DOI QR코드

DOI QR Code

Stimulating effect of modified Goa-Gi-Um herbal remedy on melanogenesis in B16F10 melanoma cells

B16F10 멜라노마세포에서 과기음가미방의 멜라닌 생성 촉진 효과

  • Received : 2013.04.11
  • Accepted : 2013.05.23
  • Published : 2013.05.30

Abstract

Objectives : Since hypopigmentation is known to increase the risk of skin cancer, melanogenesis in the skin needs to be regulated. Here, we evaluated the melanogenesis stimulatory effects of a modified Goagium herbal remedy (HR) and HR+ox bile (Bos taurus domesticus) extract (OBE) to address hypopigmentation disorders. Methods : B16F10 melanoma cells were treated with different dosages of HR and HR+OBE for 24 to 48 h after 1 h of 10 nM ${\alpha}$-melanocyte stimulating hormone (${\alpha}$-MSH). After the treatment, cell viability, tyrosinase activity, melanin synthesis and the expression of genes related to melanin synthesis were measured and the regulation of the ${\alpha}$-MSH signalling through cAMP responding element binding protein (CREB) was determined. Results : HR and HR+OBE with the ranges of $15{\sim}100{\mu}g/mL$ did not affect cell viability in melanoma cells. The 1 h treatment of HR+OBE (50 and $100{\mu}g/mL$) potentiated the phosphorylation of CREB by enhancing ${\alpha}$-MSH signaling and its 24 h treatment increased CREB expression. Consistent with CREB potentiation, their treatment for 24 h, the expression of microphthalmia-associated transcription factor (MIFT), tyrosinase, tyrosinase related protein (TRP)-1 and TRP-2 were increased in realtime PCR. Ultimately, the 48 h treatment of HR+OBE (50 and $100{\mu}g/mL$) increased tyrosniase activity and melanin contents in the melanoma cells in comparison to the control. Conclusions : HR+OBE (50 and $100{\mu}g/mL$) increases melanin synthesis in B16F10 melanoma cells via the stimulation of tyrosinase activity and expression of MIFT, tyrosinase, TRP-1 and TRP-2. HR+OBE can be used as the a possible treatment for hypopigmentation of the skin.

