DOI QR코드

DOI QR Code

N-Acetyltransferase 2 Gene Polymorphisms are Associated with Susceptibility to Cancer: a Meta-analysis

  • Tian, Fang-Shuo (Department of Epidemiology, School of Public Health, China Medical University) ;
  • Shen, Li (Department of Epidemiology, School of Public Health, China Medical University) ;
  • Ren, Yang-Wu (Department of Epidemiology, School of Public Health, China Medical University) ;
  • Zhang, Yue (Department of Epidemiology, School of Public Health, China Medical University) ;
  • Yin, Zhi-Hua (Department of Epidemiology, School of Public Health, China Medical University) ;
  • Zhou, Bao-Sen (Department of Epidemiology, School of Public Health, China Medical University)
  • Published : 2014.07.30

Abstract

N-acetyltransferase 2 (NAT2) is a polymorphic enzyme that plays an important role in the metabolism of various potential carcinogens. In recent years, a number of studies have been carried out to investigate the relationship between the rs1799930 and rs1799931 polymorphism in NAT2 and cancer risk in multiple populations for different types of cancer. However, the results were not consistent. Therefore, we performed a meta-analysis to further explore the relationship between NAT2 polymorphism and the risk of cancer. A total of 21 studies involving 15, 450 subjects for rs1799930 and 13, 011 subjects for rs1799931 were included in this meta-analysis. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess strength of associations. We also evaluated the publication bias and performed a sensitivity analysis. Overall, our results showed an apparent significant association between the NAT2 rs1799930 polymorphism and cancer susceptibility in Asians (GA vs. GG: OR=1.22, 95% CI=1.03-1.45; dominant model: OR=1.22, 95% CI=1.03-1.43) and population-based controls (GA vs. GG: OR=1.10, 95% CI=1.01-1.19; dominant model: OR=1.09, 95% CI=1.01-1.18). In contrast, a significant association was observed between the NAT2 rs1799931 G>A polymorphism and decreased cancer susceptibility in overall meta-analysis (AA vs. GG: OR=0.55, 95% CI=0.33-0.93; GA vs. GG: OR=1.00, 95% CI=0.88-1.14; dominant model: OR=0.97, 95% CI=0.86-1.10; recessive model: OR=0.56, 95% CI=0.34-0.94) and the Asian group (AA vs. GG: OR=0.50, 95% CI=0.26-0.94; recessive model, OR=0.50, 95% CI=0.27-0.94). We found that the NAT2 rs1799930 may be a risk factor, while the NAT2 rs1799931 polymorphism is associated with a decreased risk of cancer and is likely a protective factor against cancer development.

