
Ars Combinatoria, 156: 43–49
DOI:10.61091/ars156-5
http://www.combinatorialpress.com/ars
Received 17 August 2020, Accepted 10 December 2020, Published 27 July 2023

Article

Equitable Edge Coloring of Splitting Graph of Some Classes of Wheel
Graphs

Jagannathan. M1,*, Vernold Vivin. J2 and Veninstine Vivik. J3

1 Department of Mathematics, RVS College of Engineering and Technology, Coimbatore-641 402,
Tamil Nadu, India.

2 Department of Mathematics, University College of Engineering Nagercoil, (Anna University
Constituent College), Nagercoil - 629 004, Tamil Nadu, India.

3 Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore-641
114, Tamil Nadu, India

* Correspondence: mjaganji@gmail.com.

Abstract: The coloring of all the edges of a graph G with the minimum number of colors, such
that the adjacent edges are allotted a different color is known as the proper edge coloring. It is said
to be equitable, if the number of edges in any two color classes differ by atmost one. In this paper,
we obtain the equitable edge coloring of splitting graph of Wn, DWn and Gn by determining its edge
chromatic number.
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1. Introduction

Let G = (V, E) be a graph with vertex set V(G) and edge set E(G). We denote the maximum degree
of G by ∆(G). The first paper on edge coloring was written by Tait in 1880. Since all edges incident
to the same vertex must be assigned different colors, obviously χ′ (G) ≥ ∆ (G).

In 1964, Vizing [1] proved that χ′ (G) ≤ ∆ (G) + 1. In 1973, Meyer [2] presented the concept of
equitable coloring and equitable chromatic number. The idea of equitable edge coloring was defined
by Hilton and de Werra [3] in 1994. It is the assignment of colors to all the edges of G, so that the
edges can be partitioned into color classes with the difference between any two classes is atmost one.

Sampathkumar et.al [4] introduced the concept of splitting graph of a graph G denoted by S (G).
It is framed by adding to each vertex v, a new vertex v′ such that v′ is adjacent to every vertex that is
adjacent to v in G. We construct the splitting graph of some families of wheel graph and obtain the
equitable edge coloring of such graphs.

In our day to day life many problems on optimization, network designing, scheduling problems,
allocation of memory in computer networks and so on are related to edge coloring. For example,
consider the time-tabling problem for the proper utilization of facilities, i.e., the minimum number
of rooms needed at any one time can be scheduled by equitable edge coloring. In this paper, we
determine the equitable edge chromatic number for splitting graph of Wn, DWn and Gn.
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2. Preliminaries

Theorem 1. [1] Let G be a graph. Then ∆ (G) ≤ χ′ (G) ≤ ∆ (G) + 1.

Definition 1. [5] For any integer n ≥ 4, the wheel graph Wn is the n-vertex graph obtained by
joining a vertex v to each of the n − 1 vertices {v1, v2, . . . , vn} of the cycle graph Cn−1.

Definition 2. [6] A double-wheel graph DWn of size n can be composed of 2Cn + K1, which consists
of two cycles of size n, where the vertices of the two cycles are all connected to a common hub.

Definition 3. The gear graph Gn is the graph obtained from a wheel graph Wn by adding a vertex to
each edge of the n − 1 cycle in Wn.

Definition 4. [4] For each vertex v of a graph G, take a new vertex v′. Join v′ to all vertices of G
adjacent to v. The graph S (G) thus obtained is called the splitting graph of G.

Definition 5. [3, 7, 8] An equitable edge coloring of a graph G is a k-proper edge coloring , if∣∣∣|Ei| −
∣∣∣E j

∣∣∣∣∣∣ ≤ 1, i, j = 1, 2, . . . , k, where Ei (G), E j (G) is the set of edges of color i and j repectively.
The minimum of such k is called the equitable edge chromatic number of G and is denoted by χ′= (G).

Lemma 1. [9] For any simple graph G (V, E), χ′= (G) ≥ ∆ (G).

