DOI QR코드

DOI QR Code

Analysis of the Segment-type Ring Burst Test Method for the Mechanical Property Evaluation of Cylindrical Composite Pressure Vessel

원통형 복합재료 압력 용기의 기계적 물성 평가를 위한 세그먼트 형 링 버스트 시험 방법 분석

  • Received : 2021.08.11
  • Accepted : 2021.08.27
  • Published : 2021.09.03

Abstract

Composite materials have been widely applied for fabricating pressure vessels used for storing gaseous and liquid fuel because of their high specific stiffness and specific strength. Accordingly, the accurate measurement of their mechanical property, particularly the burst pressure or fracture strain, is essential prior to the commercial release. However, verification of the safety of composite pressure vessels using conventional test methods poses some limitations because it may lead to the deformation of the load transferring media or provoke an additional energy loss that cannot be ignored. Therefore, in this study, the segment-type ring burst test device was designed considering the theoretical load transferring ratio and applicable displacement of the vertical column. Moreover, to verifying the uniform distribution of pressure of the segment type ring burst test device, the hoop stress and strain distribution of ring specimens were compared with that of the hydraulic pressure test method via FEM. To conduct a simulation of the fracture behavior of the composite pressure vessel, a Hashin failure criterion was applied to the ring specimen. Furthermore, the fracture strain was also measured from the experiment and compared with that of the result from the FEM.

복합재료는 높은 비 강성 및 비 강도 특성으로 인해 기체 혹은 액체 연료를 저장하기 위한 압력 용기의 설계 및 제작에 널리 활용되고 있다. 이에 따라, 압력용기의 파열압력 또는 파단 변형률의 기계적 특성의 보다 정확한 측정은 상용화 전에 필수적 요소이다. 그러나, 기존의 시험방법을 활용한 복합재료 압력 용기의 안전성 검증은 하중 전달 매체의 변형으로 인한 추가적인 에너지 손실의 발생과, 불필요한 하중 및 모멘트의 발생 등의 한계가 있다. 따라서 본 연구에서는 수직기둥의 이론적인 하중전달 정도와 적용 가능한 수직방향 변위를 고려하여 세그먼트형 링 버스트 시험장치를 설계하였다. 또한, 세그먼트 형 링 버스트 시험장치의 균일한 압력분포를 검증하기 위해 수치해석을 활용하였고, 수압 시험방법과 링 시편의 원주방향 응력 및 변형률 분포를 비교하였다. 복합재료 압력용기의 파괴 거동을 모사하기 위해 Hashin 파손 기준을 적용하였고, 실험적으로 파단 변형률을 측정하여 이를 수치해석 결과와 비교하였다.

Keywords

Acknowledgement

본 연구는 대한민국 정부(산업통상자원부 및 방위사업청) 재원으로 민군협력진흥원에서 수행하는 민군기술협력사업의 연구비 지원으로 수행되었습니다(협약번호 UD100044TU).

References

  1. Ciancia, A., Pede, G., Brighigna, M., and Perrone, V., "Compressed Hydrogen Fuelled Vehicles: Reasons of a Choice and Developments in ENEA," International Journal of Hydrogen Energy, Vol. 21, 1996, pp. 397-406. https://doi.org/10.1016/0360-3199(95)00093-3
  2. von Helmolt, R., and Eberle, U., "Fuel Cell Vehicles: Status 2007," Journal of Power Sources, Vol. 165, 2007, pp. 833-843. https://doi.org/10.1016/j.jpowsour.2006.12.073
  3. Kabir, M.Z., "Finite Element Analysis of Composite Pressure Vessels with a Load Sharing Metallic Liner," Composite Structures, Vol. 49, 2000, pp. 247-255. https://doi.org/10.1016/S0263-8223(99)00044-6
  4. Lark, R.F., "Recent Advances in Lightweight, Filament-wound Composite Pressure Vessel Technology," 1977.
  5. Frangopol, D.M., and Recek, S., "Reliability of Fiber-reinforced Composite Laminate Plates," Probabilistic Engineering Mechanics, Vol. 18, 2003, pp. 119-137. https://doi.org/10.1016/S0266-8920(02)00054-1
  6. ASTM D1599-18, Standard Test Method for Resistance to Short-Time Hydraulic Pressure of Plastic Pipe, Tubing, and Fittings, ASTM International, West Conshohocken, PA, 2018, www.astm.org.
  7. ASTM D2585-68, Standard Test Method for Preparation and Tension Testing of Filament-Wound Pressure Vessels, ASTM International, West Conshohocken, PA, 2017, www.astm.org.
  8. Cain, J., Case, S., and Lesko, J., "Testing of Hygrothermally Aged e-glass/epoxy Cylindrical Laminates Using a Novel Fixture for Simulating Internal Pressure," Journal of Composites for Construction, Vol. 13, 2009, pp. 325-331. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:4(325)
  9. Hwang, T.K., Park, J.B., and Kim, H.G., "Evaluation of Fiber Material Properties in Filament-wound Composite Pressure Vessels," Composites Part A: Applied Science and Manufacturing, Vol. 43, 2012, pp. 1467-1475. https://doi.org/10.1016/j.compositesa.2012.04.005
  10. ASTM D2290-19, Standard Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced Plastic Pipe, ASTM International, West Conshohocken, PA, 2019, www.astm.org.
  11. Yoon, S.H., Kim, C.G., and Cho, W.M., "Measurement of Tensile Properties Using Filament Wound Ring Specimens," Journal of Reinforced Plastics and Composites, Vol. 16, 1997, pp. 810-824. https://doi.org/10.1177/073168449701600903
  12. Wakayama, S., Horide, A., and Kawahara, M., "Fracture Analysis of Filament-wound FRP Composites Using Ring Burst Test", 1999, pp. 654.
  13. Horide, A., Wakayama, S., and Kawahara, M., "Characterization of Fracture Process during Ring Burst Test of FW-FRP Composites with Damage," Advanced Composite Materials, Vol. 8, No. 2, 1999, pp. 139-151. https://doi.org/10.1163/156855199X00155
  14. Kim, Y., Choi, C., Kim, C.G., and Doh, Y.D., "Ring Burst Test of Filament Wound Composites for Environmental Resistance," Journal of Composite Materials, Vol. 50, 2016, pp. 2507-2521. https://doi.org/10.1177/0021998315607611
  15. Xing, J., Geng, P., and Yang, T., "Stress and Deformation of Multiple Winding Angle Hybrid Filament-wound Thick Cylinder under Axial Loading and Internal and External Pressure," Composite Structures, Vol. 131, 2015, pp. 868-877. https://doi.org/10.1016/j.compstruct.2015.05.036
  16. Nunes, L., Dias, F., and da Costa Mattos, H. "Mechanical Behavior of Polytetrafluoroethylene in Tensile Loading under Different Strain Rates," Polymer Testing, Vol. 30, 2011, pp. 791-796. https://doi.org/10.1016/j.polymertesting.2011.07.004
  17. Hashin, Z., "Failure Criteria for Unidirectional Fiber Composites," Vol. 47, No. 2, 1980, pp. 329-334. https://doi.org/10.1115/1.3153664
  18. Hashin, Z., and Rotem, A., "A Fatigue Failure Criterion for Fiber Reinforced Materials," Journal of Composite Materials, Vol. 7, 1973, pp. 448-464. https://doi.org/10.1177/002199837300700404