Keywords

References

  1. Agudo A, Bonet C, Sala N, et al (2013). Hemochromatosis (HFE)gene mutations and risk of gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Carcinogenesis, 34, 1244-50. https://doi.org/10.1093/carcin/bgt045
  2. Al-Moundhri MS, Al-Kindi M, Al-Nabhani M, et al (2007).NAT2 polymorphism in Omani gastric cancer patients-risk predisposition and clinicopathological associations. World J Gastroenterol, 13, 2697-702. https://doi.org/10.3748/wjg.v13.i19.2697
  3. Balaji L, Krishna BS, Bhaskar LV (2012). An unlikely role for the NAT2 genotypes and haplotypes in the oral cancer of south Indians. Arch Oral Biol, 57, 513-8. https://doi.org/10.1016/j.archoralbio.2011.10.019
  4. Begg CB, Mazumdar M (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50,1088-101. https://doi.org/10.2307/2533446
  5. Blum M, Grant DM, McBride W, et al (1990). Human arylamineN-acetyltransferase genes: isolation, chromosomallocalization and functional expression. DNA Cell Biol, 9,193-203. https://doi.org/10.1089/dna.1990.9.193
  6. Borlak J, Reamon-Buettner SM (2006). N-acetyltransferase2 (NAT2) gene polymorphisms in colon and lung cancer patients. BMC Med Genet, 7, 58. https://doi.org/10.1186/1471-2350-7-58
  7. Cleary SP, Cotterchio M, Shi E, et al (2010). Cigarette smoking, genetic variants in carcinogen-metabolizing enzymes and colorectal cancer risk. Am J Epidemiol, 172, 1000-14. https://doi.org/10.1093/aje/kwq245
  8. Colditz GA, Burdick E, Mosteller F (1995). Heterogeneity in meta-analysis of data from epidemiologic studies: acommentary. Am J Epidemiol, 142, 371-82.
  9. Cotterchio M, Boucher BA, Manno M, et al (2008). Red meat intake, doneness, polymorphisms in genes that encodecarcinogen-metabolizing enzymes and colorectal cancerrisk. Cancer Epidemiol Biomarkers Prev, 17, 3098-107. https://doi.org/10.1158/1055-9965.EPI-08-0341
  10. De Stefani E, Boffetta P, Mendilaharsu M, et al (1998). Dietary nitrosamines, heterocyclic amines, and risk of gastric cancer:a case-control study in Uruguay. Nutr Cancer, 30, 158-62. https://doi.org/10.1080/01635589809514656
  11. Delort L, Satih S, Kwiatkowski F, et al (2010). Evaluation of breast cancer risk in a multigenic model including lowpenetrance genes involved in xenobiotic and estrogenmetabolisms. Nutr Cancer, 62, 243-51. https://doi.org/10.1080/01635580903305300
  12. Demokan S, Suoglu Y, Gozeler M, et al (2010). N-acetyltransferase1 and 2 gene sequence variants and risk of head and neck cancer. Mol Biol Rep, 37, 3217-26. https://doi.org/10.1007/s11033-009-9905-8
  13. DerSimonian R, Laird N (1986). Meta-analysis in clinical trials. Control Clin Trials, 7, 177-88. https://doi.org/10.1016/0197-2456(86)90046-2
  14. Egger M, Davey Smith G, Schneider M, et al (1997). Bias inmeta-analysis detected by a simple, graphical test. BMJ, 315, 629-34. https://doi.org/10.1136/bmj.315.7109.629
  15. Eichholzer M, Rohrmann S, Barbir A, et al (2012). Polymorphismsin heterocyclic aromatic amines metabolism-related genes are associated with colorectal adenoma risk. Int J Mol Epidemiol Genet, 3, 96-106.
  16. Gemignani F, Landi S, Szeszenia-Dabrowska N, et al (2007). Development of lung cancer before the age of 50: the role ofxenobiotic metabolizing genes. Carcinogenesis, 28, 1287-93. https://doi.org/10.1093/carcin/bgm021
  17. Hein DW (1988). Acetylator genotype and arylamine-induced carcinogenesis. Biochim Biophys Acta, 948, 37-66.
  18. Hein DW, Doll MA, Gray K, et al (1993). Metabolicactivation of N-hydroxy-2-aminofluorene and N-hydroxy­2-acetylaminofluorene by monomorphic N-acetyltransferase(NAT1) and polymorphic N-acetyltransferase (NAT2) incolon cytosols of Syrian hamsters congenic at the NAT2 locus. Cancer Res, 53, 509-14.
  19. Hickman D, Pope J, Patil SD, et al (1998). Expression ofarylamine N-acetyltransferase in human intestine. Gut, 42,402-9. https://doi.org/10.1136/gut.42.3.402
  20. Hickman D, Risch A, Camilleri JP, et al (1992). Genotyping human polymorphic arylamine N-acetyltransferase: identification of new slow allotypic variants. Pharmacogenetics, 2, 217-26. https://doi.org/10.1097/00008571-199210000-00004
  21. Higgins JP, Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat Med, 21, 1539-58. https://doi.org/10.1002/sim.1186
