基于基追踪弹性阻抗反演的深部储层流体识别方法

刘晓晶, 印兴耀, 吴国忱, 宗兆云. 基于基追踪弹性阻抗反演的深部储层流体识别方法[J]. 地球物理学报, 2016, 59(1): 277-286, doi: 10.6038/cjg20160123
引用本文: 刘晓晶, 印兴耀, 吴国忱, 宗兆云. 基于基追踪弹性阻抗反演的深部储层流体识别方法[J]. 地球物理学报, 2016, 59(1): 277-286, doi: 10.6038/cjg20160123
LIU Xiao-Jing, YIN Xing-Yao, WU Guo-Chen, ZONG Zhao-Yun. Identification of deep reservoir fluids based on basis pursuit inversion for elastic impedance[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(1): 277-286, doi: 10.6038/cjg20160123
Citation: LIU Xiao-Jing, YIN Xing-Yao, WU Guo-Chen, ZONG Zhao-Yun. Identification of deep reservoir fluids based on basis pursuit inversion for elastic impedance[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(1): 277-286, doi: 10.6038/cjg20160123

基于基追踪弹性阻抗反演的深部储层流体识别方法

详细信息
    作者简介:

    刘晓晶,男,1988年生,博士研究生,主要从事地球物理理论、方法与应用方面研究工作.E-mail:xiaojingliu.1122@gmail.com

  • 中图分类号: P631

Identification of deep reservoir fluids based on basis pursuit inversion for elastic impedance

  • 深部储层地震资料通常照明度低、信噪比低、分辨率不足,尤其是缺乏大角度入射信息,对深部储层流体识别存在较大影响.Gassmann流体项是储层流体识别的重要参数,针对深层地震资料的特点,本文首先在孔隙介质理论的指导下,推导了基于Gassmann流体项与剪切模量的两项AVO近似方程.通过模型分析,验证了该方程在小角度时与精确Zoeppritz方程误差很小,满足小角度入射条件下的近似精度要求.然后借助Connolly推导弹性阻抗的思想,推导了基于Gassmann流体项与剪切模量的两项弹性阻抗方程.针对深部储层地震资料信噪比差的特点,利用奇偶反射系数分解实现了深部储层基追踪弹性阻抗反演方法,最后提出了基于基追踪弹性阻抗反演的Gassmann流体项与剪切模量的求取方法,并将提取的Gassmann流体项应用于深部储层流体识别.模型测试和实际应用表明该方法稳定有效,具有较好的实用性.
  • 加载中
  • [1]

    Aki K, Richards P G. 1980. Quantitative Seismology. San Francisco:W. H. Freeman.

    [2]

    Cambois G. 2000. AVO inversion and elastic impedance.//70th Annual International Meeting, Society of Exploration Geophysicists. Expanded Abstracts, 142-145.

    [3]

    Connolly P. 1999. Elastic impedance. The Leading Edge, 18(4):438-452.

    [4]

    Dillon L, Schwedersky G, Vásquez G, et al. 2003. A multiscale DHI elastic attributes evaluation. The Leading Edge, 22(10):1024-1029.

    [5]

    Fatti J L, Smith G C, Vail P J, et al. 1994. Detection of gas in sandstone reservoirs using AVO analysis:A 3-D seismic case history using the Geostack technique. Geophysics, 59(9):1362-1376.

    [6]

    Gao G, He Z H, Cao J X, et al. 2013. The new two-term elastic impedance inversion and its application to predict deep gas-bearing carbonate reservoirs. Oil Geophysical Prospecting(in Chinese), 48(3):450-457.

    [7]

    Gassmann F. 1951. Elastic waves through a packing of spheres. Geophysics, 16(4):673-685.

    [8]

    Goodway B, Chen T, Downton J. 1997. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters; "λρ", "μρ", & "λ/μ fluid stack", from P and S inversions.//67th Annual International Meeting, Society of Exploration Geophysicists. Expanded Abstracts, 183-186.

    [9]

    Li A S, Yin X Y, Lu N, et al. 2009. Application of elastic impedance inversion with two angle stack gathers to predict gas-bearing reservoir of mid-deep layer. Oil Geophysical Prospecting(in Chinese), 44(1):87-92.

    [10]

    Li A S, Yin X Y, Zhang F C, et al. 2008. Elastic impedance in VTI media and parameter extraction. Progress in Geophysics(in Chinese), 23(6):1878-1885.

    [11]

    Li C, Yin X Y, Zhang G Z. 2012. Elastic impedance equation based on the incident-angle approximation and inversion.//74th EAGE Conference & Exhibition.

    [12]

    Lu S M, McMechan G A. 2004. Elastic impedance inversion of multichannel seismic data from unconsolidated sediments containing gas hydrate and free gas. Geophysics, 69(1):164-179.

    [13]

    Ning Z H, He Z H, Huang D J. 2006. High sensitive fluid identification based on seismic data. Geophysical Prospecting for Petroleum(in Chinese), 45(3):239-241.

    [14]

    Quakenbush M, Shang B, Tuttle C. 2006. Poisson impedance. The Leading Edge, 25(2):128-138.

