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APPLICATION OF THE ALGEBRAIC ABERRATION
EQUATIONS TO OPTICAL DESIGN

By I. C. Gardner

ABSTRACT

The phase of optical engineering which deals with lens design and the measure-

ment of the aberrations of a lens system is worthy of a more comprehensive treat-

ment than is available in English. Even in our technical schools and universities

it is seldom that one finds a course dealing adequately with optical imagery which

goes beyond the first order or Gaussian equations. In geometrical optics there

are two applications of the aberration equations. In the first, one has what may
be termed the direct problem. The specifications of the lens system are given

and the aberrations are to be determined. In the inverse problem one is to deter-

mine the specifications of the lens system which will have the desired aberration

characteristics. Although the second problem is much the more important the

literature dealing with it is relatively meager. There is no treatise entirely satis-

factory, either in German or English, which gives the third order aberrations in

a convenient form for the inverse solution Math a simple and consistent notation

and sign convention.

And yet the control of the aberrations of a projected sj^stem is the central prob-

lem of optical design. To understand the aberrations, one must have had experi-

ence in computing and in measuring them. The need of a treatment of the aber-

rations covering a different field than that of the existing treatises has often been

felt and has been recently well expressed by Mr. Emley ^ at a meeting of the Opti-

cal Society of London, in which he says, ''It is when the student attempts to get

hold of expressions from which he can calculate these quantities (aberrations),

however, that his difficulties begin. There is no standard English work leading

him from his elementary geometrical and physical optics to problems of this kind.

It has always seemed to me that there is a distinct gap in the subject which, looked

at from any point of view, should be filled. There are many advanced works on
instrument design and other specialized problems, but the ordinary type of stu-

dent I have in mind can not follow them, partly because of the gap alluded to and
partly because of the variety of symbols and constants used."

It is hoped that the following treatment will partially fill this gap and at the

same time serve as a reference book for the solution of problems in lens design.

The laboratory measurement of the aberrations is not dealt with. The aberration

equations are presented in such a manner as to permit their direct application to

problems of lens design. Only the assumptions of geometrical optics in the re-

stricted sense are applied, and all references to diffraction effects, resolving power,

and kindred subjects are omitted. The derivations of the equations are omitted

except for a brief reference in Appendix 2, and the physical interpretation and
manner of application of the equations to problems is stressed. It is the intention

thus to produce a grammar or handbook for reference which will contain the infor-

mation necessary for the algebraic third order design of optical sj^stems composed
of thin lenses.

1 H. H. Emley, Trans. Opt. Soc, 37, p. 233; 1925-26.
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For the third order equations there are two systems differing in the choice of

parameters. The one termed the continental system (see p. 79) will be found

treated, among others, by Schwarzschild,^ von Rohr,^ and Southall.^

The second system, termed the Taylor system, was originated by Codding-

ton ^ and much extended by Taylor.^ Modifications have been introduced into

the Taylor-Coddington equations which simplify them in appearance and which

enable the two systems of equations to be carried along in parallel throughout

the treatment. The reader can, accordingly, make his own choice as to which

group of equations is to be used.

The notation employed is substantially that of Schwarzschild and von Rohr,

and its choice is justified by the wealth of material already published in which

this notation is employed. Some slight changes have been made to avoid con-

fusion when the notation shall be extended to projected publications dealing

with the stage of optical design in which trigonometric ray tracing is employed.

To avoid the attachment of two significations to the same symbol, it has been
necessary to depart from the notation of Taylor in many instances. The sign

convention adopted is the one believed to be most nearly universal in treatises

on apphed optics.

The first order equations of imagery are dealt with only in such detail as is

necessary to provide the basis of notation and sign convention to be used in the

third order equations.^ The equations and a general description of each third

order aberration for a single lens are given, after which the equations are extended

to a system of thin lenses. A general discussion of the method of controlling

the aberrations of an optical system follows with two numerical examples. In
the first example the aberrations of a Ramsden eyepiece are determined. In
the second example a Kellner eyepiece is designed to have given aberration char-

acteristics. This last illustration is worked out in considerable detail in order

to illustrate fully the different applications of the third-order equations. Fol-

lowing this there are given the equations for the third-order aberrations of thick

plates or reflecting prisms and the method of their application to the design of

optical systems which contain thin lenses and reflecting prisms or plane parallel

plates.

