基于AVO反演的频变流体识别方法

张震, 印兴耀, 郝前勇. 基于AVO反演的频变流体识别方法[J]. 地球物理学报, 2014, 57(12): 4171-4184, doi: 10.6038/cjg20141228
引用本文: 张震, 印兴耀, 郝前勇. 基于AVO反演的频变流体识别方法[J]. 地球物理学报, 2014, 57(12): 4171-4184, doi: 10.6038/cjg20141228
ZHANG Zhen, YIN Xing-Yao, HAO Qian-Yong. Frequency-dependent fluid identification method based on AVO inversion[J]. Chinese Journal of Geophysics (in Chinese), 2014, 57(12): 4171-4184, doi: 10.6038/cjg20141228
Citation: ZHANG Zhen, YIN Xing-Yao, HAO Qian-Yong. Frequency-dependent fluid identification method based on AVO inversion[J]. Chinese Journal of Geophysics (in Chinese), 2014, 57(12): 4171-4184, doi: 10.6038/cjg20141228

基于AVO反演的频变流体识别方法

详细信息
    作者简介:

    张震,男,1990年生,在读硕士.E-mail:zhennan2011@yahoo.com

  • 中图分类号: P631

Frequency-dependent fluid identification method based on AVO inversion

  • 研究表明流体引起衰减与频散往往表现为频变AVO现象.一些频散地震属性,例如纵波频散,已经证实为可靠的碳氢指示因子.为了更有效地识别流体,基于f-μ-ρ近似构建了新的流体因子Df,即频变流体项.该属性的反演首先需要连续小波变换(CWT)谱分解得到不同频带地震数据,通过去相关与先验约束来保证反演结果可靠性.模型试算证实了频变反射系数近似公式的精度可靠性,Df可以识别出强衰减介质所引起的频散现象.实际数据试算中,Df可以较好地识别储层孔隙流体,尤其对于气层,具有较好的指示效果.该流体因子将Gassmann流体项的高孔隙流体敏感性与叠前数据丰富的振幅频率信息相结合,反演效果与岩石物理认识相符.此研究有助于利用衰减频散现象借助AVO反演实现流体识别.
  • 加载中
  • [1]

    Al-Harrasi O H, Kendall J M, Chapman M. 2011. Fracture characterization using frequency-dependent shear wave anisotropy analysis of microseismic data. Geophysical Journal International, 185(2): 1059-1070, doi: 10.1111/j.1365-246X.2011.04997.x.

    [2]

    Castagna J, Sun S, Siegfried R. 2003. Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons. The Leading Edge, 22(2): 120-127, doi: 10.1190/1.1559038.

    [3]

    Chapman M. 2003. Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophysical Prospecting, 51(5): 369-379, doi: 10.1046/j.1365-2478.2003.00384.x.

    [4]

    Chapman M, Liu E R, Li X Y. 2005. The influence of abnormally high reservoir attenuation on the AVO signature. The Leading Edge, 24(11): 1120-1125, doi: 10.1190/1.2135103.

    [5]

    Chapman M, Liu E R, Li X Y. 2006. The influence of fluid sensitive dispersion and attenuation on AVO analysis. Geophysical Journal International, 167(1): 89-105, doi: 10.1111/j.1365-246X.2006.02919.x.

    [6]

    Chapman M. 2009. Modeling the effect of multiple sets of mesoscale fractures in porous rock on frequency-dependent anisotropy. Geophysics, 74(6): D97-D103, doi: 10.1190/1.3204779.

    [7]

    Chen X H, He Z H, Wen X T, et al. 2009. Numeric simulation and detection of low frequency shadow. Oil Geophysical Prospecting (in Chinese), 44(3): 298-303.

    [8]

    Chen S Q, Li X Y, Wang S X. 2012. The analysis of frequency-dependent characteristics for fluid detection: a physical model experiment. Applied Geophysics, 9(2): 195-206, doi: 10.1007/s11770-012-0330-8.

    [9]

    Cheng B J, Xu T J, Li S G. 2012. Research and application of frequency dependent AVO analysis for gas recognition. Chinese Journal of Geophysics (in Chinese), 55(2): 608-613.

    [10]

    Henry F, Cooper Jr. 1967. Reflection and Transmission of Oblique Plane Waves at a Plane Interface between Viscoelastic Media. The Journal of the Acoustical Society of America, 42(5): 1064-1069, 10. 1121/1.1910691.

    [11]

    Ebrom D. 2004. The low-frequency gas shadow on seismic sections. The Leading Edge, 23(8): 772, doi: 10.1190/1.1786898.

    [12]

    Goloshubin G, Silin D. 2005. Using frequency-dependent seismic attributes in imaging of a fractured reservoir zone. SEG Technical Program Expanded Abstracts, 1417-1420, doi: 10.1190/1.2147954.

    [13]

    Innanen K. 2011. Inversion of the seismic AVF/AVA signatures of highly attenuative targets. Geophysics, 76(1): R1-R14, doi: 10.1190/1.3518816.

    [14]

    Johnston D H. 2005. The attenuation of seismic waves in dry and saturated rocks . Cambridge: Massachusetts Institute of Technology.

    [15]

    Krebes E S. 1984. On the reflection and transmission of viscoelastic waves-Some numerical results. Geophysics, 49(8): 1374-1380, doi: 10.1190/1.1441765.

