skip to main content

Development of a 3D-printed spongy electrode design for microbial fuel cell (MFC) using gyroid lattice

1School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila, Philippines

2Center for Renewable Bioenergy Research, Mapúa University, Manila, Philippines

Received: 29 Sep 2023; Revised: 15 Feb 2024; Accepted: 26 Mar 2024; Available online: 5 Apr 2024; Published: 1 May 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Microbial fuel cell technology addresses both issues in finding new ways to clean water systems while harnessing electricity. Several studies suggest that a single large-scale MFC is proven to be inefficient and expensive. Therefore, producing small-scale MFCs is focused on investigation to provide an efficient system and cost-effective approach. This study used 3D-printed MFCs using a spongy electrode design to produce a modern approach to modifying electrode capacity in energy generation. Furthermore, the study identifies the electrical conductivity of the spongy electrode by determining the voltage generated and power density by stacked MFCs in series, parallel, and hybrid configurations. The MFCs generate a maximum voltage of 633 mV and a current of 14.22 . One way to reduce the effects of voltage reversal in the MFC system is the application of hybrid connection circuits. Parallel-series hybrid connection possesses stable voltage generation of 250−300 𝑚𝑉 with the highest current generation of 115.20 𝜇𝐴. At the same time, the Series-Parallel Connection generates the highest voltage and current of 259 mV and 30 , respectively. The spongy electrode design and hybrid connection produced a maximum power and current density of 29.30 μW⁄m2 and 279.41 μA⁄m2 obtained from a different connection of pure parallel and 28P-2S hybrid connection. Furthermore, water quality parameters were examined (pH, TDS, ORP, and COD), that the MFCs design is efficient in wastewater treatment, with a %COD removal of 95.24% efficiency, reduced ORP from +48.00 mV to -7.00 mV, and the TDS concentration from 270 ppm to 239 ppm.
Fulltext View|Download
Keywords: 3D-printed electrode; COD removal; gyroid lattice structure; microbial fuel cell; stacking efficiency

Article Metrics:

