月球冷却过程中的热应力与月震机制之间关系的初步分析

陶莎, 石耀霖, 朱伯靖. 2023. 月球冷却过程中的热应力与月震机制之间关系的初步分析. 地球物理学报, 66(9): 3730-3746, doi: 10.6038/cjg2022P0672
引用本文: 陶莎, 石耀霖, 朱伯靖. 2023. 月球冷却过程中的热应力与月震机制之间关系的初步分析. 地球物理学报, 66(9): 3730-3746, doi: 10.6038/cjg2022P0672
TAO Sha, SHI YaoLin, ZHU BoJing. 2023. Preliminary analysis of the relationship between the thermal stress of the Moon in cooling process and moonquake mechanisms. Chinese Journal of Geophysics (in Chinese), 66(9): 3730-3746, doi: 10.6038/cjg2022P0672
Citation: TAO Sha, SHI YaoLin, ZHU BoJing. 2023. Preliminary analysis of the relationship between the thermal stress of the Moon in cooling process and moonquake mechanisms. Chinese Journal of Geophysics (in Chinese), 66(9): 3730-3746, doi: 10.6038/cjg2022P0672

月球冷却过程中的热应力与月震机制之间关系的初步分析

  • 基金项目:

    国家自然科学基金面上项目(41774106)资助

详细信息
    作者简介:

    陶莎, 女, 1990年生, 博士研究生, 主要从事月球应力场与月震研究.E-mail: taosha16@mails.ucas.ac.cn

    通讯作者: 朱伯靖, 男, 1974年生, 副教授, 硕士生导师, 主要从事计算地球与行星科学、计算太阳物理与空间科学研究.E-mail: bjzhu@ynao.ac.cn
  • 中图分类号: P315

Preliminary analysis of the relationship between the thermal stress of the Moon in cooling process and moonquake mechanisms

More Information
  • 大量研究表明深源月震的周期性是由地球对月球的潮汐作用引起,但固体潮汐差应力的最大值远小于深源月震发生所需的岩体破裂应力,因此在潮汐力以外,应存在其他背景构造应力.此外,由于月球上并没有活跃的板块运动,浅源月震的发生机制也有待解决.本文用参量化模型初步模拟了月球冷却和岩石圈增厚的历史,并初步计算了月球内部的热应力增长速率以及长期应力松弛下累积至今的热应力,特别关注了深、浅源月震区域近期应力特征.研究结果显示:浅源月震区域内,热应力大小可以造成浅源月震区岩体破裂,且热应力以水平挤压为主,足以产生逆掩断层月震,与实际观测吻合;深源月震区域内,热应力虽然也有集中,但其量级大小并不足以成为造成无水干月岩破裂的主要原因.我们推测深源月震很可能与月幔最下层的部分熔融层释放的流体有关.本文的研究初步揭示了月球冷却收缩热应力与深、浅源月震产生机理间的关系,对未来的进一步深入研究提供了基础.

  • 加载中
  • 图 1 

    月震波速及密度模型(Weber et al., 2011; Khan et al., 2014; Garcia et al., 2019)

    Figure 1. 

    Seismic velocity and density models (Weber et al., 2011; Khan et al., 2014; Garcia et al., 2019)

    图 2 

    月球内部结构示意图

    Figure 2. 

    Illustration of the internal structure of the Moon

    图 5 

    岩石圈逐渐增厚过程

    Figure 5. 

    The gradual thickening of the lithosphere

    图 3 

    计算月球热演化过程的流程图

    Figure 3. 

    Flowchart for the calculation of thermal evolution of the Moon

    图 4 

    热演化计算中的初始温度

    Figure 4. 

    Initial temperature in the calculation of thermal evolution

    图 6 

    长期热演化过程中温度变化

    Figure 6. 

    The temperature change during long-time thermal evolution

    图 7 

    近期温度变化

    Figure 7. 

    Recent temperature changes

    图 8 

    经过1 Myr累积的热应变

    Figure 8. 

    Accumulated thermal strain after 1 Myr

    图 9 

    经过1 Myr累积的热应力

    Figure 9. 

    Accumulated thermal stress after 1 Myr

    图 10 

    经过长期松弛的现今热应力

    Figure 10. 

