噪声地震学方法及其应用

徐义贤, 罗银河. 噪声地震学方法及其应用[J]. 地球物理学报, 2015, 58(8): 2618-2636, doi: 10.6038/cjg20150803
引用本文: 徐义贤, 罗银河. 噪声地震学方法及其应用[J]. 地球物理学报, 2015, 58(8): 2618-2636, doi: 10.6038/cjg20150803
XU Yi-Xian, LUO Yin-He. Methods of ambient noise-based seismology and their applications[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(8): 2618-2636, doi: 10.6038/cjg20150803
Citation: XU Yi-Xian, LUO Yin-He. Methods of ambient noise-based seismology and their applications[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(8): 2618-2636, doi: 10.6038/cjg20150803

噪声地震学方法及其应用

详细信息
    作者简介:

    徐义贤, 男, 教授, 博士生导师, 主要从事面波传播特性和大地电磁测深研究.E-mail:xyxian@cug.edu.cn

  • 中图分类号: P631

Methods of ambient noise-based seismology and their applications

  • 基于背景噪声的地震方法发展迅速, 已广泛应用于全球和区域地球内部结构研究、浅地表地质调查及油气田勘探开发.本文简要介绍了背景噪声的来源, 回顾了噪声地震学的发展历程.给出了基于背景噪声的全波场和面波格林函数恢复的公式, 较为详细综述了噪声源的分布和记录台站间距对格林函数恢复的影响.讨论了两台站互相关法和空间自相关法获取面波频散特性的区别与理论连接.对基于噪声的面波层析成像法、程函方程层析成像法、空间自相关法的原理进行了总结.介绍了噪声地震学方法在各领域特别是浅地表方面的应用现状.最后简要展望了噪声地震学的发展前景.
  • 加载中
  • [1]

    AkiK. 1957. Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull. Earthq. Res. Inst. Univ., Tokyo Univ., 35:415-456.

    [2]

    Aki K, Chouet B. 1975. Origin of coda waves:Source, attenuation, and scattering effects. J. Geophys. Res., 80(23):3322-3342.

    [3]

    Aki K, Richards P G. 1980. Quantitative Seismology. New York:W. H. Freeman.

    [4]

    Albarello D, Baliva F. 2009. In-situ estimates of material damping from environmental noise measurements.//Mucciarelli M, Herak M, Cassidy J eds. Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data (NATO Science for Peace and Security Series C:Environmental). Netherlands:Springer.

    [5]

    Asten M W. 1976. The use of microseisms in geophysical exploration. Australia:Macquarie University.

    [6]

    Asten M W. 1978. Geological control on the three-componentspectra of Rayleigh-wave microseisms. Bull. Seismol. Soc. Am., 68(6):1623-1635.

    [7]

    Astiz L, Creager K. 1994. Geographic and seasonal variations of microseismic noise. EOS, Transactions, AGU, 75:419.

    [8]

    Backus M, Burg J, Baldwin D, et al. 1964. Wide-band extraction of mantle P waves from ambient noise. Geophysics, 29(5):672-692.

    [9]

    Backus M. 1966. Teleseismic signal extraction. Proc. Roy. Soc. A., 290(1442):343-367.

    [10]

    Bakulin A, Calvert R. 2004. Virtual source:New method for imaging and 4D below complex overburden.//74th Annual International Meeting, SEG, Expanded Abstracts, 2477-2480.

    [11]

    Bakulin A, Calvert R. 2006. The virtual source method:Theory and case study. Geophysics, 71(4):SI139-SI150.

    [12]

    Barstow N, Sutton G H, Carter J A. 1989. Particle motion and pressure relationships of ocean bottom noise:3900 m depth; 0.003 to 0.05 Hz. Geophys. Res. Lett., 16(10):1185-1188.

    [13]

    Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int., 169(3):1239-1260.

    [14]

    Bensen G D, Ritzwoller M H, Yang Y J. 2009. A 3-D shear velocity model of the crust and uppermost mantle beneath the United States from ambient seismic noise. Geophys. J. Int., 177(3):1177-1196.

    [15]

    Bleistein N. 1984. Mathematical Methods for Wave Phenomena. Orlando, FL:Academic Press.

    [16]

    Bonnefoy-Claudet S, Cotton F, Bard P Y. 2006. The nature of noise wavefield and its applications for site effects studies:A literature review. Earth-Sci. Rev., 79(3-4):205-227.

