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Abstract: Let G be a simple connected graph with vertex set V and diameter d. An injective function
c : V → {1, 2, 3, . . .} is called a radio labeling of G if |c(x) − c(y)| + d(x, y) ≥ d + 1 for all distinct
x, y ∈ V , where d(x, y) is the distance between vertices x and y. The largest number in the range of c
is called the span of the labeling c. The radio number of G is the minimum span taken over all radio
labelings of G. For a fixed vertex z of G, the sequence (l1, l2, . . . , lr) is called the level tuple of G,
where li is the number of vertices whose distance from z is i. Let Jk(l1, l2, . . . , lr) be the wedge sum

(i.e. one vertex union) of k ≥ 2 graphs having same level tuple (l1, l2, . . . , lr). Let J
(

l1
l′1
, l2

l′2
, . . . , lr

l′r

)
be

the wedge sum of two graphs of same order, having level tuples (l1, l2, . . . , lr) and (l′1, l
′
2, . . . , l

′
r). In

this paper, we compute the radio number for some sub-families of Jk(l1, l2, . . . , lr) and J
(

l1
l′1
, l2

l′2
, . . . , lr

l′r

)
.
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1. Introduction

Radio labeling of graphs is originated from frequency assignment problem for radio transmit-
ters [1]. The problem is to assign distinct frequencies to radio transmitters while avoiding interference
between transmitters that are geographically close to each other. Moreover, it is desired to minimize
the frequency bandwidth. The situation is modeled by using graph theory as follows: radio trans-
mitters are represented by vertices of a graph and two vertices are adjacent if their corresponding
transmitters are geographically close enough to produce interference. The positive integers are as-
signed to vertices of the graph subject to a restriction concerning the distances between them; the
goal is to minimize the largest integer used.

For a simple connected graph G with vertex set V , let d(x, y) denote the distance between vertices
x and y. Let ϵ(x) denote the eccentricity of the vertex x, i.e., the maximum possible distance from the
vertex x to any vertex of the graph G. Let diam(G) denote the diameter of G, which is the maximum
possible distance between any pair of vertices in G (i.e., the maximum eccentricity in G). A radio
labeling (or multilevel distance labeling) for G is an injective function c : V → {1, 2, 3, . . .} satisfying

|c(x) − c(y)| + d(x, y) ≥ diam(G) + 1 (1)

for each pair of distinct vertices x and y. The above condition is called the radio condition. The largest
number in the range of c is called the span of the labeling c, denoted by span(c). The radio number
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of G, denoted by rn(G), is the minimum span taken over all radio labelings of G, i.e.,

rn(G) := min {span(c) : c is a radio labeling of G}.

Radio labeling for a number of graph families has been studied since its introduction in 2001 by G.
Chartrand et al. [2]. Following are few recent references: [3–10]. For a comprehensive and updated
survey, the reader is referred to [11].

Throughout the paper, all our graphs are simple and connected. We use V(H) for the vertex set of
a graph H.

Definition 1. Let H be any graph. For a fixed z ∈ V(H), the level structure w.r.t. z is defined to be a
partition of V(H) into subsets

Li(z,H) := {v ∈ V(H) : d(z, v) = i}

called levels. In this case, vertex z is called a root vertex of H.

Definition 2. For a fixed root z ∈ V(G), the mapping defined by

l(v) := d(z, v)

on V(G) is called the level function w.r.t. z.

Definition 3. We say that a graph H has level tuple (l1, l2, . . . , lr) ∈ Nr at z, if li = |Li(z,H)|.

Definition 4. Let H1,H2, . . . ,Hk≥2 be graphs with level tuple (l1, l2, . . . , lr) at z ∈ V(Ht) for all t. Then
Jk(l1, l2, . . . , lr) is defined to be the graph ∪k

t=1Ht, where Ht ∩ Ht′ = {z} for t , t′. In other words,
Jk(l1, l2, . . . , lr) is the wedge sum of Ht.

Definition 5. Let H and H′ be two graphs of same order with level tuples (l1, l2, . . . , lr) and

(l′1, l
′
2, . . . , l

′
r) respectively, at z ∈ H ∩ H′. Then J

(
l1
l′1
, l2

l′2
, . . . , lr

l′r

)
is defined to be the wedge sum of

H and H′.