    Current thermal stress after long-time relaxation

    表 1 

    基于月震波速模型的参数

    Table 1. 

    Parameters based on the lunar seismic wave velocity model

    深度h/km VS/(km·s-1) VP/(km·s-1) 密度ρ/(kg·m-3) 泊松比υ 杨氏模量E/Pa
    月壳 0~80 3 5.5 3000 0.2882 6.96×1010
    上月幔 80~700 4.5 8.5 3400 0.3053 1.80×1011
    月震带 700~1200 4.5 8.5 3400 0.3053 1.80×1011
    部分熔融区 1200~1360 3 7.5 3400 0.4048 8.60×1010
    外核 1360~1500 ~0 4 5000 0.4998 9.60×107
    内核 1500~1738 2.2 4.2 8000 0.3109 1.02×1011
    下载: 导出CSV

    表 2 

    月球内部热力学参数

    Table 2. 

    Thermodynamic parameters of the Moon′s interior

    深度h/km 密度ρ /(kg·m-3) 等压热容Cp /(J·kg-1·K-1) 热传导系数k /(W·m-1·K-1) 热扩散系数κ /(m2·s-1) 热膨胀系数α /K-1
    月壳 0~80 3000 850 2 7.8×10-7 1×10-5
    上月幔 80~700 3400 1250 3.8 8.9×10-7 1×10-5
    月震带 700~1200 3400 1250 3.8 8.9×10-7 1×10-5
    部分熔融区 1200~1360 3400 1250 3.8 8.9×10-7 1×10-5
    外核 1360~1500 5000 440 80 3.6×10-5 1×10-5
    内核 1500~1738 8000 440 80 2.3×10-5 1×10-5
    下载: 导出CSV
  •  

    Bakun W H, McEvilly T V. 1984. Recurrence models and Parkfield, California, earthquakes. Journal of Geophysical Research: Solid Earth, 89(B5): 3051-3058, doi: 10.1029/JB089iB05p03051.

     

    Banks M E, Watters T R, Robinson M S, et al. 2012. Morphometric analysis of small-scale lobate scarps on the Moon using data from the Lunar Reconnaissance Orbiter. Journal of Geophysical Research: Planets, 117(E12): E00H11, doi: 10.1029/2011je003907.

     

    Belashchenko D K, Kuskov O L. 2015. Molecular-dynamic modeling of thermodynamic properties of the lunar Fe-S core. Doklady Earth Sciences, 460(1): 37-40, doi: 10.1134/s1028334x15010018.

     

    Bulow R C, Johnson C L, Bills B G, et al. 2007. Temporal and spatial properties of some deep moonquake clusters. Journal of Geophysical Research: Planets, 112(E9): E09003, doi: 10.1029/2006je002847.

     

    Chen X Z. 2021. The tidal triggering of earthquakes. Progress in Earthquake Sciences (in Chinese), 51(4): 145-160, doi: 10.3969/j.issn.2096-7780.2021.04.001.

     

    Cochran E S, Vidale J E, Tanaka S. 2004. Earth tides can trigger shallow thrust fault earthquakes. Science, 306(5699): 1164-1166, doi: 10.1126/science.1103961.

     

    Davies G F. 1980. Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth. Journal of Geophysical Research: Solid Earth, 85(B5): 2517-2530, doi: 10.1029/JB085iB05p02517.

     

    Eslami M R, Hetnarski R B, Ignaczak J, et al. 2013. Theory of Elasticity and Thermal Stresses: Explanations, Problems and Solutions. Dordrecht: Springer.

     

    Frohlich C, Nakamura Y. 2009. The physical mechanisms of deep moonquakes and intermediate-depth earthquakes: How similar and how different?. Physics of the Earth and Planetary Interiors, 173(3-4): 365-374, doi: 10.1016/j.pepi.2009.02.004.

     

    Gagnepain-Beyneix J, Lognonné P, Chenet H, et al. 2006. A seismic model of the lunar mantle and constraints on temperature and mineralogy. Physics of the Earth and Planetary Interiors, 159(3-4): 140-166, doi: 10.1016/j.pepi.2006.05.009.

     

    Garcia R F, Gagnepain-Beyneix J, Chevrot S, et al. 2011. Very preliminary reference Moon model. Physics of the Earth and Planetary Interiors, 188(1-2): 96-113, doi: 10.1016/j.pepi.2011.06.015.