    [17]

    Bostock M G, Kennett B L N. 1992. Multiple scattering of surface waves from discrete obstacles. Geophys. J. Int., 108(1):52-70.

    [18]

    Brenguier F, Campillo M, Hadziioannou C, et al. 2008a. Postseismic relaxation along the San Andreas Fault at Parkfieldfrom continuous seismological observations. Science, 321(5895):1478-1481.

    [19]

    Brenguier F, Shapiro N M, Campillo M, et al. 2008b. Towardsforecasting volcanic eruptions using seismic noise. Nat. Geosci., 1(2):126-30.

    [20]

    Broggini F, Snieder R. 2012. Connection of scattering principles:A visual and mathematical tour. Europ. J. Phys., 33(3):593-613.

    [21]

    Broggini F, Snieder R, Wapenaar K. 2014. Data-driven wavefield focusing and imaging with multidimensional deconvolution:Numerical examples for reflection data with internal multiples. Geophysics, 79(3):WA107-WA115.

    [22]

    Bromirski P D, Flick R E, Graham N. 1999. Ocean wave height determined from inland seismometer data:Implications for investigating wave climate changes in the NE Pacific. J. Geophys. Res., 104(C9):20753-20766.

    [23]

    Bromirski P D. 2001. Vibrations from the "Perfect Storm". Geochem. Geophys. Geosyst., 2(7), doi:10.1029/2000GC000119.

    [24]

    Bromirski P D, Duennebier F K. 2002. The near-coastal microseism spectrum:spatial and temporal wave climate relationships. J. Geophys. Res., 107(B8):2166.

    [25]

    Bromirski P D, Gerstoft P. 2009. Dominant source regions of the Earth's ‘hum’ are coastal. Geophys. Res. Lett., 36:L13303.

    [26]

    Campillo M, Paul A. 2003. Long-range correlations in the diffuse seismic coda. Science, 299(5606):547-549.

    [27]

    Campillo M. 2006. Phase and correlation in 'Random' seismic fields and the reconstruction of the Green function. Pure Appl. Geophys., 163(2-3):475-502.

    [28]

    Cessaro R K. 1994. Sources of primary and secondary microseisms. Bull. Seismol. Soc. Am., 84(1):142-148.

    [29]

    Chávez-García F J, Rodríguez M. 2007. The correlation of microtremors:empirical limits and relations between results in frequency and time domains. Geophys. J. Int., 171(2):657-664.

    [30]

    Chen W. 2010. Study of surface-wave dispersion analysis based on ambient noise (in Chinese). Wuhan:China University of Geosciences (Wuhan).

    [31]

    Chevrot S, Sylvander M, Benahmed S, et al. 2007. Source locations of secondary microseisms in western Europe:Evidence for both coastal and pelagic sources. J. Geophys. Res., 112:B11301.

    [32]

    Claerbout J. 1968. Synthesis of a layered medium from its acoustic transmission response. Geophysics, 33(2):264-269.

    [33]

    Cole S. 1995. Passive seismic and drill-bit experiments using 2-D arrays. Stanford:Stanford University.

    [34]

    Cox H. 1973. Spatial correlation in arbitrary noise fields with application to ambient sea noise. J. Acoust. Soc. Am., 54(5):1289-1301.

    [35]

    Curtis A, Nicolson H, Halliday D, et al. 2009. Virtual seismometers in the subsurface of the Earth from seismic interferometry. Nat. Geosci., 2(10):700-704.

    [36]

    de Ridder S, Dellinger J. 2011. Ambient seismic noise eikonal tomography for near-surface imaging at Valhall. The Leading Edge, 30(5):506-512.

    [37]

    Díaz J, Villaseor A, Morales J, et al. 2010. Background noise characteristics at the IberArray broadband seismic network. Bull. Seismol. Soc. Am., 100(2):618-628.

    [38]

    Ditmar P G, Yanovskaya T B. 1987. Generalization of the Backus-Gilbert method for estimation of lateral variations of surface wave velocity. Izv. Phys. Solid Earth, 23(6):470-477.

    [39]

    Draganov D, Wapenaar K, Thorbecke J. 2006. Seismic interferometry:reconstructing the Earth's reflection response. Geophysics, 71(4):SI61-SI70.

    [40]

    Draganov D, Wapenaar K, Mulder W, et al. 2007. Retrieval of reflections from seismic background-noise measurements. Geophys. Res. Lett., 34(4):L04305.