In [10], authors compute the radio number of Jk(l1, l2, . . . , lr) for k ≥ 2, by imposing the following
condition on the tuple (l1, l2, . . . , lr):

l1 > lr and li ≥ lr+1−i for i = 2, 3, . . . , ⌊
r + 1

2
⌋. (2)

In this paper, we compute the radio number for a significantly larger class of Jk(l1, l2, . . . , lr) by relax-
ing the above condition on (l1, l2, . . . , lr). Moreover, we determine the radio number for some classes

of J( l1
l′1
, l2

l′2
, . . . , lr

l′r
). The definition of Jk(l1, l2, . . . , lr) and J

(
l1
l′1
, l2

l′2
, . . . , lr

l′r

)
allows to compute the radio

number for a large class of graphs.

Figure 1. An example of each: J3(3, 1, 2, 1) and J( 3
2 ,

2
2 ,

1
1 ,

1
2 )
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Throughout the paper, we use the following settings for Jk(l1, l2, . . . , lr) and J
(

l1
l′1
, l2

l′2
, . . . , lr

l′r

)
: n be

the number of vertices, d be the diameter and z be the identified vertex given in Definitions 4 and
5. Note that d = 2r for both graph families. We take r ≥ 2. Let l be the level function w.r.t. z and

H1,H2, . . . ,Hk,H,H′ be graphs mentioned in the construction of Jk(l1, l2, . . . , lr) and J
(

l1
l′1
, l2

l′2
, . . . , lr

l′r

)
.

In all expressions with summation, we use the convention that

b∑
s=a

As = Aa + Aa+1 · · · + Ab = 0 for a > b.

2. Radio number of Jk(l1, l2, . . . , lr)

In this section, we compute the radio number of Jk(l1, l2, . . . , lr) when

s∑
i=1

(
li − lr+1−i

)
> 0 for all s = 1, 2, . . . ,

⌊
r + 1

2

⌋
. (3)

For convenience, we set

θ :=
⌊
r + 1

2

⌋
.

To establish our result, we use the following lemma proved in [10].

Lemma 1. Let G = Jk(l1, l2, . . . , lr) and let z = x0, x1, . . . , xn−1 be an ordering of V(G) such that for
p > 0,

1. xp ∈ Ht whenever p ≡ t (mod k), and
2. l(xp) + l(xp+1) ≤ r + 1.

Then c(xp) = 1 + p(d + 1) + l(xp) − 2
∑p

s=1 l(xs), 0 ≤ p ≤ n − 1 is a radio labeling. Moreover, if
l(xn−1) = 1 then c is optimal and

rn(G) = c(xn−1) = 2 + (n − 1)(d + 1) − 2k

 r∑
s=1

sls

 .
We provide an ordering of the vertices of Jk(l1, l2, . . . , lr) represented by x0, x1, . . . , xn−1, which

satisfies the conditions of Lemma 1. We represent the desired ordering by the following matrix:

A =


l(x1) l(x2) · · · l(xk)

l(xk+1) l(xk+2) · · · l(x2k)
...

... · · ·
...

l(xn−k) l(xn−k+1) · · · l(xn−1)

 .
The entry a j,t = l(xp) = i of the above matrix corresponds to j-th vertex of Li(z,Ht). Note that the
vertices of Li(z,Ht) can be ordered arbitrarily. To obtain the desired ordering, we need to construct a
matrix whose each column consists of the following entries

r, r, . . . , r︸    ︷︷    ︸
lr−times

, r − 1, r − 1, . . . , r − 1︸                     ︷︷                     ︸
lr−1−times

, . . . , 2, 2, . . . , 2︸      ︷︷      ︸
l2−times

, 1, 1, . . . , 1︸      ︷︷      ︸
l1−times

placed in some order such that l(xi) + l(xi+1) ≤ r + 1 and l(xn−1) = 1. This means that the consecutive
entries of r must be 1, the consecutive entries of r − 1 must be 1 or 2 and so on.
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In order to present our desired matrices conveniently, we define a couple of parameters using
(l1, l2, . . . , lr). For i = θ + 1, θ + 2, . . . , r and for each m = 1, 2, . . . , r + 1 − i, we define:

η(i,m) := min
{
li −

r+1−i∑
s=m+1

η(i, s), lm −

r+1−m∑
s=i+1

η(s,m)
}
. (4)

The values η(i,m) can be determined recursively in the following order:

η(r, 1),

η(r − 1, 2), η(r − 1, 1),

η(r − 2, 3), η(r − 2, 2), η(r − 2, 1),
...

η(θ + 1, r − θ), η(θ + 1, r − θ − 1), . . . , η(θ + 1, 1).

Moreover, observe that η(i,m) is defined in such a way that for each i, one gets
∑r+1−i

m=1 η(i,m) = li.
Next for i = 1, 2, . . . , θ, we define:

αi := li −

r+1−i∑
s=θ+1

η(s, i). (5)

Now we give the mentioned matrices. There are two cases depending on the parity of k.