     

    Garcia R F, Gagnepain-Beyneix J, Chevrot S, et al. 2012. Erratum to "Very Preliminary Reference Moon Model", by R.F. Garcia, J. Gagnepain-Beyneix, S. Chevrot, P. Lognonné [Phys. Earth Planet. Inter. 188 (2011) 96-113]. Physics of the Earth and Planetary Interiors, 202-203: 89-91, doi: 10.1016/j.pepi.2012.03.009.

     

    Garcia R F, Khan A, Drilleau M, et al. 2019. Lunar seismology: an update on interior structure models. Space Science Reviews, 215(8): 50, doi: 10.1007/s11214-019-0613-y.

     

    Hao J L, Zhang J H, Yao Z X. 2019. Evidence for diurnal periodicity of earthquakes from midnight to daybreak. National Science Review, 6(5): 1016-1023, doi: 10.1093/nsr/nwy117.

     

    Hirschmann M M. 2000. Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochemistry, Geophysics, Geosystems, 1(10): 1042, doi: 10.1029/2000gc000070.

     

    Ishak B. 2017. Geodynamics (3rd Edition), by Donald L. Turcotte: Scope: Textbook. Level: Advanced Undergraduate, Postgraduate, Teacher. Contemporary Physics, 58(1): 108-108, doi: 10.1080/00107514.2016.1249522.

     

    Jaumann R, Hiesinger H, Anand M, et al. 2012. Geology, geochemistry, and geophysics of the Moon: Status of current understanding. Planetary and Space Science, 74(1): 15-41, doi: 10.1016/j.pss.2012.08.019.

     

    Jiang C Z, Yao S. 2019. 1D geothermal inversion of the lunar deep interior temperature and heat production in the equatorial area. Physics of the Earth and Planetary Interiors, 289: 106-114, doi: 10.1016/j.pepi.2019.02.007.

     

    Jung H, Green Ⅱ H W, Dobrzhinetskaya L F. 2004. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature, 428(6982): 545-549, doi: 10.1038/nature02412.

     

    Kamata S, Sugita S, Abe Y, et al. 2015. The relative timing of Lunar Magma Ocean solidification and the Late Heavy Bombardment inferred from highly degraded impact basin structures. Icarus, 250: 492-503, doi: 10.1016/j.icarus.2014.12.025.

     

    Karato S I. 2010. Rheology of the deep upper mantle and its implications for the preservation of the continental roots: A review. Tectonophysics, 481(1-4): 82-98, doi: 10.1016/j.tecto.2009.04.011.

     

    Karato S I. 2013. Geophysical constraints on the water content of the lunar mantle and its implications for the origin of the Moon. Earth and Planetary Science Letters, 384: 144-153, doi: 10.1016/j.epsl.2013.10.001.

     

    Kawamura T, Lognonné P, Nishikawa Y, et al. 2017. Evaluation of deep moonquake source parameters: Implication for fault characteristics and thermal state. Journal of Geophysical Research: Planets, 122(7): 1487-1504, doi: 10.1002/2016je005147.

     

    Khan A, Connolly J A D, Pommier A, et al. 2014. Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. Journal of Geophysical Research: Planets, 119(10): 2197-2221, doi: 10.1002/2014je004661.

     

    Khan A, Mosegaard K, Rasmussen K L. 2000. A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data. Geophysical Research Letters, 27(11): 1591-1594, doi: 10.1029/1999gl008452.

     

    Khan A, Mosegaard K. 2002. An inquiry into the lunar interior: A nonlinear inversion of the Apollo lunar seismic data. Journal of Geophysical Research: Planets, 107(E6): 5036, doi: 10.1029/2001JE001658.

     

    Kiser E, Ishii M, Langmuir C H, et al. 2011. Insights into the mechanism of intermediate-depth earthquakes from source properties as imaged by back projection of multiple seismic phases. Journal of Geophysical Research: Solid Earth, 116(B6): B06310, doi: 10.1029/2010JB007831.

     

    Kumar P S, Mohanty R, Lakshmi K J P, et al. 2019. The seismically active lobate scarps and coseismic lunar boulder avalanches triggered by 3 January 1975 (MW4.1) shallow moonquake. Geophysical Research Letters, 46(14): 7972-7981, doi: 10.1029/2019GL083580.