There are four appendixes, which are as follows:

Appendix 1.—The notation and sign conventions used, with equivalent symbols
as applied by Taylor.

Appendix 2.—The Seidel equations as given by Schwarzschild, with the method
of derivation of the thin lens equations.

Appendix 3.—A series of plates giving dimensional drawings of the principal

prisms used in optical systems. These plates were prepared by Otto Kaspereit,

of Frankford Arsenal, and were originally included in Elementary Optics and
Applications to Fire Control Instruments, revision of January, 1924, Ordnance
Department Publication No. 1065. Thanks are due the Ordnance Department,
United States Army, for its courtesy in permitting the inclusion of these drawings.

* Schwarzschild, K., Untersuchungen zur geometrischen Optik. I. Einleitung in die Fehlertbeorieoptischer

Instrumente auf Grand des Eikonalbegrifis. Abh. der Koniglichen Geeecflschaft der Wissenschaften

zu Qottingen. Math-Phys. Kl. Neue Folge, 4, No. 1; 1905.

3 von Rohr, M., DieBilderzeugunginoptiscbenlnstrumenten. Julius Springer, Berlin; 1904. English

translation by Kanthack. H. M. Stationery Shop, London; 1920.

< Southall, J. P. C, Principles and Methods of Geometrical Optics. The Macmillan Co., New York;

1910.

« Coddington, H., A Treatise on the Reflexion and Refraction of Light. Simkin & Marshall, London; 1829.

8 Taylor, H. D., A System of AppUed Optics. Macmillan & Co. (Ltd.), London; 1906.

7 If an aberration is measured by the angle subtended by the aberration disk at the pupil point all the

monochromatic aberrations considered are of the third order. In a symmetrical system the aberrations

of even order vanish. Hence, after the first-order equations the third-order equations offer the next approxi-

mation.
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Appendix 4.—A table giving values of the functions of n used in the third-

order equations for values of n from 1.4 to 1,75. This table has been computed

by H. U. Graham and will be found very useful in connection with the third-

order equations.

In conclusion, the writer wishes to express his gratitude to C. D. Hillman, of

Keuffel & Esser Co., and to Mr. Kaspereit for the care which they have taken

in reading the manuscript and for their many constructive suggestions which have

been adopted. Mr. Kaspereit has not only read the manuscript but has checked

practically all the computations and compiled a list of errata which were used

in revising the numerical parts.
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I. INTRODUCTION

In the equations for the design of an optical system the imagery
is considered as consisting of a set of third order aberrations super-

posed upon a first order imagery. The first order, or Gaussian,

equations give, in general, an approximate description of the imagery
which is not sufficiently complete to serve as a basis for the final

design of the system. In the first order equations, the value of 0,

the radius of the entrance pupil of lens, and jS, the angular distance

of object point from the axis, do not enter. These equations are,

in fact, the limiting forms which one obtains as and ^ are allowed

to approach zero in the more exact equations. They are, therefore,

rigorously true in the limit as aperture of incident bundle of rays

and field of view vanish. Such imagery is sometimes termed
paraxial imagery for, as aperture and field of view approach zero,

the rays which participate in the image formation approach paral-

lelism with the axis.
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The imagery actually realized departs from first order imagery

because a useful aperture for the incident bundle of rays or a useful

extent of field entails sensible departures from parallelism on the

part of the rays participating in the imagery. These departures

from first order imagery are said to be due to aberrations which are

the systematic small deviations considered as superposed upon the

first order imagery. If, in the development of the system of equa-

tions, terms of the third order in ^ (/ = focal length and ojj is the half

aperture ratio) and ^ are retained, one obtains the expressions for

0^ 0^
the aberrations corresponding to the terms in ji, ^2/3,^^/5^ and jS^ In

addition, there are two chromatic aberrations arising from the failure

of the glass or other optical medium to refract equally light of differ-

ent wave lengths. Whereas first order imagery is an imagery in

which straight lines go into straight lines and points are imaged as

points, the presence of aberrations implies a departure from these

desirable characteristics and with aberrations of sufficient magni-

tude the image is poorly defined and distorted. By using third

order equations, however, direct solutions may be obtained which

indicate the design for optical systems such that certain aberrations

vanish to the degree consistent with the approximations of the

equations.