Lemma 2. [9] For any simple graph G and H, χ′= (G) = χ′ (G) and if H ⊆ G then χ′ (H) ≤ χ′ (G),
where χ′ (G) is the proper edge chromatic number of G.

Lemma 3. [8] Let G be a graph and let k ≥ 2. If k ∤ d(v) for each v ∈ V(G), then G has an equitable
edge-coloring with k colors.

Lemma 4. [8] Let G be a graph and let k ≥ 2. If the k-core of G is a set of isolated vertices, then G
has an equitable edge-coloring with k colors.

Additional graph theory terminology used in this paper can be found in [9, 10].
In the following section, the equitable edge chromatic number of wheel Wn, double wheel DWn

and gear graph Gn are determined.

3. Equitable edge coloring of wheel, double wheel and gear graphs

Theorem 2. The equitable edge chromatic number of splitting graph of wheel graph is χ′= (S (Wn)) =
2(n − 1), for n ≥ 5.

Proof. The wheel graph Wn consists of n vertices and 2(n − 1) edges. Let

V (Wn) = {v}
⋃
{vi : 1 ≤ i ≤ n − 1} and

E (Wn) = {ei : 1 ≤ i ≤ n − 1}
⋃
{en}
⋃
{ei+n−1 : 2 ≤ i ≤ n − 2}

⋃
{e2(n−1)}

where ei is the edge vvi (1 ≤ i ≤ n − 1), en is the edge v1v2, e{i+n−1} is the edge vivi+1 (2 ≤ i ≤ n − 2)
and e2(n−1) is the edge vn−1v1.

For the construction of splitting graph of wheel graph, new vertices and edges are chosen. It
consists of 2n vertices and 6(n − 1) edges. Let

V (S (Wn)) = {v}
⋃
{v′}
⋃
{vi : 1 ≤ i ≤ n − 1}

⋃
{v′i : 1 ≤ i ≤ n − 1} and

E (S (Wn)) = {ek},where k =


i + j(n − 1), 0 ≤ j ≤ 3, 1 ≤ i ≤ n − 1
i + j(n − 1), j = 4, 1 ≤ i ≤ n − 2
i + j(n − 1) − 2, j = 5, 2 ≤ i ≤ n − 1
i + j(n − 1) − 2, j = 6, 1 ≤ i ≤ 2
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Table 1. Classification of edges of S (Wn)

Divisions of k Values of j Ranges of i Edges between
the vertices

i + j(n − 1) 0 1 ≤ i ≤ n − 1 vvi

i + j(n − 1) 1 1 ≤ i ≤ n − 2, i = n − 1 vivi+1,vn−1v1

i + j(n − 1) 2 1 ≤ i ≤ n − 1 vv′i
i + j(n − 1) 3 1 ≤ i ≤ n − 1 v′vi

i + j(n − 1) 4 1 ≤ i ≤ n − 2 viv′i+1
i + j(n − 1) − 2 5 2 ≤ i ≤ n − 1 viv′i−1
i + j(n − 1) − 2 6 i = 1, i = 2 v1v′n−1, vn−1v′1

The edges {ek} between the vertices of the splitting graph of wheel graph are tabulated as follows:
The coloring of edges is defined as

f : E (S (Wn))→ C, where C = {1, 2, . . . , 2(n − 1)}.

f
(
ei+k(n−1)

)
=


i, k = 0, 1 ≤ i ≤ n − 1
n − 1, k = 1, i = 1
i − 1, k = 1, 2 ≤ i ≤ n − 1
i + n − 1, 2 ≤ k ≤ 3, 1 ≤ i ≤ n − 1

f
(
ei+4(n−1)

)
=

n + 2, i = 1
i + 1, 2 ≤ i ≤ n − 2

f
(
ei+5(n−1)−2

)
=


i + n + 1, 2 ≤ i ≤ n − 3
n, i = n − 2
1, i = n − 1

f
(
ei+6(n−1)−2

)
=

2, i = 1
n + 1, i = 2

By this procedure, the assignment of colors to all the edges is attained with 2(n − 1) colors. The
edges of splitting graph of wheel graph are classified into independent color classes as E (S (Wn)) =
{E1, E2, . . . , E2(n−1)} such that |E1| = |E2| = . . . =