    [41]

    Draganov D, Campman X, Thorbecke J, et al. 2009. Reflection images from ambient seismic noise. Geophysics, 74(5):A63-A67.

    [42]

    Duvall T L Jr, Jefferies S M, Harvey J W, et al. 1993. Time-distance helioseismology. Nature, 362(6419):430-432.

    [43]

    Fang L H, Wu J P, Ding Z F, et al. 2010. High resolution Rayleigh wave group velocity tomography in North China from ambient seismic noise. Geophys. J. Int., 181(2):1171-1182.

    [44]

    Fink M, Prada C, Wu F, et al. 1989. Self focusing in inhomogeneous media with time reversal acoustic mirrors.//IEEE Ultrasonics Symposium. Montreal, Que.:IEEE, 681-686.

    [45]

    Forbriger T. 2003. Inversion of shallow-seismic wavefields:I. Wavefield transformation. Geophys. J. Int., 153(3):719-734.

    [46]

    Forsyth D W, Li A B. 2005. Array analysis of two-dimensional variations in surface wave phase velocity and azimuthal anisotropy in the presence of multipathing interference.//Seismic Earth:Array Analysis of Broadband Seismograms, Geophysical Monograph Series 157. AGU, 81-97.

    [47]

    Friederich W, Wielandt E, Stange S. 1993. Multiple forward scattering of surface waves:comparison with an exact solution and Born single-scattering methods. Geophys. J. Int., 112(2):264-275.

    [48]

    Friederich W, Hunzinger S, Wielandt E. 2000. A note on the interpretation of seismic surface waves over three-dimensional structures. Geophys. J. Int., 143(2):335-339.

    [49]

    Galetti E, Curtis A. 2012. Generalised receiver functions and seismic interferometry. Tectonophysics, 532-535:1-26.

    [50]

    Gerstoft P, Fehler M C, Sabra K G. 2006. When Katrina hit California. Geophys. Res. Lett., 33(17):L17308.

    [51]

    Gerstoft P, Tanimoto T. 2007. A year of microseisms in southern California. Geophys. Res. Lett., 34(20):L20304.

    [52]

    Gerstoft P, Shearer P M, Harmon N, et al. 2008. Global P, PP, and PKP wave microseisms observed from distant storms. Geophys. Res. Lett., 35(23):L23306.

    [53]

    Grevemeyer I, Herber R, Essen H H. 2000. Microseismological evidence for a changing wave climate in the northeast Atlantic Ocean. Nature, 408(6810):349-352.

    [54]

    Gutenberg B. 1947. Microseisms and weather forecasting. J. Meteor., 4(1):21-28.

    [55]

    Halliday D, Curtis A. 2008. Seismic interferometry, surface waves and source distribution. Geophys. J. Int., 175(3):1067-1087.

    [56]

    Harmankaya U, Kaslilar A, Thorbecke J, et al. 2013. Locating near-surface scatterers using non-physical scattered waves resulting from seismic interferometry. J. Appl. Geophys., 91:66-81.

    [57]

    Harmon N, Rychert C, Gerstoft P. 2010. Distribution of noise sources for seismic interferometry. Geophys. J. Int., 183(3):1470-1484.

    [58]

    Hasselmann K. 1963. A statistical analysis of the generation of microseisms. Rev. Geophys., 1(2):177-210.

    [59]

    Haubrich R A, McCamy K. 1969. Microseisms:Coastal and pelagic sources. Rev. Geophys., 7(3):539-571.

    [60]

    Hillers G, Campillo M, Lin Y Y, et al. 2012. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole. J. Geophys. Res., 117:B06301.

    [61]

    Hoerling M P, Kumar A. 2002. Atmospheric response patterns associated with tropical forcing. J. Climate, 15(16):2184-2203.

    [62]

    Hornby B E, Yu J H. 2007. Interferometric imaging of a salt flank using walkaway VSP data. The Leading Edge, 26(6):760-763.

    [63]

    Houlié N, Occhipinti G, Blanchard T, et al. 2011. New approach to detect seismic surface waves in 1Hz-sampled GPS time series. Sci. Rep., 1:44.

    [64]

    Kedar S, Longuet-Higgins M, Webb F, et al. 2008. The origin of deep ocean microseisms in the North Atlantic Ocean. Proc. R. Soc. Lond., A, 464(2091):777-793.