The number of variables and the interrelations between them are

so numerous and complicated that if a direct solution of the third

order equations is to be obtained simplifying assumptions must be

introduced. All lens components are assumed to be thin lenses;

that is, to have thicknesses so small that they may be neglected in

comparison with the distances from lens to object and image points.

Unless otherwise noted, in the drawings which follow, the lenses

represented are to be treated as thin lenses, although represented

as having considerable thickness, and distances measured from the

lens actually originate at the assumed common vertex of the two
spherical surfaces which bound the lens of zero axial thickness.

II. PARAMETERS EMPLOYED IN THE THIRD ORDER EQUA-
TIONS OF IMAGERY

Two sets of equations for the determination of the third order

aberrations are in common use. The one is based upon the work
of Coddington ^ and much extended by Taylor.® This will be refer-

red to as the Taylor system of equations. The second set is commonly
employed in German literature and is used by Koenig ^^ in his dis-

8 Coddington, Henry, A Treatise on the Reflection and Refraction of Light. Simpkins & Marshall,

London; 1829.

« Taylor, H. Dennis, A System of Applied Optics. Macmillan & Co. (Ltd.).

• " Koenig, A., Chapter 7 of "The formation of images in optical instruments," edited by V. "Rdbl,

English translation by Kanthack. H. M. Stationery Shop; London.



Gardner] Optical Design 79

cussion of optical computation, and will be referred to as the

continental system. That these two systems are identical was,

perhaps, first clearly set forth by Nakamura/^ who proves the

identity of the equations of the two systems for freedom from spher-

ical and comatic aberration and who designates the two systems as

English and continental, respectively. Either of the two systems

of equations can be derived conveniently from the equations of

Schwarzschild,^^ which were derived by use of the Eikonal ^^ function.

In the following discussion both sets of equations will be given. The
Taylor system will be modified from the form given by Taylor by
the introduction of mathematical devices used by Schwarzschild ^^

which simplify the equations, at least in appearance, and which

make the parallelism between the two systems more apparent.

Fig. 1.

—

First order imagery

10 and rO' are the object and image planes. AB and A'B' are the entrance and exit pupils.

1. FIRST ORDER EQUATIONS OF IMAGERY FOR A SINGLE LENS

The parameters for the third order equations of imagery are based

upon the constants of the imagery obtained by the application of

the first order equations. Figure 1 shows the relationship between

object and image for a thin lens. Points I and are axial and
oblique object points, respectively, with conjugate points at F
and 0\ For the first order equations of imagery the optical system

is completely specified when the focal length /, or power 0, of the

lens is given as defined by the equation

cf> (n-1)
\r r'J

(1)

" Nakamura, On the calculation of a thin aplanatic objective, Japanese J. Phys., 2, p. 85; 1923.

" Schwarzschild, K.: Untcrsuchungen zur geometrischen Optik. I. Einleitung in die Fehlertheorie

optischer Instrumente auf Qrund des Eikonalbegrifls. Abh. der Koniglichen Gesellschaft der Wissen-

schaften zu Gottingen. Math-Phys. Kl. Neue Folge, 4, No. 1; 1905.

13 See Appendix 1.
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71 = index of refraction of the lens relative to air which is assumed
to be the surrounding medium.

r = radius of curvature of first surface of lens; that is. the surface

which receives the incident light.

r' = radius of curvature of second surface of lens.

r and r' are positive if the respective surfaces are convex toward

the incident light, negative if concave toward it.

The equations of first order imagery are

H*} »)
and

y'=jy (3)

s = distance from the common vertex (the lens is a thin lens without

axial thickness) of the two surfaces of the lens to the projec-

tion on the axis of the object point,

s' = distance from the common vertex of the two surfaces of the lens

to the projection on the axis of the image point. The lengths

s and s' may subsequently be referred to as the axial distances

of object and image, respectively. The sign of s or s' is

positive if a generatmg point, when moving in the direction of

the incident light, passes through the common vertex of the

two surfaces before it arrives at the object or image point,

respectively.

2/ = distance of object point from the axis and is positive if measured

upward from the axis in the plane of the diagram.

2/' = distance of image point from the axis and is positive if measured

upward from the axis in the plane of the diagram. The
lengths y and y' may be referred to as the lateral distances of

object and image, respective^.

In Figure 1, r, s', and y^ are positive, r\ s, and y are negative.

