figshare
Browse

Supplementary material from "The tactile perception of transient changes in friction"

Posted on 2017-11-23 - 12:57
When we touch an object or explore a texture, frictional strains are induced by the tactile interactions with the surface of the object. Little is known about how these interactions are perceived, although it becomes crucial for the nascent industry of interactive displays with haptic feedback (e.g. smartphones and tablets) where tactile feedback based on friction modulation is particularly relevant. To investigate the human perception of frictional strains, we mounted a high-fidelity friction modulating ultrasonic device on a robotic platform performing controlled rubbing of the fingertip and asked participants to detect induced decreases of friction during a forced-choice task. The ability to perceive the changes in friction was found to follow Weber's Law of just noticeable differences, as it consistently depended on the ratio between the reduction in tangential force and the pre-stimulation tangential force. The Weber fraction was 0.11 in all conditions demonstrating a very high sensitivity to transient changes in friction. Humid fingers experienced less friction reduction than drier ones for the same intensity of ultrasonic vibration but the Weber fraction for detecting changes in friction was not influenced by the humidity of the skin.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Journal of the Royal Society Interface

AUTHORS (5)

David Gueorguiev
Eric Vezzoli
André Mouraux
Betty Lemaire-Semail
Jean-Louis Thonnard
need help?