    [65]

    Kennett B L N. 1998. Guided waves in three-dimensional structures. Geophys. J. Int., 133(1):159-174.

    [66]

    Kimman W P, Trampert J. 2010. Approximations in seismic interferometry and their effects on surface waves. Geophys. J. Int., 182(1):461-476.

    [67]

    Knopoff L, Gangi A F. 1959. Seismic reciprocity. Geophysics, 24(4):681-691.

    [68]

    Koper K D, de Foy B. 2008. Seasonal anisotropy in short-period seismic noise recorded in South Asia. Bull. Seismol. Soc. Am., 98(6):3033-3045.

    [69]

    Koper K D, de Foy B, Benz H. 2009. Composition and variation of noise recorded at the Yellowknife seismic array, 1991-2007. J. Geophys. Res., 114:B10310.

    [70]

    Koper K D, Seats K, Benz H. 2010. On the composition of Earth's short-period seismic noise field. Bull. Seismol. Soc. Am., 100(2):606-617.

    [71]

    Kumar M R, Bostock M G. 2006. Transmission to reflection transformation of teleseismic wavefields. J. Geophys. Res., 111:B08306.

    [72]

    Larose E, Khan A, Nakamura Y, et al. 2005. Lunar subsurface investigated from correlation of seismic noise. Geophys. Res. Lett., 32:L16201.

    [73]

    Li H Y, Su W, Wang C Y, et al. 2009. Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet. Earth Planet. Sci. Lett., 282(1-4):201-211.

    [74]

    Liang C T, Langston C A. 2008. Ambient seismic noise tomography and structure of eastern North America. J. Geophys. Res., 113:B03309.

    [75]

    Lin F C, Ritzwoller M H, Snieder R. 2009. Eikonal tomography:surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophys. J. Int., 177(3):1091-1110.

    [76]

    Lin F C, Tsai V C, Schmandt B, et al. 2013. Extracting seismic core phases with array interferometry. Geophys. Res. Lett., 40(6):1049-1053.

    [77]

    Liu Z K, Huang J L. 2010. Temporal changes of seismic velocity around the Wenchuan earthquake fault zone from ambient seismic noise correlation. Chinese J. Geophys. (in Chinese), 53(4):853-863, doi:10.3969/j.issn.0001-5733.2010.04.010.

    [78]

    Lobkis O I, Weaver R L. 2001. On the emergence of the Green's function in the correlations of a diffuse field. J. Acoust. Soc. Am., 110(6):3011-3017.

    [79]

    Lu L Y, He Z Q, Ding Z F, et al. 2009. Investigation of ambient noise source in North China array. Chinese J. Geophys. (in Chinese), 52(10):2566-2572, doi:10.3969/j.issn.0001-5733.2009.10.015.

    [80]

    Luo Y H, Xu Y X, Yang Y J. 2012. Crustal structure beneath the Dabie orogenic belt from ambient noise tomography. Earth Planet. Sci. Lett., 313-314:12-22.

    [81]

    Luo Y H, Xu Y X, Yang Y J. 2013. Crustal radial anisotropy beneath the Dabie orogenic belt from ambient noise tomography. Geophys. J. Int., 195(2):1149-1164.

    [82]

    Luo Y H, Yang Y J, Xu Y X, et al. 2015. On the limitations of interstation distances in ambient noise tomography. Geophys. J. Int., 201(2):652-661.

    [83]

    Mainsant G, Larose E, Brnnimann C, et al. 2012. Ambient seismic noise monitoring of a clay landslide:toward failure prediction. J. Geophys. Res., 117:F01030.

    [84]

    Maupin V. 2001. A multiple-scattering scheme for modelling surface wave propagation in isotropic and anisotropic three-dimensional structures. Geophys. J. Int., 146(2):332-348.

    [85]

    Mehta K, Snieder R, Calvert R, et al. 2008. Acquisition geometry requirements for generating virtual-source data. The Leading Edge, 27(5):620-629.

    [86]

    Meier U, Shapiro N M, Brenguier F. 2010. Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise. Geophys. J. Int., 181(2):985-996.

    [87]

    Miyazawa M, Snieder R, Venkataraman A. 2008. Application of seismic interferometry to extract P- and S-wave propagation and observation of shear wave splitting from noise data at Cold Lake, Alberta, Canada. Geophysics, 73(4):D35-D40.

