 전형적인 흡착조건인 $15{\sim}40^{\circ}C$의 온도와 4~6 bar의 압력에서 금속-유기 골격체(metal-organic frameworks, MOF)와 제올라이트 이미다졸레이트 골격체(zeolite imidazolate frameworks, ZIF)의 $CO_2$ 흡착성능을 살펴보고 이들이 가지고 있는 장 단점을 분석해보고자 한다. $CO_2$$H_2$, CO, $N_2$$CH_4$와 같은 기체분자들에 비해 큰 분극률을 가지므로 동일한 세공크기라면 흡착제의 비표면적이 클수록 높은 흡착량을 보이며, $CO_2$의 분자크기($3.3{\AA}$)보다 큰 세공으로 이루어진 흡착제라면 상기 흡착조건에서의 $CO_2$ 흡착성능은 세공크기에 크게 영향을 받는다. MOF와 ZIF의 $CO_2$ 흡착성능은 이들의 골격을 이루는 금속과 유기 링커의 종류, 세공크기, 비표면적, 흡착조건(온도와 압력) 등에 따라 달라질 수 있지만, 특히 흡착압력의 영향이 절대적이다. 다시 말하면, $CO_2$의 흡착압력이 비슷할 경우 MOF와 ZIF의 $CO_2$ 흡착량에 미치는 상기 인자들의 영향은 비교적 작다. 15 bar 이상의 $CO_2$ 흡착압력에서 이 흡착제들이 수 십 mmol/g의 흡착성능을 나타낸다고 할지라도, 전형적인 PSA 공정조건에서 이들의 $CO_2$ 흡착성능은 제올라이트, 활성탄과 같은 벤치마크 흡착제들의 성능과 유사하거나 오히려 낮을 뿐만아니라, 이들의 가격은 벤치마크들에 비해 매우 높기 때문에 경제성 확보에 어려움이 있다.

Keywords

References

  1. Yang, W. H., and Kim, M. H., "Catalytic Reduction of $N_2O$ by $H_2$ over Well-Characterized Pt Surfaces," Korean J. Chem. Eng., 23, 908-918 (2006). https://doi.org/10.1007/s11814-006-0007-1
  2. Wigley, T. M. L., "The Kyoto Protocol: $CO_2$, $CH_4$ and Climate Implications," Geophys. Res. Lett., 25, 2285-2288 (1998). https://doi.org/10.1029/98GL01855
  3. US EPA, "Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2011," Report No. EPA 430-R-13-001, April, 2013.
  4. UNEP (the United Nations Environment Programme), "The Emissions Gap Report 2012: A UNEP Synthesis Report," November, 2012.
  5. ASME, "General Position Statement on Technology and Policy Recommendations and Goals for Reducing Carbon Dioxide Emissions in the Energy Sector," April, 2009.
  6. Stockholm Environment Institute, "Issues and Options for Benchmarking Industrial GHG Emissions," June, 2010.
  7. Wang, Q., Luo, J., Zhong, Z., and Borgna, A., "$CO_2$ Capture by Solid Adsorbents and Their Applications: Current Status and New Trends," Energy Environ. Sci., 4, 42-55 (2011). https://doi.org/10.1039/c0ee00064g
  8. Yaghi, O. M., Li, G., and Li, H., "Selective Binding and Removal of Guests in a Microporous Metal-Organic Framework," Nature, 378, 703-706 (1995). https://doi.org/10.1038/378703a0
  9. Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe- Romo, F. J., Chae, H. K., O'Keeffe, M., and Yaghi, O. M., "Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks," PNAS, 103, 10186-10191 (2006). https://doi.org/10.1073/pnas.0602439103
  10. McBain, J. W., The Sorption of Gases and Vapors by Solids, G. Routledge & Sons, London, 1932, pp. 1-577.
  11. Wagner, P., Yoshikawa, M., Lovallo, M., Tsuji, K., Tsapatsis, M., and Davis, M. E., "CIT-5: A High-Silica Zeolite with 14-Ring Pores," Chem. Commun., 2179-2180 (1997).