     

    Kuskov O L, Kronrod E V, Kronrod V A. 2019. Thermo-chemical constraints on the lunar bulk composition and the structure of a three-layer mantle. Physics of the Earth and Planetary Interiors, 286: 1-12, doi: 10.1016/j.pepi.2018.10.011.

     

    Kuskov O L, Kronrod V A. 1998. Constitution of the Moon: 5. Constraints on composition, density, temperature, and radius of a core. Physics of the Earth and Planetary Interiors, 107(4): 285-306, doi: 10.1016/S0031-9201(98)00082-X.

     

    Kuskov O L, Kronrod V A. 2009. Geochemical constraints on the model of the composition and thermal conditions of the Moon according to seismic data. Izvestiya, Physics of the Solid Earth, 45(9): 753-768, doi: 10.1134/S1069351309090043.

     

    Kuskov O L. 1995. Constitution of the moon: 3. Composition of middle mantle from seismic data. Physics of the Earth and Planetary Interiors, 90(1-2): 55-74, doi: 10.1016/0031-9201(95)03014-N.

     

    Laneuville M, Wieczorek M A, Breuer D, et al. 2013. Asymmetric thermal evolution of the Moon. Journal of Geophysical Research: Planets, 118(7): 1435-1452, doi: 10.1002/jgre.20103.

     

    Langseth M G, Keihm S J, Peters K. 1976. Revised lunar heat-flow values. 7th Lunar and Planetary Science Conferences, Proceedings, 3143-3171.

     

    Liu C, Zhu B J, Shi Y L. 2012. Stress accumulation of the Longmenshan Fault and recurrence interval of Wenchuan earthquake based on viscoelasticity simulation. Acta Geologica Sinica (in Chinese), 86(1): 157-169, doi: 10.3969/j.issn.0001-5717.2012.01.004.

     

    Lockner D A, Beeler N M. 1999. Premonitory slip and tidal triggering of earthquakes. Journal of Geophysical Research: Solid Earth, 104(B9): 20133-20151, doi: 10.1029/1999jb900205.

     

    Lognonné P, Gagnepain-Beyneix J, Chenet H. 2003. A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon. Earth and Planetary Science Letters, 211(1-2): 27-44, doi: 10.1016/s0012-821x(03)00172-9.

     

    Mallik A, Ejaz T, Shcheka S, et al. 2019. A petrologic study on the effect of mantle overturn: Implications for evolution of the lunar interior. Geochimica et Cosmochimica Acta, 250: 238-250, doi: 10.1016/j.gca.2019.02.014.

     

    Minshull T A, Goulty N R. 1988. The influence of tidal stresses on deep moonquake activity. Physics of the Earth and Planetary Interiors, 52(1-2): 41-55, doi: 10.1016/0031-9201(88)90056-8.

     

    Moresi L N, Solomatov V S. 1995. Numerical investigation of 2D convection with extremely large viscosity variations. Physics of Fluids, 7(9): 2154-2162, doi: 10.1063/1.868465.

     

    Nakamura Y, Duennebier F K, Latham G V, et al. 1976. Structure of the lunar mantle. Journal of Geophysical Research, 81(26): 4818-4824, doi: 10.1029/JB081i026p04818.

     

    Nakamura Y, Latham G V, Dorman H J. 1982. Apollo Lunar Seismic Experiment—Final summary. Journal of Geophysical Research: Solid Earth, 87(S01): A117-A123, doi: 10.1029/JB087iS01p0A117.

     

    Nataf H C, Richter F M. 1982. Convection experiments in fluids with highly temperature-dependent viscosity and the thermal evolution of the planets. Physics of the Earth and Planetary Interiors, 29(3-4): 320-329, doi: 10.1016/0031-9201(82)90020-6.

     

    Nunes D C, Phillips R J. 2007. Effect of state of compensation on the relaxation of crustal plateaus on Venus. Journal of Geophysical Research: Atmospheres, 112(E10): E10002, doi: 10.1029/2006JE002861.

     

    Nunes D C. 2004. Relaxation of compensated topography and the evolution of crustal plateaus on Venus. Journal of Geophysical Research: Planets, 109(E1): E01006, doi: 10.1029/2003je002119.