    [88]

    Moschetti M P, Ritzwoller M H, Lin F C, et al. 2010. Seismic evidence for widespread western-US deep-crustal deformation caused by extension. Nature, 464(7290):885-889.

    [89]

    Nakata N, Snieder R, Tsuji T, et al. 2011. Shear wave imaging from traffic noise using seismic interferometry by cross-coherence. Geophysics, 76(6):SA97-SA106.

    [90]

    Nakata N, Snieder R. 2011. Near-surface weakening in Japan after the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett., 38:L17302.

    [91]

    Nakata N, Snieder R. 2012. Estimating near-surface shear wave velocities in Japan by applying seismic interferometry to KiK-net data. J. Geophys. Res., 117:B01308.

    [92]

    Nishida K, Kawakatsu H, Obara K. 2008. Three-dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi-net tiltmeters. J. Geophys. Res., 113:B10302.

    [93]

    O'Connell D R H. 2007. Concrete dams as seismic imaging sources. Geophys. Res. Lett., 34(20):doi:10.1029/2007GL031219.

    [94]

    Okada H. 2003. The Microtremor Survey Method. Translated by Suto K. Soc. of Expl. Geophys. of Japan, Geophys. Mon. Ser. No. 12, Soc. of Expl. Geophys., Tulsa.

    [95]

    Park C B, Miller R D, Xia J H. 1999. Multimodal analysis of high frequency surface waves. //Proceedings of the Symposium onthe Application of Geophysics to Engineering and Environmental. 99:115-121.

    [96]

    Picozzi M, Parolai S, Bindi D, et al. 2008. Characterization of shallow geology by high-frequency seismic noise tomography. Geophys. J. Int., 176(1):164-174.

    [97]

    Poletto F, Farina B. 2010. Synthesis of a seismic virtual reflector. Geophys. Prosp., 58(3):375-387.

    [98]

    Poli P, Pedersen H A, Campillo M. 2012. Emergence of body waves from cross-correlation of short period seismic noise. Geophys. J. Int., 188(2):549-558.

    [99]

    Qi C, Chen Q F, Chen Y. 2007. A new method for seismic imaging from ambient seismic noise. Progress in Geophysics (in Chinese), 22(3):771-777.

    [100]

    Renalier F, Jongmans D, Campillo M, et al. 2010. Shear wave velocity imaging of the Avignonet landslide (France) usingambient noise cross correlation. J. Geophys. Res., 115:F03032.

    [101]

    Rickett J, Claerbout J. 1999. Acoustic daylight imaging via spectral factorization:Helioseismology and reservoir monitoring. The Leading Edge, 18(8):957-960.

    [102]

    Rose J H. 2002. Time reversal, focusing and exact inverse scattering.// Imaging of Complex Media with Acoustic and Seismic Waves. Berlin Heidelberg:Springer, 97-106.

    [103]

    Rost S, Thomas C. 2002. Array seismology:methods and applications. Rev. Geophys., 40(3):1008.

    [104]

    Rost S, Thomas C. 2009. Improving seismic resolution through array processing techniques. Surveys in Geophys., 30(4-5):271-299.

    [105]

    Roux P, Sabra K G, Kuperman W A, et al. 2005a. Ambient noise cross correlation in free space:Theoretical approach. J. Acoust. Soc. Am., 117(1):79-84.

    [106]

    Roux P, Sabra K G, Gerstoft P, et al. 2005b. P-waves from cross-correlation of seismic noise. Geophys. Res. Lett., 32:L19303.

    [107]

    Ruigrok E, Campman X, Draganov D, et al. 2010. High-resolution lithospheric imaging with seismic interferometry. Geophys. J. Int., 183(1):339-357.

    [108]

    Ruigrok E, Mikesell T D, van Wijk K. 2012a. Scanning for velocity anomalies in the crust and mantle with diffractions from the core-mantle boundary. Geophys. Res. Lett., 39:L11301.

    [109]

    Ruigrok E, Campman X, Draganov D, et al. 2012b. Basin delineation with a 40-hour passive seismic record. Bull. Seismol. Soc. Am., 102(5):2165-2176.

    [110]

    Ryberg T. 2011. Body wave observations from cross-correlations of ambient seismic noise:A case study from the Karoo, RSA. Geophys. Res. Lett., 38:L13311.

    [111]

    Schuster G T, Yu J, Sheng J, et al. 2004. Interferometric/daylight seismic imaging. Geophys. J. Int., 157(2):838-852.