The object and image lie in the same meridional plane and,

without sacrifice of generality, this can be assumed to be the s, y, and

s', y' plane. Consequently, a third equation for the z and s' coordi-

nates is not necessary.

To the degree of approximation involved in the first order equa-

tions of imagery, homocentric bundles of rays in the object space

go into homocentric bundles in the image space, and the higher

order departures from this simple imagery, arising from lack of

homogeneity as regards wave length in the incident bundle and the

entry into the image formation of rays other than the paraxial,

are suppressed. The first order equations, as has been mentioned,

give, in general, a good first approximate description of the imagery

which one actually obtains, and a more accurate description is given

by the addition of the third order equations which indicate the

differences between first order imagery and third order imagery.
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In addition to the Cartesian coordinates of the object point (s and

y), the first order equations require only the value of/ in order to

effect a solution for the determination of the image point. Before

the aberration equations are to be solved it is necessary or desirable

to have additional parameters by which the variation of index of

lens with color, the shape of the lens, the convergence of the incident

bundle, the convergence of the chief rays, the height of incidence

of marginal ray, and the angular distance of the object from the center

of the field are specified. As in some cases these parameters used

in the two systems of equations (the Taylor and continental) are

different, there will be given below a parallel treatment of the two
sets of parameters.

2. VARIATION OF THE INDEX OF GLASS WITH COLOR

For the chromatic aberration it is customary to select three wave
lengths in the spectrum, X', X, and X'', which are assumed to be

here designated in the order of decreasing wave length. The ends

of the spectral interval treated are defined by X' and X" and the pri-

mary chromatic aberrations are said to be eliminated when the

images formed by these two wave lengths register accurately over

the entire field. The intermediate wave length X is the one for

which the monochromatic aberrations are corrected and any con-

stants of the lens, when not definitely specified otherwise, are

referred to X. To apply the third order and chromatic aberration

equations it is necessary to have given

rix = the index of refraction for the intermediate wave length, rela-

tive to the surrounding medium, of the glass or other optical

material employed

and
An=ny'—n\' (4)

or

^x-1 ,-v

For instruments in which the image formed is viewed directly by
the eye it is customary to select for X', X, and X" the wave lengths

corresponding to the C, D, and F lines of the spectrum.^* In such a

case the constants of the lens are referred to the D spectrum line and

i< The selection of the C, D, and i^ spectrum lines to characterize the chromatic aberrations of an optical

system for visual use originated at a time when the number of convenient laboratory sources giving bright

line spectra was much more limited than now. At present there is a tendency to make other selections of

lines which are more favorably located in the spectrum. For a discussion of this see Weidert, Zeits. f.

Tech. Phy., 7, pp. 304-309, 1926. In particular, the selection of the D line (X=5,893) as the position in the

spectrum for the elimination of the monochromatic aberrations seems unfortunate. Some manufacturers

of optical glass regularly give the index for the 5,461 mercury line. It lies much nearer the maximum of

the luminosity curve for white light than the D line, and it would seem preferable to correct the mono-
chromatic aberrations for this wave length.
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An= nF— no (6)

V='
ni

Til nc (7)

When the symbol v is used without special qualification, partic-

ularly in the catalogues of glass manufacturers, it may be understood

to refer to the ratio formed with the choice of wave lengths as indi-

cated in equation (7). For photographic instruments, in which

the focussing is done by the eye and the final image recorded photo-

graphically, it is customary to select the wave lengths corresponding

to D, F, and G^ for X', X, and X". The notation for variation of

index with color, as described above, is employed both in the Taylor

and continental systems of equations.

3. SHAPE OF THE LENS

In the first order equations of imagery the position of the image

point or character of imagery is independent of any variation in

r and r', provided that the two are varied together in such a manner
that/ remains constant. In the third order equations, however, the

final image is a function of the manner in which the total bending

of the ray is divided between the first and second surfaces. Different

pairs of radii which give lenses of the same focal length yield lenses

of different shape (see fig. 2), and in the Taylor system a shape fac-

tor a^^ is introduced, defined by any of the following equations

:

or

r' + r

(7=-l +

<7=+l +

1

2 (n-1)
<j> r

2 (n-l)
4>r'

(8)

r 2 {n-l)

(1 - cr)

2 (7^-1)

(9)

and the lens is completely determined by the values of or, n, and 0.