  12. Freyhardt, C.C., Tsapatsis, M., Lobo, R. F., Balkus, K. J., Jr., and Davis, M. E., "A High-Silica Zeolite with a 14-Tetrahedral- Atom Pore Opening," Nature, 381, 295-298 (1996). https://doi.org/10.1038/381295a0
  13. Lobo, R. F., Tsapatsis, M., Freyhardt, C. C., Khodabandeh, S., Wagner, P., Chen, C. Y., Balkus, K. J., Jr., Zones, S. I., and Davis, M. E., "Characterization of the Extra-Large-Pore Zeolite UTD-1," J. Am. Chem. Soc., 119, 8474-8484 (1997). https://doi.org/10.1021/ja9708528
  14. Loiseau, T., and Ferey, G., "Oxyfluorinated Microporous Compounds: VII. Synthesis and Crystal Structure of ULM-5, a New Fluorinated Gallophosphate $Ga_{16}(PO_4)_{14}(HPO_4)_2(OH)_2F_7$, $[H_3N(CH_2)_6NH_3]_4$, $6H_2O$ with 16-Membered Rings and Both Bonding and Encapsulated F," J. Solid State Chem., 111, 403-415 (1994). https://doi.org/10.1006/jssc.1994.1246
  15. Huo, Q., Xu, R., Li, S., Ma, Z., Thomas, J. M., and Chippindale, A. M., "Synthesis and Characterization of a Novel Extra Large Ring of Aluminophosphate JDF-20," J. Chem. Soc., Chem. Commun., 875-876 (1992).
  16. Millward, A. R., and Yaghi, O. M., "Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature," J. Am. Chem. Soc., 127, 17998-17999 (2005). https://doi.org/10.1021/ja0570032
  17. Prez-Pellitero, J., Amrouche, H., Siperstein, F. R., Pirngruber, G., Nieto-Draghi, C., Chaplais, G., Simon-Masseron, A., Bazer- Bachi, D., Peralta, D., and Bats, N., "Adsorption of $CO_2$, $CH_4$, and $N_2$ on Zeolitic Imidazolate Frameworks: Experiments and Simulations," Chem. Eur. J., 16, 1560-1571 (2010). https://doi.org/10.1002/chem.200902144
  18. Li, J. R., Kuppler, R. J., and Zhou, H. C., "Selective Gas Adsorption and Separation in Metal-Organic Frameworks," Chem. Soc. Rev., 38, 1477-1504 (2009). https://doi.org/10.1039/b802426j
  19. Yang, R. T., Adsorbents: Fundamental and Applications, John Wiley & Sons, Hoboken, 2003, pp. 1-410.
  20. Cote, A. P., Benin, A. I., Ockwig, N. W., O'Keeffe, M., Matzger, A. J., and Yaghi, O. M., "Porous, Crystalline, Covalent Organic Frameworks," Science, 310, 1166-1170 (2005). https://doi.org/10.1126/science.1120411
  21. El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortes, J. L., Cote, A. P., Taylor, R. E., O'Keeffe, M., and Yaghi, O. M., "Designed Synthesis of 3D Covalent Organic Frameworks," Science, 316, 268-272 (2007). https://doi.org/10.1126/science.1139915
  22. Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., Corma, A., and Mirodatos, C., "Natural Gas Treating by Selective Adsorption: Material Science and Chemical Engineering Interplay," Chem. Eng. J., 155, 553-566 (2009). https://doi.org/10.1016/j.cej.2009.09.010
  23. Palomino, M., Corma, A., Jorda, J. L., Rey, F., and Valencia, S., "Zeolite Rho: A Highly Selective Adsorbent for $CO_2/CH_4$ Separation Induced by a Structural Phase Modification," Chem. Commun., 48, 215-217 (2012). https://doi.org/10.1039/c1cc16320e