    [15]

    Russell B H, Gray D, Hampson D P. 2011. Linearized AVO and poroelasticity. Geophysics, 76(3):C19-C29.

    [16]

    Russell B H, Hedlin K, Hilterman F J, et al. 2003. Fluid-property discrimination with AVO:A Biot-Gassmann perspective. Geophysics, 68(1):29-39.

    [17]

    Savic M, VerWest B, Masters R, et al. 2000. Elastic impedance inversion in practice.//70th Annual International Meeting, Society of Exploration Geophysicists. Expanded Abstracts, 689-692.

    [18]

    Smith G C, Gidlow P M. 1987. Weighted stacking for rock property estimation and detection of gas. Geophysical Prospecting, 35(9):993-1014.

    [19]

    Whitcombe D N. 2002. Elastic impedance normalization. Geophysics, 67(1):60-62.

    [20]

    Yin X Y, Li C, Zhang S X. 2013a. Seismic fluid discrimination based on two-phase media theory. Journal of China University of Petroleum(Edition of Natural Science)(in Chinese), 37(5):38-43.

    [21]

    Yin X Y, Yuan S H, Zhang F C. 2004. Extracting petrophysical parameters from elastic impedance.//CPS/SEG 2004 International Geophysical Conference. Expanded Abstracts. 538-542.

    [22]

    Yin X Y, Zhang S X, Zhang F. 2013b. Two-term elastic impedance inversion and Russell fluid factor direct estimation method for deep reservoir fluid identification. Chinese Journal of Geophysics(in Chinese), 56(7):2378-2390, doi:10.6038/cjg20130724.

    [23]

    Yin X Y, Zhang S X, Zhang F C, et al. 2010. Utilizing Russell approximation based elastic wave impedance inversion to conduct reservoir description and fluid identification. Oil Geophysical Prospecting(in Chinese), 45(3):373-380.

    [24]

    Yin X Y, Zong Z Y, Wu G C. 2013. Improving seismic interpretation:a high-contrast approximation to the reflection coefficient of a plane longitudinal wave. Petroleum Science, 10(4):466-476.

    [25]

    Yin X Y, Zong Z Y, Wu G C. 2014. Seismic wave scattering inversion for fluid factor of heterogeneous media. Science China:Earth Sciences, 57(3):542-549.

    [26]

    Zhang F, Wang Y H, Li X Y. 2012. Viabilities of seismic ray impedance and elastic impedance for hydrocarbon-sand discrimination. Geophysics, 77(4):M39-M52.

    [27]

    Zhang R, Castagna J. 2011. Seismic sparse-layer reflectivity inversion using basis pursuit decomposition. Geophysics, 76(6):R147-R158.

    [28]

    Zhang S X. 2012. Methodology and application of fluid identification with seismic information[Ph. D. thesis]. Qingdao:China University of Petroleum(Huadong).

    [29]

    Zong Z Y, Yin X Y, Wu G C. 2012. Elastic impedance variation with angle inversion for elastic parameters. Journal of Geophysics and Engineering, 9(3):247-260.

    [30]

    Zong Z Y, Yin X Y, Zhang F C. 2011. Elastic impedance Bayesian inversion for lame parameters extracting. Oil Geophysical Prospecting(in Chinese), 46(4):598-604.

    [31]

    高刚, 贺振华, 曹俊兴等. 2013. 两项式弹性波阻抗反演方法在深层碳酸盐岩储层预测中的应用. 石油地球物理勘探, 48(3):450-457.

    [32]

    李爱山, 印兴耀, 陆娜等. 2009. 两个角度弹性阻抗反演在中深层含气储层预测中的应用. 石油地球物理勘探, 44(1):87-92.

    [33]

    李爱山, 印兴耀, 张繁昌等. 2008. VTI介质中的弹性阻抗与参数提取. 地球物理学进展, 23(6):1878-1885.

    [34]

    宁忠华, 贺振华, 黄德济. 2006. 基于地震资料的高灵敏度流体识别因子. 石油物探, 45(3):239-241.

    [35]

    印兴耀, 李超, 张世鑫. 2013a. 基于双相介质的地震流体识别. 中国石油大学学报(自然科学版), 37(5):38-43.

    [36]

    印兴耀, 张世鑫, 张峰. 2013b. 针对深层流体识别的两项弹性阻抗反演与Russell流体因子直接估算方法研究. 地球物理学报, 56(7):2378-2390, doi:10.6038/cjg20130724.

    [37]

    印兴耀, 张世鑫, 张繁昌等. 2010. 利用基于Russell近似的弹性波阻抗反演进行储层描述和流体识别. 石油地球物理勘探, 45(3):373-380.

    [38]

    张世鑫. 2012. 基于地震信息的流体识别方法研究与应用[博士论文]. 青岛:中国石油大学(华东).

    [39]

    宗兆云, 印兴耀, 张繁昌. 2011. 基于弹性阻抗贝叶斯反演的拉梅参数提取方法研究. 石油地球物理勘探, 46(4):598-604.

  • 加载中
计量
  • 文章访问数:  1832
  • PDF下载数:  4231
  • 施引文献:  0
出版历程
收稿日期:  2015-02-25
修回日期:  2015-06-16
上线日期:  2016-01-05

目录