     

    Nunn C, Garcia R F, Nakamura Y, et al. 2020. Lunar seismology: a data and instrumentation review. Space Science Reviews, 216(5): 89, doi: 10.1007/s11214-020-00709-3.

     

    Oberst J. 1987. Unusually high stress drops associated with shallow moonquakes. Journal of Geophysical Research: Solid Earth, 92(B2): 1397-1405, doi: 10.1029/JB092iB02p01397.

     

    Ouyang Z Y. 2005. Introduction to Lunar Science (in Chinese). Beijing: China Astronautic Publishing House.

     

    Qin C, Zhong S J, Phillips R. 2018. Formation of the lunar fossil bulges and its implication for the early earth and moon. Geophysical Research Letters, 45(3): 1286-1296, doi: 10.1002/2017GL076278.

     

    Rasmussen K L, Warren P H. 1985. Megaregolith thickness, heat flow, and the bulk composition of the Moon. Nature, 313: 121-124, doi: 10.1038/313121a0.

     

    Shearer C K, Hess P C, Wieczorek M A, et al. 2006. Thermal and magmatic evolution of the moon. Reviews in Mineralogy and Geochemistry, 60(1): 365-518, doi: 10.2138/rmg.2006.60.4.

     

    Siegler M A, Smrekar S E. 2014. Lunar heat flow: Regional prospective of the Apollo landing sites. Journal of Geophysical Research: Planets, 119(1): 47-63, doi: 10.1002/2013je004453.

     

    Toksöz M N, Dainty A M, Solomon S C, et al. 1974. Structure of the Moon. Reviews of Geophysics, 12(4): 539-567, doi: 10.1029/RG012i004p00539.

     

    Wang W, Shearer P M. 2015. No clear evidence for localized tidal periodicities in earthquakes in the central Japan region. Journal of Geophysical Research: Solid Earth, 120(9): 6317-6328, doi: 10.1002/2015jb011937.

     

    Warren P H, Rasmussen K L. 1987. Megaregolith insulation, internal temperatures, and bulk uranium content of the Moon. Journal of Geophysical Research, 92(B5): 3453-3465, doi: 10.1029/JB092iB05p03453.

     

    Watters T R, Robinson M S, Beyer R A, et al. 2010. Evidence of recent thrust faulting on the moon revealed by the lunar reconnaissance orbiter camera. Science, 329(5994): 936-940, doi: 10.1126/science.1189590.

     

    Watters T R, Robinson M S, Collins G C, et al. 2015. Global thrust faulting on the Moon and the influence of tidal stresses. Geology, 43(10): 851-854, doi: 10.1130/g37120.1.

     

    Watters T R, Weber R C, Collins G C, et al. 2019. Shallow seismic activity and young thrust faults on the Moon. Nature Geoscience, 12(6): 411-417, doi: 10.1038/s41561-019-0362-2.

     

    Weber R C, Bills B G, Johnson C L. 2009. Constraints on deep moonquake focal mechanisms through analyses of tidal stress. Journal of Geophysical Research: Planets, 114(E5): E05001, doi: 10.1029/2008JE003286.

     

    Weber R C, Bills B G, Johnson C L. 2010. A simple physical model for deep moonquake occurrence times. Physics of the Earth and Planetary Interiors, 182(3-4): 152-160, doi: 10.1016/j.pepi.2010.07.009.

     

    Weber R C, Lin P Y, Garnero E J, et al. 2011. Seismic detection of the lunar core. Science, 331(6015): 309-312, doi: 10.1126/science.1199375.

     

    Wilcock W S D. 2001. Tidal triggering of microearthquakes on the Juan de Fuca Ridge. Geophysical Research Letters, 28(20): 3999-4002. doi: 10.1029/2001GL013370

     

    Xu Z S, Tan Z T, Wang K F, et al. 2020. Discussion on the seismicity and the seismogenic mechanism of intermediate-depth earthquakes. Progress in Geophysics (in Chinese), 35(4): 1323-1331, doi: 10.6038/pg2020EE0054.