∣∣∣E2(n−1)

∣∣∣ = 3 for any n ≥ 4. Hence it is clear that∣∣∣|Ei| −
∣∣∣E j

∣∣∣∣∣∣ ≤ 1 for i , j, thus satisfying equitablility condition. Therefore χ′= (S (Wn)) ≤ 2(n − 1).
Since ∆ = 2(n−1) and by lemma 1, it follows that χ′= (S (Wn)) ≥ χ′ (S (Wn)) ≥ ∆. Hence χ′= (S (Wn)) =
2(n − 1). □

Theorem 3. The equitable edge chromatic number of splitting graph of double wheel graph is
χ′= (S (DWn)) = 4(n − 1), for n ≥ 5.

Proof. The double wheel graph DWn consists of 2n − 1 vertices and 4(n − 1) edges.

Let V (DWn) = {v}
⋃
{vi : 1 ≤ i ≤ n − 1}

⋃
{ui : 1 ≤ i ≤ n − 1}

and

E (DWn) = {ei : 1 ≤ i ≤ n − 1}
⋃
{en}
⋃
{ei+n−1 : 2 ≤ i ≤ n − 2}

⋃
{e2(n−1)}

⋃
{ei+2(n−1) : 1 ≤ i ≤ n − 1}

⋃
{e3(n−1)+1}

⋃
{ei+3(n−1) : 2 ≤ i ≤ n − 2}

⋃
{e4(n−1)}
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where ei is the edge vvi (1 ≤ i ≤ n − 1), en is the edge v1v2, ei+n−1 is the edge vivi+1 (2 ≤ i ≤ n − 2),
e2(n−1) is the edge vn−1v1, ei+2(n−1) is the edge vui (1 ≤ i ≤ n − 1), e3(n−1)+1 is the edge u1u2, ei+3(n−1) is
the edge uiui+1 (2 ≤ i ≤ n − 2) and e4(n−1) is the edge un−1u1.

The splitting graph of double wheel graph is constructed by adding new vertices and edges, which
consists of 4n − 2 vertices and 12(n − 1) edges. Let

V (S (Wn)) = {v}
⋃
{v′}
⋃
{vi : 1 ≤ i ≤ n − 1}

⋃
{v′i : 1 ≤ i ≤ n − 1}⋃

{ui : 1 ≤ i ≤ n − 1}
⋃
{u′i : 1 ≤ i ≤ n − 1}

and

E (S (DWn)) = {ek},where k =



i + j(n − 1), 0 ≤ j ≤ 3, 6 ≤ j ≤ 9,
1 ≤ i ≤ n − 1

i + j(n − 1), j = 4, 10, 1 ≤ i ≤ n − 2
i + j(n − 1) − 2, j = 5, 11, 2 ≤ i ≤ n − 1
i + j(n − 1) − 2, j = 6, 12, 1 ≤ i ≤ 2

The edges {ek} of the splitting graph of double wheel graph lying between the vertices are summarized
as follows:

Table 2. Classification of edges of S (DWn)

Divisions of k Values of j Ranges of i Edges between
the vertices

i + j(n − 1) 0 1 ≤ i ≤ n − 1 vvi

i + j(n − 1) 1 1 ≤ i ≤ n − 2, i = n − 1 vivi+1,vn−1v1

i + j(n − 1) 2 1 ≤ i ≤ n − 1 vv′i
i + j(n − 1) 3 1 ≤ i ≤ n − 1 v′vi

i + j(n − 1) 4 1 ≤ i ≤ n − 2 viv′i+1
i + j(n − 1) − 2 5 2 ≤ i ≤ n − 1 viv′i−1
i + j(n − 1) − 2 6 i = 1, i = 2 v1v′n−1, vn−1v′1

i + j(n − 1) 6 1 ≤ i ≤ n − 1 vui

i + j(n − 1) 7 1 ≤ i ≤ n − 2, i = n − 1 uiui+1,un−1u1

i + j(n − 1) 8 1 ≤ i ≤ n − 1 vu′i
i + j(n − 1) 9 1 ≤ i ≤ n − 1 v′ui

i + j(n − 1) 10 1 ≤ i ≤ n − 2 uiu′i+1
i + j(n − 1) − 2 11 2 ≤ i ≤ n − 1 uiu′i−1
i + j(n − 1) − 2 12 i = 1, i = 2 u1u′n−1, un−1u′1