The shape factor cr is a dimensionless parameter which assumes all

values from — oo to + <» . The shapes both for positive and negative

lenses corresponding to typical values of a- are shown diagrammatically

in Figure 2 and are given on facing page.

15 Taylor designates the shape factor by x instead of o-.
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o-< — 1 Meniscus,

(7 = — 1 First surface of lens plane,

— 1<^(T<C0 The two surfaces are oppositely curved with the curvature

of first surface less in absolute value than that of second,

0- = Lens is equiconvex or equiconcave,

o<cr< + 1 The two surfaces are oppositely curved with the curvature

of the second surface less in absolute value,

0- = + 1 Second surface of lens plane,

H-l<o- Meniscus.

As a increases in absolute value the lens becomes more and more
deeply curved, and it is seldom in practice that a falls without the

a- -5 +5

a^ -5

n
•»-5

lA
Fig. 2.

—

Variations in a lens with change of shape factor

The upper series shows converging lenses of the same power, but with shape factors varying

from —5 through zero to +5. The lower row shows a similar series of diverging lenses.

range of values lying between + 3 and — 3 except for components in

which ratio of diameter to focal length is small. As a is dunension-

less it is the same for all lenses which are geometrically similar, a

feature which at times is a great convenience. If the signs of the

curvatures of the two faces of a lens are changed, the value of a is

tuialtered. If the lens is reversed in position so that the face which
first received the incident light becomes the face by which light leaves

the lens, the sign of a is changed, the absolute value remaining

constant.

In the continental system the terms in —7 in the aberration equations

are eliminated by equation (1). This leaveis terms in - and the pa-

rameters which determine the lens are

1
-; 71, and <^
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4. CONVERGENCE OF THE INCIDENT BUNDLE OF RAYS

The third order equations of imagery contain both the first and

second powers of - and — and some simplification is necessary before
o s

a direct solution can be obtained. In the Taylor system the position

of object and image are specified by the values of

TT and

where x is a dunensionless axial distance factor defined by the equiv-

alent equations ^^

+
s —%

^= _ 1

7r= + 1
^ <P)

(10)

or

(1 + x)^

(11)

(1 -jrj^j?

The values assumed by tt range from — <» to -f- «> . With a positive

lens if the object is real—that is, if s is negative—the value of tt lies

between — 1 and + «? . With a negative lens, if the object is real, tt

lies between — 1 and — <^ . In either case when the object and image

are coincident in the plane of the lens tt= co
.

In the continental system —, is eliminated from the aberration
s

equations by equation (2), and the axial distances of the object and

image are specified, the one explicitly, the other implicitly by the

values of

- and ip

s

5. CONVERGENCE OF THE CHIEF RAYS

(a) Entrance and Exit Pupils and Iris.—In Figure 1 there is a

diaphragm Sit A B which limits the bundle of rays incident upon the

first surface from any point in the object space, ii.t A' B' the area

conjugate, with respect to the lens, to the aperture at D is represented

by the opening in the dotted diaphragm. Since, by construction, the

w Taylor designates the position factor by a instead of tt and terms it the vergency factor.
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peripheries of the apertures mAB and A'B' are conjugate, it follows

that every incident ray which grazes the edge of the diaphragm at

A B will, after refraction (when produced), graze the edge of the

diaphragm at A' B\ It further follows that all bundles in the image

space are limited by the image diaphragm at J.' B' just as the inci-

dent bxmdle is limited by the diaphragm at A B. From each point

in the object space, therefore, there proceeds a conical bundle of

rays with vertex at object point, and all such bundles have aperture

^ B as a common section. Similarly, to each point of the image

there proceeds a bundle of em.ergent rays with vertex at the image

point and with the aperture A' B' common to all such bundles.

Even if several diaphragms are present there will, in general, be one

either in the object or image space and its conjugate image diaphragm

which limits the entering and emergent bundles as do J. ^ and A^ B\
The opening ^ ^ in the object space is termed the entrance pupil,

and A^ B' is the exit pupil. It is evident that the entrance and exit

pupils will always be conjugate. It may happen that the physical

diaphragm is back of the lens in the image space, in which case it

serves as exit pupil and the conjugate aperture in front of the lens is

the entrance pupil. If no diaphragm is present, other than the clear

aperture of the lens, the entrance and exit pupils are coincident and

lie in the plane of the lens. If several diaphragms are present, to

determine which is the actual limiting diaphragm all apertures in the

image space are projected backward through the lens into the object

space. The physical diaphragm or conjugate aperture in the object

space, which subtends the smallest angle at the axial object point, is

the entrance pupil. The ph3^sical diaphragm which limits the rays,

whether it is in the object or image space, is termed the iris to dis-

tinguish it from the other diaphragms.

