可变点约束叠前流体因子直接提取方法

杨培杰, 王长江, 毕俊凤, 刘书会. 可变点约束叠前流体因子直接提取方法[J]. 地球物理学报, 2015, 58(6): 2188-2200, doi: 10.6038/cjg20150631
引用本文: 杨培杰, 王长江, 毕俊凤, 刘书会. 可变点约束叠前流体因子直接提取方法[J]. 地球物理学报, 2015, 58(6): 2188-2200, doi: 10.6038/cjg20150631
YANG Pei-Jie, WANG Chang-Jiang, BI Jun-Feng, LIU Shu-Hui. Direct extraction of the fluid factor based on variable point-constraint[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(6): 2188-2200, doi: 10.6038/cjg20150631
Citation: YANG Pei-Jie, WANG Chang-Jiang, BI Jun-Feng, LIU Shu-Hui. Direct extraction of the fluid factor based on variable point-constraint[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(6): 2188-2200, doi: 10.6038/cjg20150631

可变点约束叠前流体因子直接提取方法

详细信息
    作者简介:

    杨培杰,男,1972年生,2008年博士毕业于中国石油大学(华东),现为胜利油田勘探开发研究院高级工程师,博士后,主要从事地震地质综合解释研究.E-mail:yangpeijie.slyt@sinopec.com

  • 中图分类号: P631

Direct extraction of the fluid factor based on variable point-constraint

  • 以Gassmann流体因子(Gassmann Fluid Item, GFI)为目标, 提出了一种流体因子直接提取的新方法.首先, 以贝叶斯反演框架为基础, 将似然函数、先验信息以及Gassmann流体因子近似方程相结合, 得到初始的目标函数;其次, 进一步在初始目标函数中加入可变数量的点约束信息, 并得到最终的目标函数;最后, 通过求解该目标函数, 就直接提取出了Gassmann流体因子.该方法的主要特点是不需要初始模型的参与, 而是通过一个约束模型来控制提取结果的稳定性和准确性, 并且可以从约束模型中选定不同数量的约束点进行约束, 称为可变点约束.给出并讨论了三种常用的不同点约束模式和原则, 并用模型说明了它们不同的约束效果.模型验证和实际应用结果皆以表明, 该方法即使在叠前数据信噪比很低的情况下也能较好地提取出Gassmann流体因子, 流体因子提取结果客观性高、稳定性好, 并且能够与已知的流体解释结果很好地匹配, 益于进一步推广应用.
  • 加载中
  • [1]

    Bosch M, Mukerji T, González E F. 2010. Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review. Geophysics, 75(5): A165-A176.

    [2]

    Buland A, Omre H. 2003. Bayesian linearized AVO inversion. Geophysics, 68(1): 185-198.

    [3]

    Chi X G, Han D H. 2006. Fluid property discrimination by AVO inversion. // 76th Annual Meeting, SEG Expanded Abstracts, 2052-2056.

    [4]

    Connolly P. 1999. Elastic impedance. The Leading Edge, 18(4): 438-452.

    [5]

    Downton J E. 2005. Seismic parameter estimation from AVO inversion[Ph. D. thesis]. Calgary: University of Calgary.

    [6]

    Fatti J L, Smith G C, Vail P J, et al. 1994. Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the Geostack technique. Geophysics, 59(9): 1362-1376.

    [7]

    Goodway B, Chen T, Downton J. 1997. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters. // 67th Annual meeting, SEG, Expanded abstracts, 183-186.

    [8]

    Gray D. 2002. Elastic inversion for Lame parameters. 72th Annual Meeting, SEG, Expanded Abstracts, 213-216.

    [9]

    Haas A, Dubrule O. 1994. Geostatistical inversion—A sequential method of stochastic reservoir modeling constrained by seismic data. First Break, 13(12): 561-569.

    [10]

    Hampson D. 1991. AVO inversion, theory and practice. The Leading Edge, 10: 39-42.

    [11]

    Mora P. 1987. Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics, 52(9): 1211-1228.

    [12]

    Ning Z H, He Z H, Huang D J. 2006. High sensitive fluid identification based on seismic data. Geophysical Prospecting for Petroleum, 45(3): 239-242.

    [13]

    Quakenbush M, Shang B, Tuttle C. 2006. Poisson impedance. The Leading Edge, 25(2): 128-138.

    [14]

    Russell B H, Gray D, Hampson D P. 2011. Linearized AVO and poroelasticity. Geophysics, 76(3): C19-C29.

    [15]

    Russell B H, Hedlin K, Hilterman F J, et al. 2003. Fluid-property discrimination with AVO: A Biot-Gassmann perspective. Geophysics, 68(1): 29-39.

    [16]

    Shi Y M, Zhao W Z, Cao H. 2007. Nonlinear process control of wave-equation inversion and its application in the detection of gas. Geophysics, 72(1): R9-R18.

    [17]

    Simmons J L, Backus M M. 1996. Waveform-based AVO inversion and AVO prediction error. Geophysics, 61(6): 1575-1588.