The coloring of edges is defined as

f : E (S (DWn))→ C, where C = {1, 2, . . . , 4(n − 1)}.

f
(
ei+k(n−1)

)
=


i, k = 0, 1 ≤ i ≤ n − 1
n − 1, k = 1, i = 1
i − 1, k = 1, 2 ≤ i ≤ n − 1
i + n − 1, 2 ≤ k ≤ 3, 1 ≤ i ≤ n − 1

f
(
ei+4(n−1)

)
=

n + 2, i = 1
i + 1, 2 ≤ i ≤ n − 2
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f
(
ei+5(n−1)−2

)
=


i + n + 1, 2 ≤ i ≤ n − 3
n, i = n − 2
1, i = n − 1

f
(
ei+6(n−1)−2

)
=

2, i = 1
n + 1, i = 2

f
(
ei+k(n−1)

)
=


i + 2(n − 1), k = 6, 1 ≤ i ≤ n − 1

3(n − 1), k = 7, i = 1
i − 1 + 2(n − 1), k = 7, 2 ≤ i ≤ n − 1
i + 3(n − 1), 8 ≤ k ≤ 9, 1 ≤ i ≤ n − 1

f
(
ei+10(n−1)

)
=

3n, i = 1
i + 1 + 2(n − 1), 2 ≤ i ≤ n − 2

f
(
ei+11(n−1)−2

)
=


i − 1 + 3n, 2 ≤ i ≤ n − 3
3n − 2, i = n − 2
2n − 1, i = n − 1

f
(
ei+12(n−1)−2

)
=

2n, i = 1
3n − 1, i = 2

All the edges of this splitting graph are assigned colors by the above process with 4(n−1) different
colors. The edges are classified into E (S (DWn)) =

{
E1, E2, . . . , E4(n−1)

}
such that each of the indepen-

dent sets |E1| = |E2| = . . . =
∣∣∣E4(n−1)

∣∣∣ = 3 for any n ≥ 4. It is clear that
∣∣∣|Ei| −

∣∣∣E j

∣∣∣∣∣∣ ≤ 1 for i , j, thus
satisfying equitablility condition. Hence it is observed that χ′= (S (DWn)) ≤ 4(n − 1). By lemma 1, it
follows that χ′= (S (DWn)) ≥ χ′ (S (DWn)) ≥ ∆ = 4(n − 1). Therefore χ′= (S (DWn)) = 4(n − 1). □

Theorem 4. The equitable edge chromatic number of splitting graph of gear graph is χ′= (S (Gn)) =
2(n − 1), for n ≥ 4.

Proof. The gear graph Gn consists of 2n − 1 vertices and 3(n − 1) edges. Let

V (S (Gn)) = {v}
⋃
{vi : 1 ≤ i ≤ n − 1}

⋃
{v′i : 1 ≤ i ≤ n − 1} and

E (Gn) = {ei : 1 ≤ i ≤ n − 1}
⋃
{E′i : 1 ≤ i ≤ n − 1}

⋃
{E′′i : 1 ≤ i ≤ n − 2}

⋃
{E′′n−1}

where Ei is the edge vvi (1 ≤ i ≤ n − 1) , E′i is the edge viv′i (1 ≤ i ≤ n − 1), E′′i is the edge
v′ivi+1 (1 ≤ i ≤ n − 2) and E′n−1 is the edge v′n−1v1.