  1. Abid, A. G., Manzoor, S., Usman, M., Munawar, T., Nisa, M. U., Iqbal, F., Ashiq, M. N., Najam-Ul-Haq, M., Shah, A., & Imran, M. (2021). Scalable synthesis of Sm2O3/Fe2O3 hierarchical oxygen vacancy-based gyroid-inspired morphology: With enhanced electrocatalytic activity for oxygen evolution performance. Energy and Fuels, 35(21), 17820–17832. https://doi.org/10.1021/ACS.ENERGYFUELS.1C01790/ASSET/IMAGES/LARGE/EF1C01790_0009.JPEG
  2. Alonso-Lemus, I. L., Cobos-Reyes, C., Figueroa-Torres, M., Escobar-Morales, B., Aruna, K. K., Akash, P., Fernández-Luqueño, F., & Rodríguez-Varela, J. (2022). Green Power Generation by Microbial Fuel Cells Using Pharmaceutical Wastewater as Substrate and Electroactive Biofilms (Bacteria/Biocarbon). Journal of Chemistry, 2022. https://doi.org/10.1155/2022/1963973
  3. Al-saned, A. J. O., Kitafa, B. A., & Badday, A. S. (2021). Microbial fuel cells (MFC) in the treatment of dairy wastewater. IOP Conference Series: Materials Science and Engineering, 1067(1), 012073. https://doi.org/10.1088/1757-899X/1067/1/012073
  4. An, J., Kim, T., & Chang, I. S. (2016). Concurrent Control of Power Overshoot and Voltage Reversal with Series Connection of Parallel-Connected Microbial Fuel Cells. Energy Technology, 4(6), 729–736. https://doi.org/10.1002/ENTE.201500466
  5. Bian, B., Shi, D., Cai, X., Hu, M., Guo, Q., Zhang, C., Wang, Q., Sun, A. X., & Yang, J. (2018). 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy, 44, 174–180. https://doi.org/10.1016/J.NANOEN.2017.11.070
  6. Browne, M. P., Redondo, E., & Pumera, M. (2020). 3D Printing for Electrochemical Energy Applications. Chemical Reviews, 120(5), 2783–2810. https://doi.org/10.1021/ACS.CHEMREV.9B00783/ASSET/IMAGES/LARGE/CR9B00783_0011.JPEG
  7. Chang, C. C., Kao, W., & Yu, C. P. (2020). Assessment of voltage reversal effects in the serially connected biocathode-based microbial fuel cells through treatment performance, electrochemical and microbial community analysis. Chemical Engineering Journal, 397, 125368. https://doi.org/10.1016/J.CEJ.2020.125368
  8. Christwardana, M., Hadiyanto, H., Motto, S.A., Sudarno, S., Haryani, K. (2020). Performance evaluation of yeast-assisted microalgal microbial fuel cells on bioremediation of cafeteria wastewater for electricity generation and microalgae biomass production. Biomass and Bioenergy, 139, art. no. 105617. https://doi.org/10.1016/j.biombioe.2020.105617
  9. Copeland, R. C., James, C. N., & Lytle, D. A. (2004). Relationships Between Oxidation-Reduction Potential . American Water Works Association WQTC Conference. https://docslib.org/doc/957899/relationships-between-oxidation-reduction-potential
  10. Daniel, D. K., Das Mankidy, B., Ambarish, K., & Manogari, R. (2009). Construction and operation of a microbial fuel cell for electricity generation from wastewater. International Journal of Hydrogen Energy, 34(17), 7555–7560. https://doi.org/10.1016/J.IJHYDENE.2009.06.012
  11. Gajda, I., Greenman, J., & Ieropoulos, I. A. (2018). Recent advancements in real-world microbial fuel cell applications. Current Opinion in Electrochemistry, 11, 78–83. https://doi.org/10.1016/J.COELEC.2018.09.006
  12. Habibul, N., Hu, Y., Wang, Y. K., Chen, W., Yu, H. Q., & Sheng, G. P. (2016). Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells. Environmental Science and Technology, 50(7), 3882–3889. https://doi.org/10.1021/ACS.EST.5B06376/SUPPL_FILE/ES5B06376_SI_001.PDF
  13. Hadiyanto, H., Christwardana, M., & da Costa, C. (2023). Electrogenic and biomass production capabilities of a Microalgae–Microbial fuel cell (MMFC) system using tapioca wastewater and Spirulina platensis for COD reduction. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(2), 3409–3420. https://doi.org/10.1080/15567036.2019.1668085
  14. Hashem, A. (2019). Microbial Fuel Cell (MFC) Application for Generation of Electricity from Dumping Rubbish and Identification of Potential Electrogenic Bacteria. Advances in Industrial Biotechnology, 2(1), 1–8. https://doi.org/10.24966/AIB-5665/100010
  15. Hussain, F., Al-Zaqri, N., Adnan, A. B. M., Hussin, M. H., Oh, S. E., & Umar, K. (2022). Impact of bakery waste as an organic substrate on microbial fuel cell performance. Sustainable Energy Technologies and Assessments, 53, 102713. https://doi.org/10.1016/J.SETA.2022.102713
  16. Jafary, T., Rahimnejad, M., Ghoreyshi, A. A., Najafpour, G., Hghparast, F., & Daud, W. R. W. (2013). Assessment of bioelectricity production in microbial fuel cells through series and parallel connections. Energy Conversion and Management, 75, 256–262. https://doi.org/10.1016/J.ENCONMAN.2013.06.032
  17. Jung, S., & Regan, J. M. (2011). Influence of External Resistance on Electrogenesis, Methanogenesis, and Anode Prokaryotic Communities in Microbial Fuel Cells. Applied and Environmental Microbiology, 77(2), 564. https://doi.org/10.1128/AEM.01392-10
  18. Kim, S., Chae, K. J., Choi, M. J., & Verstraete, W. (2011). Microbial fuel cells: Recent advances, bacterial communities and application beyond electricity generation. Environmental Engineering Research, 16(4), 51–65. https://doi.org/10.4491/EER.2008.13.2.051
  19. Ledezma, P., Greenman, J., & Ieropoulos, I. (2013). MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions. Bioresource Technology, 134, 158–165. https://doi.org/10.1016/J.BIORTECH.2013.01.119