Case 1: If k is even, then A = [B B · · · B], where:

B =



r 1
r − 1 2
r − 1 1
...

...

θ + 1 r − θ
θ + 1 r − θ − 1
...

...

θ + 1 1
θ θ

θ − 1 θ − 1
...

...

2 2
1 θ + 1
2 θ + 1
...

...

r − θ θ + 1
...

...

1 r − 1
2 r − 1
1 r
1 1



η(r, 1)
η(r − 1, 2)
η(r − 1, 1)
...

η(θ + 1, r − θ)
η(θ + 1, r − θ − 1)
...

η(θ + 1, 1)
αθ
αθ−1
...

α2

η(θ + 1, 1)
η(θ + 1, 2)
...

η(θ + 1, r − θ)
...

η(r − 1, 1)
η(r − 1, 2)
η(r, 1)
α1

The entry on the right side of a row shows its multiplicity, which may be zero. It is not difficult
to verify that the ordering given in the above matrix satisfies the desired conditions. Similarly we have:
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Further results on radio number of wedge sum of graphs 17

Case 2: If k is odd, then A = [C D C D · · · C D C], where C and D are the following
column matrices:

C =



r
1

r − 1
2

r − 1
1
...

θ + 1
r − θ
θ + 1

r − θ − 1
...

θ + 1
1
θ

θ − 1
...

2
1



η(r, 1)

η(r − 1, 2)

η(r − 1, 1)
...

η(θ + 1, r − θ)

η(θ + 1, r − θ − 1)
...

η(θ + 1, 1)
αθ
αθ−1
...

α2

α1

, D =



1
r
2

r − 1
1

r − 1
...

r − θ
θ + 1

r − θ − 1
θ + 1
...

1
θ + 1
θ

θ − 1
...

2
1



η(r, 1)

η(r − 1, 2)

η(r − 1, 1)
...

η(θ + 1, r − θ)

η(θ + 1, r − θ − 1)
...

η(θ + 1, 1)
αθ
αθ−1
...

α2

α1

Again the entry on the right side of each row block shows its multiplicity. The above two cases
establish the following result.

Theorem 1. Let G = Jk(l1, l2, . . . , lr) with
∑s

i=1
(
li − lr+1−i

)
> 0 for all s = 1, 2, 3, . . . , ⌊ r+1

2 ⌋. Then

rn(G) = 2 + (n − 1)(d + 1) − 2k
[ r∑

s=1

sls
]
.

The following result of [10] is an immediate consequence of Theorem 1.

Corollary 1 ( [10], Theorem 4). Let G = Jk(l1, l2, . . . , lr) with l1 > lr and li ≥ lr+1−i for
i = 2, 3, . . . , ⌊ r+1

2 ⌋. Then

rn(G) = 2 + (n − 1)(d + 1) − 2k
[ r∑

s=1

sls
]
.

For illustration, we present the above matrix for the family of graphs represented by J3(3, 1, 2, 1).
We also provide vertex ordering x0, x1, . . . , xn−1 and the optimal radio labeling, which are obtained
from this matrix.
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Figure 2. Optimal radio labeling for J3(3, 1, 2, 1)

We end this section by computing the radio number of a cactus graph using Theorem 1. A cactus
is a graph whose maximal connected subgraphs without a cut-vertex are cycles or complete graphs on
two vertices. Let G2p be the graph obtained by adjoining even cycles C2p,C2p−2, . . . ,C4 as shown in
Figure 3. Let JkG2p be the wedge sum of k ≥ 2 copies of G2p. The level tuple of G2p is (l1, l2, . . . , lr),
where li = 1 for i ∈

{
s(2p−s+1)

2 : 1 ≤ s ≤ p − 1
}

and li = 2 otherwise. For instance, the level tuple of
G8 is (2, 2, 2, 1, 2, 2, 1, 2, 1). The level tuple of G2p satisfies the condition of Theorem 1. For JkG2p),
we have d = (p − 1)(p + 2), n = k(p2 − 1) + 1 and

∑r
s=1 sls =

p(p2−1)(3p+2)
12 . Thus, we have:

rn(JkG2p) = 2 +
k(3p2 + 4p − 6)(p2 − 1)

6
.

Figure 3. Graphs: G2p and J3G8

Ars Combinatoria Volume 156, 13–23
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3. Radio number of J
(

l1
l′1
, l2

l′2
, . . . , lr

l′r

)
Now we compute the radio number for some classes of J( l1

l′1
, l2

l′2
, . . . , lr

l′r
). For this, we need some

preliminaries.