  24. Krishna, R., and van Baten, J. M., "A Comparison of the $CO_2$ Capture Characteristics of Zeolites and Metal-Organic Frameworks," Sep. Purif. Technol., 87, 120-126 (2012). https://doi.org/10.1016/j.seppur.2011.11.031
  25. Yuan, D., Zhao, D., Sun, D., and Zhou, H. C., "An Isoreticular Series of Metal-Organic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake Capacity," Angew. Chem. Int. Ed., 49, 5357-5361 (2010). https://doi.org/10.1002/anie.201001009
  26. Dasgupta, S., Biswas, N., Aarti., Gode, N. G., Divekar, S., Nanoti, A., and Goswami, A. N., "$CO_2$ Recovery from Mixtures with Nitrogen in a Vacuum Swing Adsorber Using Metal Organic Framework Adsorbent: A Comparative Study," Int. J. Greenhouse Gas Control, 7, 225-229 (2012). https://doi.org/10.1016/j.ijggc.2011.10.007
  27. Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H. A., Orpen, G. A., and Williams, I. D., "A Chemically Functionalizable Nanoporous Material $[Cu_3(TMA)_2(H_2O)_3]_n$," Science, 283, 1148-1150 (1999). https://doi.org/10.1126/science.283.5405.1148
  28. Wang, Q. M., Shen, D., Bulow, M., Lau, M. L., Deng, S., Fitch, F. R., Lemcoff, N. O., and Semanscin, J., "Metallo-Organic Molecular Sieve for Gas Separation and Purification," Micropor. Mesopor. Mater., 55, 217-230 (2002). https://doi.org/10.1016/S1387-1811(02)00405-5
  29. Chowdhury, P., Bikkina, C., Meister, D., Dreisbach, F., and Gumma, S., "Comparison of Adsorption Isotherms on Cu-BTC Metal Organic Frameworks Synthesized from Different Routes," Micropor. Mesopor. Mater., 117, 406-413 (2009). https://doi.org/10.1016/j.micromeso.2008.07.029
  30. Liang, Z., Marshall, M., and Chaffee, A. L., "$CO_2$ Adsorption-Based Separation by Metal Organic Framework (Cu-BTC) versus Zeolite (13X)," Energy Fuels, 23, 2785-2789 (2009). https://doi.org/10.1021/ef800938e
  31. Llewellyn, P. L., Bourrelly, S., Serre, C., Vimont, A., Daturi, M., Hamon, L., Weireld, G., Chang, J. S., Hong, D. Y., Hwang, Y. K., Jhung, S. H., and Ferey, G., "High Uptakes of $CO_2$ and $CH_4$ in Mesoporous Metal-Organic Frameworks MIL-100 and MIL-101," Langmuir, 24, 7245-7250 (2008). https://doi.org/10.1021/la800227x
  32. Miller, S. R., Pearce, G. M., Wright, P. A., Bonino, F., Chavan, S., Bordiga, S., Margiolaki, I., Guillou, N., Ferey, G., Bourrelly, S., and Llewellyn, P. L., "Structural Transformations and Adsorption of Fuel-Related Gases of a Structurally Responsive Nickel Phosphonate Metal-Organic Framework, Ni-STA-12," J. Am. Chem. Soc., 130, 15967-15981 (2008). https://doi.org/10.1021/ja804936z
  33. Bastin. L., Barcia, P. S., Hurtado, E. J., Silva, J. A. C., Rodrigues, A. E., and Chen, B., "A Microporous Metal Organic Framework for Separation of $CO_2/N_2$ and $CO_2/CH_4$ by Fixed-Bed Adsorption," J. Phys. Chem. C, 112, 1575-1581 (2008). https://doi.org/10.1021/jp077618g
  34. Cheon, Y. E., Park, J., and Suh, M. P., "Selective Gas Adsorption in a Magnesium-Based Metal-Organic Framework," Chem. Commun., 5436-5438 (2009).