    [112]

    Schuster G T. 2005. Fermat's interferometric principle for target-oriented traveltime tomography. Geophysics, 70(4):U47-U50.

    [113]

    Schuster G T. 2009. Seismic Interferometry. Cambridge:Cambridge University Press.

    [114]

    Sens-Schnfelder C, Wegler U. 2006. Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys. Res. Lett., 33:L21302.

    [115]

    Sens-Schnfelder C, Larose E. 2008. Temporal changes in the lunar soil from correlation of diffuse vibrations. Phys.Rev.E,78:045601.

    [116]

    Shapiro N M, Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett., 31(7):L07614.

    [117]

    Shapiro N M, Campillo M, Stehly L, et al. 2005. High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715):1615-1618.

    [118]

    Slob E, Draganov D, Wapenaar K. 2007. Interferometric electromagnetic Green's functions representations using propagation invariants. Geophys. J. Int., 169(1):60-80.

    [119]

    Slob E, Snieder R, Revil A. 2010. Retrieving electric resistivity data from self-potential measurements by cross-correlation. Geophys. Res. Lett., 37(4):L04308.

    [120]

    Slob E, Wapenaar K, Broggini F, et al. 2014. Seismic reflector imaging using internal multiples with Marchenko-type equations. Geophysics, 79(2):S63-S76.

    [121]

    Snieder R. 2004. Extracting the Green's function from the correlation of coda waves:A derivation based on stationary phase. Phys. Rev. E, 69(4):046610.

    [122]

    Snieder R. 2006a. Retrieving the Green's function of the diffusion equation from the response to a random forcing. Phys. Rev. E, 74(4):046620.

    [123]

    Snieder R. 2006b. The theory of coda wave interferometry. Pure Appl. Geophys., 163(2-3):455-473.

    [124]

    Snieder R, Sheiman J, Calvert R. 2006a. Equivalence of the virtual source method and wave-field deconvolution in seismic interferometry. Phys. Rev. E, 73(6):066620.

    [125]

    Snieder R, Wapenaar K, Larner K. 2006b. Spurious multiples in seismic interferometry of primaries. Geophysics, 71(4):SI111-SI124.

    [126]

    Snieder R. 2007. Extracting the Green's function of attenuating heterogeneous acoustic media from uncorrelated waves. J. Acoust. Soc. Am., 121(5):2637-2643.

    [127]

    Snieder R, Miyazawa M, Slob E, et al. 2009. A comparison of strategies for seismic interferometry. Surv. Geophys., 30(4-5):503-523.

    [128]

    Snieder R, Larose E. 2013. Extracting Earth's elastic wave response from noise measurements. Annu. Rev. Earth Planet. Sci., 41(1):183-206.

    [129]

    Stehly L, Campillo M, Shapiro N M. 2006. A study of the seismic noise from its long-range correlation properties. J. Geophys. Res., 111:B10306.

    [130]

    Tanimoto T. 2005. The oceanic excitation hypothesis for the continuous oscillations of the Earth. Geophys. J. Int., 160(1):276-288.

    [131]

    Tanimoto T, Ishimaru S, Alvizuri C. 2006. Seasonality in particle motion of microseisms. Geophys. J. Int., 166(1):253-266.

    [132]

    Tanimoto T. 2007. Excitation of microseisms. Geophys. Res. Lett., 34:L05308, doi:10.1029/2006GL029046.

    [133]

    Tao Y, Fu L Y, Sun W J, Sun Q X. 2010. A review of seismic interferometry. Progress in Geophysics (in Chinese), 25(5):1775-1784, doi:10.3969/j.issn.1004-2903.2010.05.035.

    [134]

    Tonegawa T, Fukao Y, Nishida K, et al. 2013. A temporal change of shear wave anisotropy within the marine sedimentary layer associated with the 2011 Tohoku-Oki earthquake. J. Geophys. Res., 118(2):607-615.

    [135]

    Tsai V C. 2009. On establishing the accuracy of noise tomography travel-time measurements in a realistic medium. Geophys. J. Int., 178(3):1555-1564.

    [136]

    Tsai V C, Moschetti M P. 2010. An explicit relationship between time-domain noise correlation and spatial autocorrelation (SPAC) results. Geophys. J. Int., 182(1):454-460.

