DOI QR코드

DOI QR Code

Development of Multiscale Homogenization Model to Predict Thermo-Mechanical Properties of Nanocomposites including Carbon Nanotube Bundle

탄소나노튜브 다발을 포함하는 나노복합재료의 열-기계 특성 예측을 위한 멀티스케일 균질화 모델 개발

  • Wang, Haolin (School of Mechanical Engineering, Yeungnam University) ;
  • Shin, Hyunseong (Department of Mechanical Engineering, Inha University)
  • Received : 2020.06.16
  • Accepted : 2020.07.15
  • Published : 2020.08.31

Abstract

In this study, we employ the full atomistic molecular dynamics simulation and finite element homogenization method to predict the thermo-mechanical properties of nanocomposites including carbon nanotube bundle. As the number of carbon nanotubes within the single bundle increases, the effective in-plane Young's modulus and in-plane shear modulus decrease, and in-plane thermal expansion coefficient increases, despite the same volume fraction of carbon nanotubes. To investigate the thickness of interphase zone, we employ the radial density distribution. It is investigated that the interphase thickness is almost independent on the number of carbon nanotubes within the single bundle. It is assumed that the matrix and interphase are isotropic materials. According to the predicted thermo-mechanical properties of interphase zone, the Young's modulus and shear modulus of interphase zone clearly decrease, and the thermal expansion coefficient increases. Based on the thermo-mechanical interphase behavior, we developed the multiscale homogenization model to predict the thermo-mechanical properties of PLA nanocomposites that include the carbon nanotube bundle.

본 연구에서는 탄소나노튜브 다발을 포함하는 나노복합재료의 열-기계적 특성을 정량적으로 예측하기 위하여 분자동역학 전산모사와 유한요소 기반 균질화 기법을 적용하였다. 응집된 탄소나노튜브의 수가 증가함에 따라 동일한 탄소나노튜브의 체적분율에도 불구하고, 면내 영률 및 면내 전단계수는 감소하였고, 면내 열팽창계수는 증가함을 확인할 수 있었다. 계면의 두께를 조사하기 위하여 밀도의 반경 방향 분포(Radial density distribution)을 조사하였으며, 계면의 두께는 탄소나노튜브의 수와는 거의 무관함을 확인할 수 있었다. 기지와 계면은 등방성 재료로 가정하였으며, 예측한 계면의 열-기계적 특성에 따르면, 응집된 탄소나노튜브의 수가 증가함에 따라 계면의 영률 및 전단계수는 감소하였으며, 열팽창계수는 반대로 증가하였다. 이를 토대로, 탄소나노튜브 다발을 포함하는 PLA 나노복합재료의 열-기계적 특성 예측을 위한 멀티스케일 균질화 모델을 개발하였다.

Keywords

References

  1. Choi, J., Shin, H., and Cho, M., "A Multiscale Mechanical Model for the Effective Interphase of SWNT/epoxy Nanocomposite", Polymer, Vol. 89, 2016, pp. 159-171. https://doi.org/10.1016/j.polymer.2016.02.041
  2. Salvetat, J., Briggs, G., Bonard, J., Bacsa, R., Kulik, A., Stockli, T., Burnham, N., and Forro, L., "Elastic and Shear Moduli of Single-walled Carbon Nanotube Ropes", Physical Review Letters, Vol. 82, 1999, pp. 944-947. https://doi.org/10.1103/PhysRevLett.82.944
  3. Berber, S., Kwon, Y., and Tomanek, D., "Unusually High Thermal Conductivity of Carbon Nanotubes", Physical Review Letters, Vol. 84, No. 20, 2000, pp. 4613-4616. https://doi.org/10.1103/PhysRevLett.84.4613
  4. Ma, D., Giglio, M., and Manes, A., "An Investigation into Mechanical Properties of the Nanocomposite with Aligned CNT by Means of Electrical Conductivity", Composites Science and Technology, Vol. 188, 2020, pp. 107993. https://doi.org/10.1016/j.compscitech.2020.107993
  5. Khan, S., Pothnis, J., and Kim, J., "Effects of Carbon Nanotube Alignment on Electrical and Mechanical Properties of Epoxy Nanocomposites", Composites Part A: Applied Science and Manufacturing, Vol. 49, 2013, pp. 26-34. https://doi.org/10.1016/j.compositesa.2013.01.015
  6. Alian, A., Kundalwal, S., and Meguid, S., "Multiscale Modeling of Carbon Nanotube Epoxy Composites", Polymer, Vol. 70, 2015, pp. 149-160. https://doi.org/10.1016/j.polymer.2015.06.004
  7. Pan, J., and Bian, L., "A Physics Investigation for Influence of Carbon Nanotube Agglomeration on Thermal Properties of Composites", Materials Chemistry and Physics, Vol. 236, 2019, pp. 121777. https://doi.org/10.1016/j.matchemphys.2019.121777
  8. Liu, Y., Gao, X., Qian, W., Wang, Y., and Wei, F., "Architectural and Mechanical Performances of Carbon Nanotube Agglomerates Characterized by Compaction Response", Powder Technology, Vol. 211, No. 2-3, 2011, pp. 226-231. https://doi.org/10.1016/j.powtec.2011.04.024
  9. Romanov, V., Lomov, S., Verpoest, I., and Gorbatikh, L., "Stress Magnification due to Carbon Nanotube Agglomeration in Composites", Composite Structures, Vol. 133, 2015, pp. 246-256. https://doi.org/10.1016/j.compstruct.2015.07.069
  10. Ki, Y., Lee, M.Y., and Yang, S., "A Molecular Dynamics Simulation Study on the Thermoelastic Properties of Poly-lactic Acid Stereocomplex Nanocomposites", Composites Research, Vol. 31, No. 6, 2018, pp. 371-378.
  11. Cho, M., Yang, S., Chang, S., and Yu, S., "A Study on the Prediction of the Mechanical Properties of Nanoparticulate Composites Using the Homogenization Method with the Effective Interface Concept", International Journal for Numerical Methods in Engineering, Vol. 85, No. 12, 2011, pp. 1564-1583. https://doi.org/10.1002/nme.3039
  12. Chang, S., Yang, S., Shin, H., and Cho, M., "Multiscale Homogenization Model for Thermoelastic Behavior of Epoxy-based Composites with Polydisperse SiC Nanoparticles", Composite Structures, Vol. 128, 2015, pp. 342-353. https://doi.org/10.1016/j.compstruct.2015.03.041
  13. Jiang, J., Wang, J., and Li, B., "Thermal Expansion in Singlewalled Carbon Nanotubes and Graphene: Nonequilibrium Green's Function Approach", Physical Review B, Vol. 80, No. 20, 2009, pp. 205429. https://doi.org/10.1103/PhysRevB.80.205429
  14. Farah, S., Anderson, D., and Langer, R., "Physical and Mechanical Properties of PLA, and Their Functions Inwidespread Applications-A Comprehensive Review", Advanced Drug Delivery Reviews, Vol. 107, 2016, pp. 367-392. https://doi.org/10.1016/j.addr.2016.06.012
  15. Song, Y., Lee, J., Ji, D., Kim, M., Lee, S., and Youn, J., "Viscoelastic and Thermal Behavior of Woven Hemp Fiber Reinforced Poly (lactic acid) Composites", Composites Part B: Engineering, Vol. 43, No. 3, 2012, pp. 856-860.