The construction of splitting graph of gear graph consists of 4n−2 vertices and 9(n−1) edges. Let

V (S (Gn)) = {v}
⋃
{v′}
⋃
{vi : 1 ≤ i ≤ n − 1}

⋃
{ui : 1 ≤ i ≤ n − 1}⋃

{v′i : 1 ≤ i ≤ n − 1}
⋃
{u′i : 1 ≤ i ≤ n − 1}

and

E (S (Gn)) = {Ek : k = i + j(n − 1), 1 ≤ i ≤ n − 1, 0 ≤ j ≤ 8}

The edges {Ek} connecting each of the vertices of the splitting graph of gear graph is obtained by
substituting k = i + j(n − 1) and are tabulated as follows:

The edge coloring of splitting graph of gear graph is defined as

f : E (S (Gn))→ C, where the color set C = {1, 2, . . . , 2(n − 1)}.
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Table 3. Classification of edges of S (Gn)

Values of j Ranges of i Edges between the vertices
0 1 ≤ i ≤ n − 1 vvi

1 1 ≤ i ≤ n − 1 viui

2 1 ≤ i ≤ n − 2, i = n − 1 uivi+1 , un−1v1

3 1 ≤ i ≤ n − 1 viu′i
4 1 ≤ i ≤ n − 2, i = n − 1 vi+1u′i , v1u′n−1
5 1 ≤ i ≤ n − 1 vv′i
6 1 ≤ i ≤ n − 1 v′vi

7 1 ≤ i ≤ n − 1 v′iui

8 1 ≤ i ≤ n − 2, i = n − 1 v′i+1ui , v′1un−1

f (Ei) = i, 1 ≤ i ≤ n − 1

f
(
Ei+(n−1)

)
=

i + 1, 1 ≤ i ≤ n − 2
1, i = n − 1

f
(
Ei+2(n−1)

)
=

i, 1 ≤ i ≤ n − 2
n − 1, i = n − 1

f
(
Ei+3(n−1)

)
=

i + 2, 1 ≤ i ≤ n − 3
i + 3 − n, n − 2 ≤ i ≤ n − 1

f
(
Ei+4(n−1)

)
=


i + 1 + n, 1 ≤ i ≤ n − 3
n, i = n − 2
n + 1, i = n − 1

f
(
Ei+5(n−1)

)
= i + (n − 1), 1 ≤ i ≤ n − 1

f
(
Ei+6(n−1)

)
= i + (n − 1), 1 ≤ i ≤ n − 1

f
(
Ei+7(n−1)

)
=

i + n, 1 ≤ i ≤ n − 2
n, i = n − 1

f
(
Ei+8(n−1)

)
=

i + (n − 1), 1 ≤ i ≤ n − 2
2(n − 1), i = n − 1

By the above method of coloring all the edges of the splitting graph of gear graph are allocated with
2(n − 1) colors. The edges are classified into E (S (Gn)) = {E1, E2, . . . , E2(n−1)} such that each of the
independent sets |E1| = |E2| = . . . =

∣∣∣E(n−1)

∣∣∣ = 4 and |En| = |En+1| = . . . =
∣∣∣E2(n−1)

∣∣∣ = 5 for all n ≥ 4.
Hence it is observed that

∣∣∣|Ei| −
∣∣∣E j

∣∣∣∣∣∣ ≤ 1 for i , j, satisfying equitablility condition. This implies
χ′= (S (Gn)) ≤ 2(n−1). By lemma 1, it follows that χ′= (S (Gn)) ≥ χ′ (S (Gn)) ≥ ∆ = 2(n−1). Therefore
χ′= (S (Gn)) = 2(n − 1). □

4. Conclusion

In this paper, the equitable edge chromatic number of wheel graph families such as wheel Wn,
double wheel DWn and gear graph Gn are obtained, the proofs provides an optimal solution to the
equitable edge coloration of these splitting graphs. The equitable edge coloring in the area of splitting
graphs and other product graphs is vast explorable and the focus on the determination of equitability
in allocation can be extended to other families of graphs.
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