    [16]

    Liu L F, Cao S Y, Wang L. 2011. Poroelastic analysis of frequency-dependent amplitude-versus-offset variations. Geophysics, 76(3): C31-C40, doi: 10.1190/1.3552702.

    [17]

    Maultzsch S, Chapman M, Liu E R, et al. 2003. Modelling frequency-dependent seismic anisotropy in fluid-saturated rock with aligned fractures: Implication of fracture size estimation from anisotropic measurements. Geophysical Prospecting, 51(5): 381-392, doi: 10.1046/j.1365-2478.2003.00386.x.

    [18]

    Nechtschein S, Hron F. 1997. Effects of anelasticity on reflection and transmission coefficients. Geophysical Prospecting, 45(5): 775-793, doi: 10.1046/j.1365-2478.1997.590288.x.

    [19]

    Odebeatu E, Zhang J, Chapman M. 2006. Application of spectral decomposition to detection of dispersion anomalies associated with gas saturation. The Leading Edge, 25(2): 206-210, doi: 10.1190/1.2172314.

    [20]

    Ren H T, Goloshubin G, Hilterman F J. 2009. Poroelastic analysis of amplitude-versus-frequency variations. Geophysics, 74(6):N41-N48, doi: 10.1190/1.3207863.

    [21]

    Russell B H, Gray D, Hampson D P. 2011. Linearized AVO and poroelasticity. Geophysics, 76(3): C19-C29, doi: 10.1190/1.3555082.

    [22]

    Sun L. 2009. Attenuation and velocity dispersion in the exploration seismic frequency band . Toronto: University of Toronto.

    [23]

    Taner M T, Koehler F, Sheriff R. 1979. Complex seismic trace analysis. Geophysics, 44(6): 1041-1063, doi: 10.1190/1.1440994.

    [24]

    Ursin B, Stovas A. 2002. Reflection and transmission responses of a layered isotropic viscoelastic medium. Geophysics, 67(1): 307-323, doi: 10.1190/1.1451803.

    [25]

    Wang S X, Li X Y. 2006. Layer stripping of azimuthal anisotropy from P-wave reflection moveout in orthogonal survey lines. Journal of Geophysics and Engineering, 3(1): 1, doi: 10.1088/1742-2132/3/1/001.

    [26]

    Wang S X, Li X Y, Qian Z P, et al. 2007. Physical modelling studies of 3-D P-wave seismic for fracture detection. Geophysical Journal International, 168(2): 745-756, doi: 10.1111/j.1365-246X.2006. 03215.x.

    [27]

    Wang S X, Li X Y, Di B. 2010. Reservoir fluid substitution effects on seismic profile interpretation: A physical modeling experiment. Geophysical Research Letters, 37(10): L10306, doi: 10. 1029/2010GL043090.

    [28]

    Wilson A. 2010. Theory and methods of frequency-dependent AVO inversion . Edinburgh: The University of Edinburgh.

    [29]

    Wu X Y. 2010. Frequency dependent AVO inversion using spectral decomposition techniques (in Chinese). Wuhan: China University of Geosciences.

    [30]

    Wu X Y, Chapman M, Wilson A, et al. 2010. Estimating seismic dispersion from pre-stack data using frequency-dependent AVO inversion. SEG Technical Program Expanded Abstracts, 84(29): 425-429, doi: 10.1190/1.3513759.

    [31]

    Xu D, Wang Y H, Gan Q G, et al. 2011. Frequency-dependent seismic reflection coefficient for discriminating gas reservoirs. Journal of Geophysics and Engineering, 8(4): 508, doi: 10.1088/1742-2132/8/4/003.

    [32]

    Yang P J. 2008. Seismic wavelet blind extraction and non-linear inversion (in Chinese). Qingdao: China University of Petroleum (Huadong).

    [33]

    Yin X Y, Zhang S X, Zhang F C, et al. 2010. Utilizing Russell Approximation-based elastic wave impedance inversion to conduct reservoir description and fluid identification. Oil Geophysical Prospecting (in Chinese), 45(3): 373-380.

    [34]

    Yin X Y, Li C, Zhang S X. 2013a. Seismic fluid discrimination based on two-phase media theory. Journal of China University of Petroleum (in Chinese), 37(5): 38-43, doi: 10.3969/j.issn.1673-5005.2013. 05.006.

    [35]

    Yin X Y, Zong Z Y, Wu G C. 2013b. Seismic wave scattering inversion for fluid factor of heterogeneous media. Science China: Earth Sciences (in Chinese), 43(12): 1934-1942, doi: 10. 1007/s11430-013-4783-2.

    [36]

    Zhang S X, Yin X Y, Zhang G Z. 2011. Dispersion-dependent attribute and application in hydrocarbon detection. Journal of Geophysics and Engineering, 8(4): 498-507, doi: 1742-2140/8/4/002.

    [37]

    Zong Z Y, Yin X Y, Wu G C. 2013. Direct inversion for a fluid factor and its application in heterogeneous reservoirs. Geophysical Prospecting, 61(5): 998-1005, doi: 10.1111/1365-2478.12038.

  • 加载中
计量
  • 文章访问数:  2573
  • PDF下载数:  48188
  • 施引文献:  0
出版历程
收稿日期:  2013-10-28
修回日期:  2014-07-29
上线日期:  2014-12-20

目录