  20. Li, D., Shi, Y., Gao, F., Yang, L., Li, S., & Xiao, L. (2021). Understanding the current plummeting phenomenon in microbial fuel cells (MFCs). Journal of Water Process Engineering, 40, 101984. https://doi.org/10.1016/J.JWPE.2021.101984
  21. Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. In Environmental Science and Technology (Vol. 40, Issue 17, pp. 5181–5192). American Chemical Society . https://doi.org/10.1021/es0605016
  22. Lovley, D. R., Ueki, T., Zhang, T., Malvankar, N. S., Shrestha, P. M., Flanagan, K. A., Aklujkar, M., Butler, J. E., Giloteaux, L., Rotaru, A. E., Holmes, D. E., Franks, A. E., Orellana, R., Risso, C., & Nevin, K. P. (2011). Geobacter: The Microbe Electric’s Physiology, Ecology, and Practical Applications. Advances in Microbial Physiology, 59, 1–100. https://doi.org/10.1016/B978-0-12-387661-4.00004-5
  23. Malik, S., Kishore, S., Dhasmana, A., Kumari, P., Mitra, T., Chaudhary, V., Kumari, R., Bora, J., Ranjan, A., Minkina, T., & Rajput, V. D. (2023). A Perspective Review on Microbial Fuel Cells in Treatment and Product Recovery from Wastewater. Water 2023, Vol. 15, Page 316, 15(2), 316. https://doi.org/10.3390/W15020316
  24. Mustakeem. (2015). Electrode materials for microbial fuel cells: Nanomaterial approach. Materials for Renewable and Sustainable Energy, 4(4), 1–11. https://doi.org/10.1007/S40243-015-0063-8/FIGURES/9
  25. Oh, S. E., & Logan, B. E. (2007). Voltage reversal during microbial fuel cell stack operation. Journal of Power Sources, 167(1), 11–17. https://doi.org/10.1016/J.JPOWSOUR.2007.02.016
  26. Patrick, M., Malinis, D., Jones, H., Velasco, F., Ray, K., & Pamintuan, S. (2023). Performance evaluation of the novel 3D-printed aquatic plant-microbial fuel cell assembly with Eichhornia crassipes. International Journal of Renewable Energy Development, 12(5), 942–951. https://doi.org/10.14710/IJRED.2023.53222
  27. Pinto, M. F. R., Sofia, V., De Oliveira, B., Das, S., & Calay, R. K. (2022). Experimental Study of Power Generation and COD Removal Efficiency by Air Cathode Microbial Fuel Cell Using Shewanella baltica 20. Energies 2022, Vol. 15, Page 4152, 15(11), 4152. https://doi.org/10.3390/EN15114152
  28. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., & Oh, S. E. (2015). Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal, 54(3), 745–756. https://doi.org/10.1016/J.AEJ.2015.03.031
  29. Sarmin, S., Ideris, A., Chin, S. Y., Chin, K. C., & Rahman Khan, Md. M. (2018). PEFORMANCE EVALUATION OF PETROCHEMICAL WASTEWATER FED AIR-CATHODE MICROBIAL FUEL CELLS USING YEAST BIOCATALYST. Journal of Chemical Engineering and Industrial Biotechnology, 4(1), 32–43. https://doi.org/10.15282/JCEIB.V4I1.3881
  30. Si, Z., Song, X., Wang, Y., Cao, X., Zhao, Y., Wang, B., Chen, Y., & Arefe, A. (2018). Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: Denitrification efficiency and bacterial community structure. Bioresource Technology, 267, 416–425. https://doi.org/10.1016/J.BIORTECH.2018.07.029
  31. Simeon, M. I., Asoiro, F. U., Aliyu, M., Raji, O. A., & Freitag, R. (2020). Polarization and power density trends of a soil-based microbial fuel cell treated with human urine. https://doi.org/10.1002/er.5391
  32. Sonawane, J. M., Mahadevan, R., Pandey, A., & Greener, J. (2022). Recent progress in microbial fuel cells using substrates from diverse sources. Heliyon, 8(12), e12353. https://doi.org/10.1016/J.HELIYON.2022.E12353
  33. Theodosiou, P., Greenman, J., & Ieropoulos, I. (2019). Towards monolithically printed Mfcs: Development of a 3d-printable membrane electrode assembly (mea). International Journal of Hydrogen Energy, 44(9), 4450–4462. https://doi.org/10.1016/J.IJHYDENE.2018.12.163
  34. Wei, J., Liang, P., & Huang, X. (2011). Recent progress in electrodes for microbial fuel cells. Bioresource Technology, 102(20), 9335–9344. https://doi.org/10.1016/J.BIORTECH.2011.07.019
  35. Wu, S., Li, H., Zhou, X., Liang, P., Zhang, X., Jiang, Y., & Huang, X. (2016). A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Research, 98, 396–403. https://doi.org/10.1016/J.WATRES.2016.04.043
  36. Xie, X., Hu, L., Pasta, M., Wells, G. F., Kong, D., Criddle, C. S., & Cui, Y. (2011). Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Letters, 11(1), 291–296. https://doi.org/10.1021/NL103905T/SUPPL_FILE/NL103905T_SI_001.PDF
  37. Yanuka-Golub, K., Dubinsky, V., Korenblum, E., Reshef, L., Ofek-Lalzar, M., Rishpon, J., & Gophna, U. (2021). Anode surface bioaugmentation enhances deterministic biofilm assembly in microbial fuel cells. MBio, 12(2), 1–15. https://doi.org/10.1128/MBIO.03629-20/SUPPL_FILE/MBIO.03629-20-S0001.DOCX
  38. Yazdi, A. A., D’Angelo, L., Omer, N., Windiasti, G., Lu, X., & Xu, J. (2016). Carbon nanotube modification of microbial fuel cell electrodes. Biosensors and Bioelectronics, 85, 536–552. https://doi.org/10.1016/J.BIOS.2016.05.033
  39. You, J., Greenman, J., & Ieropoulos, I. A. (2021). Microbial fuel cells in the house: A study on real household wastewater samples for treatment and power. Sustainable Energy Technologies and Assessments, 48, 101618. https://doi.org/10.1016/J.SETA.2021.101618
  40. You, J., Preen, R. J., Bull, L., Greenman, J., & Ieropoulos, I. (2017). 3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing. Sustainable Energy Technologies and Assessments, 19, 94–101. https://doi.org/10.1016/J.SETA.2016.11.006

Last update:

No citation recorded.

Last update: 2024-05-16 19:27:10

No citation recorded.