Definition 6. Let G be any graph and let l be the level function defined on V(G) w.r.t. a vertex z ∈ G.
Then the sum wz(G) :=

∑
v∈V(G) l(v) is called the weight of the vertex z.

Definition 7. The number w(G) := min{wz(G) : z ∈ V(G)} is called the weight of the graph G. A
vertex z ∈ V(G) is called a weight center of G if wz(G) = w(G).

We use the following results which are proved in [10].

Proposition 1. For z, u ∈ V(G), we have

wz(G) − wu(G) ≤ (n − 2nu)d(z, u),

where nu =
∣∣∣{v ∈ V(G) : d(u, v) = d(u, z)+ d(z, v)}

∣∣∣ and n = |V(G)|. In particular, z is a weight center
if nu ≥ n/2 for all u ∈ V(G).

Theorem 2. Let G be any graph on n vertices having diameter d. Then

rn(G) ≥ 2 + (n − 1)(d + 1) − 2w(G).

The similar lower bound is determined in [12] for trees. We first establish the lower bound for the
radio number of J( l1

l′1
, l2

l′2
, . . . , lr

l′r
) using the above theorem.

Proposition 2. Let G = J
(

l1
l′1
, l2

l′2
, . . . , lr

l′r

)
. Then w(G) =

∑r
s=1 s(ls + l′s) and consequently

rn(G) ≥ 2 + (n − 1)(d + 1) − 2
[ r∑

s=1

s(ls + l′s)
]
.

Proof. To prove our claim, it is sufficient to prove that the identified vertex z is a weight center of
G. For this, we use Proposition 1. Let u ∈ V(H). Then for any v ∈ V(H′), we have d(u, v) =
d(u, z) + d(z, v). This means that nu ≥ |V(H′)| and consequently nu ≥ n/2 for all u ∈ V(H). On the
same lines, we have nu ≥ n/2 for all u ∈ V(H′), showing that z is a weight center of G. Hence the
proof is complete. □

Now we show that the above bound is optimal. For this, we use the following handy result.

Lemma 2. Let G = J
(

l1
l′1
, l2

l′2
, . . . , lr

l′r

)
and let z = x0, x1, . . . , xn−1 be a labeling of V(G) such that for

p > 0,

1. xp ∈ H if p is odd, xp ∈ H′ otherwise, and
2. l(xp) + l(xp+1) ≤ r + 1.

Then

c(xp) = 1 + p(d + 1) + l(xp) − 2
p∑

s=1

l(xs), 0 ≤ p ≤ n − 1

is a radio labeling. Moreover, if l(xn−1) = 1 then c is optimal and

rn(G) = c(xn−1) = 2 + (n − 1)(d + 1) − 2
[ r∑

s=1

s(ls + l′s)
]
.
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Proof. Let p > q ≥ 0 have different parity. Then xp, xq belongs to different graphs, H and H′. In this
situation, we have d(xp, xq) = l(xp) + l(xq). Therefore:

c(xp) − c(xq) + d(xp, xq) = (p − q)(d + 1) − 2
[ p−1∑

s=q+1

l(xs)
]
.

Since l(xs) ≤ r and d = 2r, we obtain:

c(xp) − c(xq) + d(xp, xq) ≥ d + (p − q) ≥ d + 1.

Now let p > q ≥ 0 have same parity. Then either xp, xq ∈ H or xp, xq ∈ H′. In both cases, we can
write

c(xp) − c(xq) = (p − q)(d + 1) −
[ p−1∑

s=q

l(xs) + l(xs+1)
]
.

Using condition 2 and the fact that d = 2r, we get c(xp) − c(xq) ≥ (p − q)r. Since p, q have same
parity, we have p−q ≥ 2. Thus c(xp)−c(xq) ≥ d, showing that c is indeed a radio labeling. Moreover,
c(xp) > c(xq) for p > q and l(xn−1) = 1. Thus, we have

span(c) = c(xn−1) = 2 + (n − 1)(d + 1) − 2
n−1∑
s=1

l(xs).

Since w(G) =
∑n−1

s=1 l(xs), from Theorem 2 and Proposition 2, we obtain the desired result. □

Similar to the case of Jk(l1, l2, . . . , lr), we provide an ordering of the vertices of J
(

l1
l′1
, l2

l′2
, . . . , lr

l′r

)
represented by x0, x1, . . . , xn−1, which satisfies the conditions of Lemma 2. In this case, we construct
the following matrix:

A =


l(x1) l(x2)
l(x3) l(x4)
...