     

    Zhang B, Zhang H, Shi Y L. 2016. A discussion about how the deep moonquakes are triggered by tidal stress. Journal of University of Chinese Academy of Sciences (in Chinese), 33(1): 82-88, doi: 10.7523/j.issn.2095-6134.2016.01.013.

     

    Zhang J, Shi Y L. 1998. Parameterized model on thermal evolution of Mars and Moon. Chinese Journal of Geophysics (Acta Geophysica Sinica) (in Chinese), 41(6): 763-771.

     

    Zhang N, Parmentier E M, Liang Y. 2013a. Effects of lunar cumulate mantle overturn and megaregolith on the expansion and contraction history of the Moon. Geophysical Research Letters, 40(19): 5019-5023, doi: 10.1002/grl.50988.

     

    Zhang N, Parmentier E M, Liang Y. 2013b. A 3-D numerical study of the thermal evolution of the Moon after cumulate mantle overturn: The importance of rheology and core solidification. Journal of Geophysical Research: Planets, 118(9): 1789-1804, doi: 10.1002/jgre.20121.

     

    Zhang P Z, Xu X W, Wen X Z, et al. 2008. Slip rates and recurrence intervals of the Longmen Shan active fault zone and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China. Chinese Journal of Geophysics (in Chinese), 51(4): 1066-1073, doi: 10.3321/j.issn:0001-5733.2008.04.015.

     

    Zhang X, Zhang J H. 2021. Research progress and prospect of moonquakes. Reviews of Geophysiscs and Planetary Physics (in Chinese), 52(4): 391-401, doi: 10.19975/j.dqyxx.2021-032.

     

    Zhao N, Zhu P M, Zhang B Z, et al. 2015. Moonquake relocation. Earth ScienceJournal of China University of Geosciences (in Chinese), 40(7): 1276-1286, doi: 10.3799/dqkx.2015.107.

     

    Zhong Z. 2013. Lunar geophysical parameters inversion with the application of gravity/topography admittance and research in the thermal evolution of the Moon [Ph. D. thesis] (in Chinese). Wuhan: Wuhan University.

     

    陈学忠. 2021. 地震潮汐触发. 地震科学进展, 51(4): 145-160, doi: 10.3969/j.issn.2096-7780.2021.04.001.

     

    柳畅, 朱伯靖, 石耀霖. 2012. 粘弹性数值模拟龙门山断裂带应力积累及大震复发周期. 地质学报, 86(1): 157-169, doi: 10.3969/j.issn.0001-5717.2012.01.004.

     

    欧阳自远. 2005. 月球科学概论. 北京: 中国宇航出版社.

     

    徐志双, 谭专条, 王尅丰等. 2020. 中源地震活动性及其成因机制探讨. 地球物理学进展, 35(4): 1323-1331, doi: 10.6038/pg2020EE0054.

     

    张贝, 张怀, 石耀霖. 2016. 基于数值模拟的潮汐应力触发月球深震机制的探讨. 中国科学院大学学报, 33(1): 82-88, doi: 10.7523/j.issn.2095-6134.2016.01.013.

     

    张健, 石耀霖. 1998. 火星和月球热历史的参量化模型研究. 地球物理学报, 41(6): 763-771. doi: 10.3321/j.issn:0001-5733.1998.06.005 http://www.geophy.cn/article/id/cjg_3891

     

    张培震, 徐锡伟, 闻学泽等. 2008. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因. 地球物理学报, 51(4): 1066-1073, doi: 10.3321/j.issn:0001-5733.2008.04.015. http://www.geophy.cn/article/id/cjg_415

     

    张翔, 张金海. 2021. 月震研究进展与展望. 地球与行星物理论评, 52(4): 391-401, doi: 10.19975/j.dqyxx.2021-032.

     

    赵娜, 朱培民, 张秉政等. 2015. 月震重定位. 地球科学——中国地质大学学报, 40(7): 1276-1286, doi: 10.3799/dqkx.2015.107.

     

    钟振. 2013. 基于重力/地形导纳的月球物理参数反演和月球热模型研究[博士论文]. 武汉: 武汉大学.

  • 加载中

(10)

(2)

计量
  • 文章访问数:  2746
  • PDF下载数:  174
  • 施引文献:  0
出版历程
收稿日期:  2021-11-23
修回日期:  2023-05-18
上线日期:  2023-09-10

目录