    [18]

    Smith G C, Gidlow P M. 1987. Weighted stacking for rock property estimation and detection of gas. Geophysical Prospecting, 35(9): 993-1014.

    [19]

    Smith G C, Gildow P M. 2000. A comparison of the fluid factor with λ and μ in AVO analysis. // 70th Annual Meeting, SEG, Expanded Abstracts, 1940-1945.

    [20]

    Tarantola A. 2005. Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia: Society for Industrial and Applied Mathematics.

    [21]

    Ulrych T J, Sacchi M D, Woodbury A. 2001. A Bayes tour of inversion: a tutorial. Geophysics, 66(1): 55-69.

    [22]

    Wang B L, Yin X Y, Zhang F C. 2005. Elastic impedance inversion and its application. Process in Geophysics (in Chinese), 20(1): 89-92.

    [23]

    Whitcombe D N. 2002. Elastic impedance normalization. Geophysics, 67(1): 60-62.

    [24]

    Yang P J. 2008. Seismic wavelet blind extraction and non-linear inversion[Ph. D. thesis] (in Chinese). Dongying: China University of Petroleum.

    [25]

    Yang P J, Yin X Y. 2008. Non-linear quadratic programming bayesian prestack inversion. Chinese J. Geophys. (in Chinese), 51(6): 1876-1882, doi: 10.3321/j.issn:0001-5733.2008.06.030.

    [26]

    Yin X Y, Yang P J. 2008. A Novel Prestack AVO Inversion and Application. // 78th Annual Meeting, SEG, Expanded Abstracts, 2041-2044.

    [27]

    Yin X Y, Zhang S X, Zhang F. 2013a. Delicate construction of fluid factor and its application based on two-phase media theory. Process in Geophysics (in Chinese), 28(6): 2911-2918, doi: 10.6038/pg20130611.

    [28]

    Yin X Y, Zhang S X, Zhang F. 2013b. Two-term elastic impedance inversion and Russell fluid factor direct estimation method for deep reservoir fluid identification. Chinese J. Geophys. (in Chinese), 56(7): 2378-2390, doi: 10.6038/cjg20130724.

    [29]

    Zhang S X. 2012. Methodology and application of fluid identification with seismic information[Ph. D. thesis] (in Chinese). Dongying: China University of Petroleum.

    [30]

    Zheng J J, Yin X Y, Zhang G Z. 2011. Fluid factor analysis and the construction of the new fluid factor. Process in Geophysics (in Chinese), 26(2): 579-587, doi: 10.3969/j.issn.1004-2903.2011.02.024.

    [31]

    Zong Z Y, Yin X Y, Wu G C. 2012. Fluid identification method based on compressional and shear modulus direct inversion. Chinese J. Geophys. (in Chinese), 55(1): 284-292, doi: 10.6038/j.issn.0001-5733.2012.01.028.

    [32]

    宁忠华, 贺振华, 黄德济. 2006. 基于地震资料的高灵敏度流体识别因子. 石油物探, 45(3): 239-242.

    [33]

    王保丽, 印兴耀, 张繁昌. 2005. 弹性阻抗反演及应用研究. 地球物理学进展, 20(1): 89-92.

    [34]

    杨培杰. 2008. 地震子波盲提取与非线性反演[博士论文]. 东营: 中国石油大学.

    [35]

    杨培杰, 印兴耀. 2008. 非线性二次规划贝叶斯叠前反演. 地球物 理学报, 51(6): 1876-1882, doi: 10.3321/j.issn:0001-5733.2008.06.030.

    [36]

    印兴耀, 张世鑫, 张峰. 2013a. 双相介质理论指导下的流体因子精细构建与应用. 地球物理学进展, 28(6): 2911-2918, doi: 10.6038/pg20130611.

    [37]

    印兴耀, 张世鑫, 张峰. 2013b. 针对深层流体识别的两项弹性阻抗反演与Russell流体因子直接估算方法研究. 地球物理学报, 56(7): 2378-2390, doi: 10.6038/cjg20130724.

    [38]

    张世鑫. 2012. 基于地震信息的流体识别方法研究与应用[博士论文]. 东营: 中国石油大学.

    [39]

    郑静静, 印兴耀, 张广智. 2011. 流体因子关系分析以及新流体因子的构建. 地球物理学进展, 26(2): 579-587, doi: 10.3969/j.issn.1004-2903.2011.02.024.

    [40]

    宗兆云, 印兴耀, 吴国忱. 2012. 基于叠前地震纵横波模量直接反演的流体检测方法. 地球物理学报, 55(1): 284-292, doi: 10.6038/j.issn.0001-5733.2012.01.028.

  • 加载中
计量
  • 文章访问数:  2052
  • PDF下载数:  1816
  • 施引文献:  0
出版历程
收稿日期:  2014-02-14
修回日期:  2015-05-06
上线日期:  2015-06-20

目录