  22. Hou YY, Ou HL, Chu ST, et al (2011). NAT2 slow acetylation haplotypes are associated with the increased risk of betelquid-related oral and pharyngeal squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 112,484-92. https://doi.org/10.1016/j.tripleo.2011.03.036
  23. Jang, JH, Cotterchio M, Borgida A, et al (2012). Genetic variantsin carcinogen-metabolizing enzymes, cigarette smoking andpancreatic cancer risk. Carcinogenesis, 33, 818-27. https://doi.org/10.1093/carcin/bgs028
  24. Kwon HT, Ma GX, Gold RS, et al (2013). Primary care physicians'cancer screening recommendation practices and perceptions of cancer risk of Asian Americans. Asian Pac J Cancer Prev, 14, 1999-2004. https://doi.org/10.7314/APJCP.2013.14.3.1999
  25. Landi S, Gemignani F, Moreno V, et al (2005). A comprehensiveanalysis of phase I and phase II metabolism genepolymorphisms and risk of colorectal cancer. PharmacogenetGenomics, 15, 535-46.
  26. Le Marchand L, Sivaraman L, Franke AA, et al (1996). Predictors of N-acetyltransferase activity: should caffeine phenotyping and NAT2 genotyping be used interchangeablyin epidemiological studies? Cancer Epidemiol BiomarkersPrev, 5, 449-55.
  27. Leiro-Fernandez V, Valverde D, Vazquez-Gallardo R, etal (2010). Genetic variations of NAT2 and CYP2E1and isoniazid hepatotoxicity in a diverse population. Pharmacogenomics, 11, 1205-6. https://doi.org/10.2217/pgs.10.109
  28. Majumdar S, Mondal BC, Ghosh M, et al (2008). Association of cytochrome P450, glutathione S-transferase and N-acetyltransferase 2 gene polymorphisms with incidence of acute myeloid leukemia. Eur J Cancer Prev, 17, 125-32. https://doi.org/10.1097/CEJ.0b013e3282b6fd68
  29. Mantel N, Haenszel W (1959). Statistical aspects of the analysisof data from retrospective studies of disease. J Natl Cancer Inst, 22, 719-48.
  30. Muthusamy KA, Lian LH, Vairavan N, et al (2012). Genetic polymorphisms of EGF 5'-UTR and NAT2 857G/A associated with glioma in a case control study of Malaysian patients. Genet Mol Res, 11, 2939-45. https://doi.org/10.4238/2012.June.15.7
  31. Nikishina MV, Vavilin VA, Makarova SI, et al (2007). Analysis of associations of NAT2 gene polymorphisms with the risk of lung cancer. Bull Exp Biol Med, 143, 83-6. https://doi.org/10.1007/s10517-007-0023-0
  32. Osian G, Procopciuc L, Vlad L (2006). NAT2 gene polymorphismand sporadic colorectal cancer. Prevalence, tumor stage and prognosis. A preliminary study in 70 patients. J Gastrointestin Liver Dis, 15, 347-53.
  33. Pande JN, Pande A, Singh SP (2003). Acetylator status, drug metabolism and disease. Natl Med J India, 16, 24-6.
  34. Probst-Hensch NM, Haile RW, Ingles SA, et al (1995).Acetylation polymorphism and prevalence of colorectaladenomas. Cancer Res, 55, 2017-20.
  35. Silveira VS, Canalle R, Scrideli CA, et al (2012). CYP3A5and NAT2 gene polymorphisms: role in childhood acutelymphoblastic leukemia risk and treatment outcome. Mol Cell Biochem, 364, 217-23. https://doi.org/10.1007/s11010-011-1220-8
  36. Wang G, Hou J, Ma L, et al (2012). Risk factor for clear cell renal cell carcinoma in Chinese population: a case-control study. Cancer Epidemiol, 36, 177-82. https://doi.org/10.1016/j.canep.2011.09.006
  37. Windmill KF, Gaedigk A, Hall PM, et al (2000). Localization of N-acetyltransferases NAT1 and NAT2 in human tissues. Toxicol Sci, 54, 19-29. https://doi.org/10.1093/toxsci/54.1.19
  38. Yamada S, Tang M, Richardson K, et al (2009). Genetic variations of NAT2 and CYP2E1 and isoniazid hepatotoxicity in adiverse population. Pharmacogenomics, 10, 1433-45. https://doi.org/10.2217/pgs.09.66
  39. Zanrosso CW, Emerenciano M, Faro A, et al (2012). Genetic variability in N-acetyltransferase 2 gene determinessusceptibility to childhood lymphoid or myeloid leukemia in Brazil. Leuk Lymphoma, 53, 323-7. https://doi.org/10.3109/10428194.2011.619605
  40. Zgheib NK, Shamseddine AA, Geryess E, et al (2013). Genetic polymorphisms of CYP2E1, GST, and NAT2 enzymes are not associated with risk of breast cancer in a sample of Lebanese women. Mutat Res, 747-748, 40-7. https://doi.org/10.1016/j.mrfmmm.2013.04.004

Cited by

  1. Genetic polymorphisms of NAT2 and risk of acute myeloid leukemia vol.96, pp.42, 2017, https://doi.org/10.1097/MD.0000000000007499