  35. Llewellyn, P. L., Bourrrelly, S., Serre, C., Filinchuk, Y., and Ferey, G., "How Hydration Drastically Improves Adsorption Selectivity for $CO_2$ over $CH_4$ in the Flexible Chromium Terephthalate MIL-53," Angew. Chem., Int. Ed., 45, 7751-7754 (2006). https://doi.org/10.1002/anie.200602278
  36. Couck, S., Denayer, J. F. M., Baron, G. V., Remy, T., Gascon, J., and Kapteijn, F., "An Amine-Functionalized MIL-53 Metal Organic Framework with Large Separation Power for $CO_2$ and $CH_4$," J. Am. Chem. Soc., 131, 6326-6327 (2009). https://doi.org/10.1021/ja900555r
  37. Comotti, A., Bracco, S., Sozzani, P., Horike, S., Matsuda, R., Chen, J., Takata, M., Kubota, Y., and Kitagawa, S., "Nanochannels of Two Distinct Cross-Sections in a Porous Al-Based Coordination Polymer," J. Am. Chem. Soc., 130, 13664-13672 (2008). https://doi.org/10.1021/ja802589u
  38. Demessence, A., D'Alessandro, D. M., Foo, M. L., and Long, J. R., "Strong $CO_2$ Binding in a Water-Stable, Triazolate-Bridged Metal-Organic Framework Functionalized with Ethylenediamine," J. Am. Chem. Soc., 131, 8784-8785 (2009). https://doi.org/10.1021/ja903411w
  39. Banerjee, R., Furukawa, R., Britt, H., Knobler, D., O'Keeffe, C., and Yaghi, O. M., "Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and Their Carbon Dioxide Selective Capture Properties," J. Am. Chem. Soc., 131, 3875-3877 (2009). https://doi.org/10.1021/ja809459e
  40. Sircar, S., "Basic Research Needs for Design of Adsorptive Gas Separation Processes," Ind. Eng. Chem. Res., 45, 5435-5448 (2006). https://doi.org/10.1021/ie051056a
  41. Chae, H. K., Siberio-Perez, D. Y., Kim, J., Go, Y. B., Eddaoudi, M., Matzger, A. J., O''Keeffe, M., and Yaghi, O. M., "A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals," Nature, 427, 523-527 (2004). https://doi.org/10.1038/nature02311
  42. Yong, Z., Mata, V. G., and Rodrigues, A. E., "Adsorption of Carbon Dioxide on Chemically Modified High Surface Area Carbon-Based Adsorbents at High Temperature," Adsorption, 7, 41-50, (2001). https://doi.org/10.1023/A:1011220900415
  43. Siriwardane, R. V., Shen, M. S., Fisher, E. P., and Poston, J. A., "Adsorption of $CO_2$ on Molecular Sieves and Activated Carbon," Energy Fuels, 15, 279-284 (2001). https://doi.org/10.1021/ef000241s
  44. McEwen, J., Hayman, J. D., and Yazaydin, A. O., "A Comparative Study of $CO_2$, $CH_4$ and $N_2$ Adsorption in ZIF-8, Zeolite-13X and BPL Activated Carbon," Chem. Phys., 412, 72-76 (2013). https://doi.org/10.1016/j.chemphys.2012.12.012
  45. Jadhav, P. D., Chatti, R. V., Biniwale, R. B., Labhsetwar, N. K., Devotta, S., and Rayalu, S. S., "Monoethanol Amine Modified Zeolite 13X for $CO_2$ Adsorption at Different Temperatures," Energy Fuels, 21, 3555-3559 (2007). https://doi.org/10.1021/ef070038y
  46. Lee, K. B., Beaver, M. G., Caram, H. S., and Sircar, S., "Reversible Chemisorbents for Carbon Dioxide and Their Potential Applications," Ind. Eng. Chem. Res., 47, 8048-8062 (2008). https://doi.org/10.1021/ie800795y
  47. Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O'Keeffe, M., and Yaghi, O. M., "Synthesis, Structure and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks," Acc. Chem. Res., 43, 58-67 (2010). https://doi.org/10.1021/ar900116g
  48. Rezaei, F., and Webley, P., "Structured Adsorbents in Gas Separation Processes," Sep. Purif. Technol., 70, 243-256 (2010). https://doi.org/10.1016/j.seppur.2009.10.004

Cited by

  1. Techno-economic evaluation of hybrid systems of pressure swing adsorption and membrane processes for coalbed methane separation vol.115, 2016, https://doi.org/10.1016/j.cherd.2016.09.036
  2. Adsorption of CO2 and CO on H-zeolites with different framework topologies and chemical compositions and a correlation to probing protonic sites using NH3 adsorption vol.23, pp.2, 2016, https://doi.org/10.1007/s10934-015-0081-z
  3. 이산화탄소 압력순환흡착을 위한 칼슘 이온교환 Y 제올라이트의 작업용량과 선택계수 향상 vol.24, pp.1, 2013, https://doi.org/10.7464/ksct.2018.24.1.041