    [137]

    Van der Lee S. 1998. Observations and origin of Rayleigh-wave amplitude anomalies. Geophys. J. Int., 135(2):691-699.

    [138]

    van Manen D J, Curtis A, Robertsson J O A. 2006. Interferometric modeling of wave propagation in inhomogeneous elastic media using time reversal and reciprocity. Geophysics, 71(4):SI41-SI60.

    [139]

    van Manen D J, Robertsson J O A, Curtis A. 2007. Exact wave field simulation for finite-volume scattering problems. J. Acoustic. Soc. Am., 122(4):EL115-EL121.

    [140]

    Vasconcelos I, Snieder R. 2008. Interferometry by deconvolution:Part 2—theory for elastic waves and application to drill-bit seismic imaging. Geophysics, 73(3):S129-S141.

    [141]

    Wang L M, Luo Y H, Xu Y X. 2012. Numerical investigation of Rayleigh-wave propagation on topography surface. J. Appl. Geophys., 86:88-97.

    [142]

    Wapenaar K. 2004. Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation. Phys. Rev. Lett., 93(25):254301.

    [143]

    Wapenaar K, Fokkema J. 2006. Green's function representations for seismic interferometry. Geophysics, 71(4):SI33-SI46.

    [144]

    Wapenaar K, Slob E, Snieder R. 2006. Unified Green's function retrieval by cross-correlation. Phys. Rev. Lett., 97(23):234301.

    [145]

    Wapenaar K, Slob E, Snieder R. 2008. Seismic and electromagnetic controlled-source interferometry in dissipative media. Geophys. Prosp., 56(3):419-434.

    [146]

    Wapenaar K, Draganov D, Snieder R, et al. 2010a. Tutorial on seismic interferometry:Part 1—Basic principles and applications. Geophysics, 75(5):75A195-75A209.

    [147]

    Wapenaar K, Slob E, Snieder R, et al. 2010b. Tutorial on seismic interferometry:Part 2—Underlying theory and new advances. Geophysics, 75(5):75A211-75A227.

    [148]

    Wapenaar K, van der Neut J. 2010c. A representation for Green's function retrieval by multidimensional deconvolution. J. Acoust. Soc. Am., 128(6):EL366-EL371.

    [149]

    Wapenaar K, van der Neut J, Ruigrok E, et al. 2011. Seismic interferometry by crosscorrelation and by multidimensional deconvolution:a systematic comparison. Geophys. J. Int., 185(3):1335-1364.

    [150]

    Wapenaar K, Broggini F, Snieder R. 2012. Creating a virtual source inside a medium from reflection data:Heuristic derivation and stationary phase analysis. Geophys. J. Int., 190(2):1020-1024.

    [151]

    Wapenaar K, Broggini F, Slob E, et al. 2013. Three-dimensional single-sided Marchenko inverse scattering, data-driven focusing, Green's function retrieval, and their mutual relations. Phys. Rev. Lett., 110(8):084301.

    [152]

    Wapenaar K, Thorbecke J, van der Neut J, et al. 2014a. Marchenko imaging. Geophysics, 79(3):WA39-WA57.

    [153]

    Wapenaar K, Thorbecke J, van der Neut J, et al. 2014b. Green's function retrieval from reflection data, in absence of a receiver at the virtual source position. J. Acoust. Soc. Am., 135(5):2847-2861.

    [154]

    Weaver R L, Lobkis O I. 2001. Ultrasonics without a source:thermal fluctuation correlations at MHz frequencies. Phys. Rev. Lett., 87(13):134301.

    [155]

    Weaver R L, Lobkis O I. 2002. On the emergence of the Green's function in the correlations of a diffuse field:pulse-echo using thermal phonons. Ultrasonics, 40(1-8):435-439.

    [156]

    Weaver R L, Lobkis O I. 2003. Elastic wave thermal fluctuations:Ultrasonic waveforms by correlation of thermal phonons. J. Acoust. Soc. Am., 113(5):2611-2621.

    [157]

    Weaver R L, Lobkis O I. 2005. Fluctuations in diffuse field-field correlations and the emergence of the Green's function in open systems. J. Acoust. Soc. Am., 117(6):3432-3439.

    [158]

    Webb S C, Zhang X, Crawford W. 1991. Infragravity waves in the deep ocean. J. Geophys. Res., 96(C2):2723-2736.

    [159]

    Webb S C. 1998. Broadband seismology and noise under the ocean. Rev. Geophys., 36(1):105-142.