Keywords

References

  1. Yu JS, Kim AK. Effect of combination of taurine and azelaic acid on antimelanogenesis in murine melanoma cells. J Biomed Sci. 2010 ; 17(Suppl 1) : S45. https://doi.org/10.1186/1423-0127-17-S1-S45
  2. Kim do Y, Lee JW, Whang SH, Park YK, Hann SK, Shin YJ. Quality of life for Korean patients with vitiligo: Skindex-29 and its correlation with clinical profiles. J Dermatol. 2009 ; 36(6) : 317-22. https://doi.org/10.1111/j.1346-8138.2009.00646.x
  3. Felsten LM, Alikhan A, Petronic-Rosic V. Vitiligo: a comprehensive overview Part II: treatment options and approach to treatment. J Am Acad Dermatol. 2011 ; 65(3) : 493-514. https://doi.org/10.1016/j.jaad.2010.10.043
  4. Alikhan A, Felsten LM, Daly M, Petronic-Rosic V. Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J Am Acad Dermatol. 2011 ; 65(3) : 473-91. https://doi.org/10.1016/j.jaad.2010.11.061
  5. Imokawa G. Mishima Y. Loss of melanogenic properties in tyrosinase induced by glucosylation inhibitors within malignant melanoma cells. Cancer Res. 1982 ; 42(5) : 1994-2002.
  6. Manga P, Sheyn D, Yang F, Sarangarajan R, Boissy RE. A role for tyrosinase-related protein 1 in 4-tert-butylphenol-induced toxicity in melanocytes: Implications for vitiligo. Am J Pathol. 2006 ; 169(5) : 1652-62. https://doi.org/10.2353/ajpath.2006.050769
  7. Wong G, Pawelek J. Melanocyte-stimulating hormone promotes activation of pre-existing tyrosinase molecules in Cloudman S91 melanoma cells. Nature. 1975 ; 255(5510) : 644-6. https://doi.org/10.1038/255644a0
  8. Hunt G, Todd C, Creswell JE, Thody AJ. Alpha-melanocyte stimulating hormone and its analogue Nle4DPhe7 alpha-MSH affect morphology, tyrosinase activity and melanogenesis in cultured human melanocytes. J Cell Sic. 1994 ; 107(pt 1) : 205-11.
  9. Fordin M, Peraldi P, Van Obberghen E. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 sells. J Biol Chem. 1994 ; 269(8) : 6207-14.
  10. Chao HC, Najjaa H, Villareal MO, Ksouri R, Han J, Neffati M, Isoda H. Arthrophytum scoparium inhibits melanogenesis through the down-regulation of tyrosinase and melanogenic gene expressions in B16 melanoma cells. Exp Dermatol. 2013 ; 22(2) : 131-6. https://doi.org/10.1111/exd.12089
  11. Kim HE, Ishihara A, Lee SG. The effects of Caffeoyl serotonin on inhibition of melanogenesis through the downregulation of MITF via the reduction of intracellular cAMP and acceleration of ERK activation in B16 murine melanoma cells. BMB Rep. 2012 ; 45(12) : 724-9. https://doi.org/10.5483/BMBRep.2012.45.12.039
  12. Mitani K, Takano F, Kawabata T, Allam AE, Ota M, Takahashi T, Yahagi N, Sakurada C, Fushiya S, Ohta T. Suppression of melanin synthesis by the phenolic constituents of sappanwood (Caesalpinia sappan). Planta Med. 2013 ; 79(1) : 37-44.
  13. Villareal MO, Han J, Matsuyama K, Sekii Y, Smaoui A, Shigemori H, Isoda H. Lupenone from Erica multiflora leaf extract stimulates melanogenesis in B16 murine melanoma cells through the inhibition of ERK1/2 activation. Planta Med. 2013 ; 79(3-4) : 236-43. https://doi.org/10.1055/s-0032-1328189
  14. Madi L, Rosenberg-Haggen B, Nyska A, Korenstein R. Enhancing pigmentation via activation of A3 adenosine receptors in B16 melanoma cells and in human skin explants. Exp Dermatol. 2013 ; 22(1) : 74-7. https://doi.org/10.1111/exd.12028
  15. Gaggioli C, Busca R, Abbe P, Ortonne JP, Ballotti R. Microphthalmia-associated transcription factor (MITF) is required but is not sufficient to induce the expression of melanogenic genes. Pigment Cell Res. 2003 ; 16(4) : 374-82. https://doi.org/10.1034/j.1600-0749.2003.00057.x
  16. Roh E, Yun CY, Young Yun J, Park D, Doo Kim N, Yeon Hwang B, Jung SH, Park SK, Kim YB, Han SB, Kim Y. cAMP-binding site of PKA as a molecular target of bisabolangelone against melanocyte-specific hyperpigmented disorder. J Invest Dermatol. 2013 ; 133(4) : 1072-9. https://doi.org/10.1038/jid.2012.425
  17. Buscà R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000 ; 13(2) : 60-9. https://doi.org/10.1034/j.1600-0749.2000.130203.x
  18. Jeong HS, Choi HR, Yun HY, Baek KJ, Kwon NS, Park KC, Kim DS. Ceramide PC102 inhibits melanin synthesis via proteasomal degradation of microphthalmia-associated transcription factor and tyrosinase. Mol Cell Biochem. 2013 ; 375(1-2) : 81-7.
  19. Park S, Kim Y, Kim Y, Park G, Lee S. Beta-carboline alkaloids harmaline and harmalol incude melanogenesis through p38 mitogen-activated protein kinase in B16F10 mouse melanoma cells. BMB Rep. 2010 ; 43(12) : 824-9. https://doi.org/10.5483/BMBRep.2010.43.12.824
  20. Lee CS, Park M, Han J, Lee JH, Bae IH, Choi H, Son ED, Park YH, Lim KM. Liver X receptor activation inhibits melanogenesis through the acceleration of ERK-mediated MITF degradation. J Invest Dermatol. 2013 ; 133 : 1063-71. https://doi.org/10.1038/jid.2012.409