...

l(xn−2) l(xn−1)

 ,
where columns consist of the following entries, respectively:

r, r, . . . , r︸    ︷︷    ︸
lr−times

, r − 1, r − 1, . . . , r − 1︸                     ︷︷                     ︸
lr−1−times

, . . . , 2, 2, . . . , 2︸      ︷︷      ︸
l2−times

, 1, 1, . . . , 1︸      ︷︷      ︸
l1−times

,

r, r, . . . , r︸    ︷︷    ︸
l′r−times

, r − 1, r − 1, . . . , r − 1︸                     ︷︷                     ︸
l′r−1−times

, . . . , 2, 2, . . . , 2︸      ︷︷      ︸
l′2−times

, 1, 1, . . . , 1︸      ︷︷      ︸
l′1−times

such that l(xi)+ l(xi+1) ≤ r+1 and l(xn−1) = 1. We compute the radio number of J
(

l1
l′1
, l2

l′2
, . . . , lr

l′r

)
when:

l1 > l′r and li ≥ l′r+1−i for i = 2, 3, . . . , ⌊ r+1
2 ⌋, (6)

l′1 > lr and l′i ≥ lr+1−i for i = 2, 3, . . . , ⌊ r+1
2 ⌋. (7)

Note that according to the definition of J
(

l1
l′1
, l2

l′2
, . . . , lr

l′r

)
, we also have the following implicit condition:

r∑
i=1

li =

r∑
i=1

l′i .
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For even and odd values of r, the above classes of J
(

l1
l′1
, l2

l′2
, . . . , lr

l′r

)
can be represented as follows,

respectively:

J(
a1 + δ1 + 1
a′1 + δ

′
1 + 1

,
a2 + δ2

a′2 + δ
′
2
, . . . ,

aθ + δθ
a′θ + δ

′
θ

,
a′θ
aθ
,

a′θ−1

aθ−1
, . . . ,

a′1
a1

),

J(
a1 + δ1 + 1
a′1 + δ

′
1 + 1

,
a2 + δ2

a′2 + δ
′
2
, . . . ,

aθ−1 + δθ−1

a′θ−1 + δ
′
θ−1
,

a
a
,

a′θ−1

aθ−1
, . . . ,

a′1
a1

),

where ai, a′i , a > 0 and δi, δ
′
i ≥ 0 with

∑
i δi =

∑
i δ
′
i .

Theorem 3. Let G = J( l1
l′1
, l2

l′2
, . . . , lr

l′r
) be as given in (6) and (7). Then

rn(G) = 2 + (n − 1)(d + 1) − 2
[ r∑

s=1

s(ls + l′s)
]
.

Proof. We only need to construct matrix A as mentioned above. The required matrix A = [C D],
where:

C =



r
r − 1
...

θ + 1
θ

θ − 1
...

1
1
2
...

θ − 1
θ



lr

lr−1
...

lθ+1

l′r+1−θ
l′r+2−θ
...

l′r
l1 − l′r
l2 − l′r−1
...

lθ−1 − l′r+2−θ
lθ − l′r+1−θ

and D =



1
2
...

r − θ
r + 1 − θ
r + 2 − θ
...

r
2
3
...

θ

1



lr

lr−1
...

lθ+1

l′r+1−θ
l′r+2−θ
...

l′r
l′2 − lr−1

l′3 − lr−2
...

l′θ − lr+1−θ

l′1 − lr

Evidently the above matrix satisfies the desired conditions. Hence the proof. □

The above matrix, corresponding vertex ordering x0, x1 . . . , xn−1 and the optimal radio labeling for
J(3

2 ,
2
2 ,

1
1 ,

1
2 ), are shown in Figure 4.

Figure 4. Optimal radio labeling for J
(

3
2 ,

2
2 ,

1
1 ,

1
2

)
We conclude by computing the radio number of a caterpillar using the above theorem. A cater-

pillar is a tree such that removing all its leaves, results in a path graph. Let CP(p1, p2, . . . , ps) be
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the caterpillar obtained from the path graph v1v2, v2v3, . . . , vs−1vs by attaching pi ≥ 0 new terminal
vertices to the vertex vi. For p1, pr > 0, the caterpillar

G = CP(p1, p2, . . . , pr−1, pr + p1, p2, p3, . . . , pr)

is an example of J
(

1+p1
1+pr
, 1+p2

1+pr−1
, . . . , 1+pr−1

1+p2
, pr

p1

)
. For the caterpillar G, we have n = 2(r + p)− 1, d = 2r,

w(G) = r2 + (p − 1)r + p and
rn(G) = 2r(r + p),

where p = p1 + p2 + · · · + pr.

Figure 5. Caterpillar: J( 2
4 ,

3
3 ,

3
3 ,

3
3 ,

3
1 )
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