    [160]

    Webb S C. 2007. The Earth's 'hum’ is driven by ocean waves over the continental shelves. Nature, 445(7129):754-756.

    [161]

    Webb S C. 2008. The Earth's hum:The excitation of Earth normal modes by ocean waves. Geophys. J. Int., 174(2):542-566.

    [162]

    Wielandt E. 1993. Propagation and structural interpretation of non-plane waves. Geophys. J. Int., 113(1):45-53.

    [163]

    Xia J H, Miller R D, Park C B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics, 64(3):691-700.

    [164]

    Xia J H, Xu Y X, Chen C, et al. 2006. Simple equations guide high-frequency surface-wave investigation techniques. Soil Dyn. Earthq. Engine., 26(5):395-403.

    [165]

    Xiao X, Zhou M, Schuster G T. 2006. Salt-flank delineation by interferometric imaging of transmitted P- to S-waves. Geophysics, 71(4):SI197-SI207.

    [166]

    Xu P F, Ling S Q, Li C J, et al. 2012a. Mapping deeply-buried geothermal faults using microtremor array analysis. Geophys. J. Int., 188(1):115-122.

    [167]

    Xu Y X, Luo Y H, Liang Q, et al. 2010. Chapter 3:Investigation and use of surface-wave characteristics for near-surface applications.//Miller R D, Bradford J H, Holliger K eds. Geophysical Developments Series; no. 15:Advances in Near-Surface Seismology and Ground-Penetrating Radar. SEG, AGU, and EEGS.

    [168]

    Xu Y X, Zhang B L, Luo Y H, et al. 2013. Surface-wave observations after integrating active and passive source data. The Leading Edge, 32(6):634-637.

    [169]

    Xu Z, Juhlin C, Gudmunsson O, et al. 2012b. Reconstruction of subsurface structure from ambient seismic noise:An example from Ketzin, Germany. Geophys. J. Int., 189(2):1085-1102.

    [170]

    Xu Z J, Song X D. 2009. Temporal changes of surface wave velocity associated with major Sumatra earthquakes from ambient noise correlation. Proc. Natl. Acad. Sci. USA, 106(34):14207-14212.

    [171]

    Xue Y W, Dong S Q, Schuster G T. 2009. Interferometric prediction and subtraction of surface waves with a nonlinear local filter. Geophysics, 74(1):SI1-SI8.

    [172]

    Yang Y J, Forsyth D W. 2006. Regional tomographic inversion of the amplitude and phase of Rayleigh waves with 2-D sensitivity kernels. Geophys. J. Int., 166(3):1148-1160.

    [173]

    Yang Y J, Ritzwoller M H, Lin F C, et al. 2008. Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography. J. Geophys. Res., 113:B12310.

    [174]

    Yang Y J. 2014. Application of teleseismic long-period surface waves from ambient noise in regional surface wave tomography:a case study in western USA. Geophys. J. Int., 198(3):1644-1652.

    [175]

    Yanovskaya T B, Ditmar P G. 1990. Smoothness criteria in surface wave tomography. Geophys. J. Int., 102(1):63-72.

    [176]

    Yao H J, Beghein C, van der Hilst R D. 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis:II. Crustal and upper-mantle structure. Geophys. J. Int., 173(1):205-219.

    [177]

    Yao H J, van der Hilst R D. 2009. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet. Geophys. J. Int., 179(2):1113-1132.

    [178]

    Zhan Z W, Ni S D, Helmberger D V, et al. 2010. Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise. Geophys. J. Int., 182(1):408-420.

    [179]

    Zhang B L. 2013. Study of surface-wave exploration method base on ambient noise:Application example in Badong Huangtuling Landslide [Master's thesis] (in Chinese). Wuhan:China University of Geosciences (Wuhan).

    [180]

    Zheng S H, Sun X L, Song X D, et al. 2008. Surface wave tomography of China from ambient seismic noise correlation. Geochem. Geophys. Geosys., 9:Q05020.

    [181]

    Zheng Y, Shen W S, Zhou L Q, et al. 2011. Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography. J. Geophys. Res., 116:B12312.

  • 加载中
计量
  • 文章访问数:  3815
  • PDF下载数:  5781
  • 施引文献:  0
出版历程
收稿日期:  2014-12-14
修回日期:  2015-04-20
上线日期:  2015-08-20

目录