(b) Pupil Points and Chief Rays.—The axial points of the

entrance and exit pupils are termed the entrance and exit pupil

points and are conjugate. A ray from an object point which passes

through the entrance pupil point, or a ray from an exit pupil point to

an image point, is Imown as a chief ray. In the object space there

exists a bundle of chief rays with vertex at entrance pupil point,

each ray of which corresponds to a different object point. Similarly,

in the image space there is a conjugate bundle of chief rays with

vertex at exit pupil point and a ray ending at each image point.

The two conjugate bundles image the entrance pupil point at the

exit pupil point. Such a bundle of rays ^^ is shown in the lower draw-

ing of Figure 3.

17 A bundle of chief rays formed in this manner differs from a bundle of rays proceeding from an object

point in that the chief rays are not coherent; that is, there is no fixed phase relation between the different

rays of the bundle, whereas the rays proceeding from an object point are coherent. This is a real difference

from the standpoint of physical optics, but insignificant so long as only the geometrical relations are under

consideration.
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(c) Entkance and Exit Windows.—After the entrance pupil

point has been located one may locate the entrance window. The
entrance window is the diaphragm in the object space which subtends

the smallest angle at the entrance pupil point. In Figure 1 the only

diaphragm present in the object space, other than the entrance pupil,

is the cell limiting the clear aperture of the lens. It, therefore, is

the entrance window and it limits the aperture of the bundle of inci-

dent chief rays just as the entrance pupil limits the bundle of incident

rays proceeding from any object point. The assumed diaphragm

conjugate to the entrance window is the exit window and limits the

aperture of the emergent bundle of chief rays. In Figure 3 an

FF
Fig. 3.

—

First order imagery

10 and 7'0' are the object and image planes. The entrance pupil is at AB, the entrance

window at EF. The lower diagram shows a bundle of chief rays with entrance window at

EF, exit window at E'F'.

additional diaphragm has been added to the system of Figure 1

in order that the entrance window may be indicated in a more gen-

eral manner than in Figure 1. Kt D and D^ are the entrance and

exit pupil points and &t E F and £" F^ are the entrance and exit

windows. The pupils limit the bundle of rays from any object

point, the windows limit the field of view. As a useful mnemonic,

one may picture an observer in a room standing back from a window

and looking out. The pupil of the eye limits the bundle of rays

from any point outside and is the entrance pupil. The window

of the room limits the field of view of external objects visible and is

the entrance window.

(d) Parameters Giving the Convergence of the Chief

Rays.—The positions of the entrance and exit pupils affect the

character of third order imagery and, therefore, there must be pa-
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rameters introduced to define their location. In the Taylor system
the term e is used in a manner analogous to that in which tt is employed
for defining the convergence of an incident bundle of rays. The
eccentricity or lateral distance factor, designated by e, is so called

because it is a measure of the eccentricity of the point of incidence

of a chief ray from a marginal point.^^ It bears the same relation

to the bundle of chief rays as does tt to the bundle of rays proceeding

from an object point. The value of e is defined by the following

equivalent equations:

x' + x
x' —X

--\

i= + l-

2^

(pX

2/

<fX'

(12)

(l + €)^

(1-e)^
(13)

where (see fig. 1)

X = distance from the common vertex of the two surfaces of the

lens to the entrance pupil point,

x' = distance from the vertex of the two surfaces of the lens to

the exit pupil point.

X or x' is positive if a generating point, when moving in the

direction of the incident light, passes through the common
vertex of the two surfaces before it arrives at the object

or image point, respectively.

As the two pupil points are conjugate

1=1 + 1 (14)

Like TT and a, e ranges in value from -co to 4- «> . With a posi-

tive lens, if the iris is in front of the lens, the value of e lies between
— 1 and + c!o ; if back of the lens, between — <^ and —1. With
a negative lens, if the iris is in front, e is between — oo and — 1

;

if back of the lens, between — 1 and — oo
. If no diaphragm other

than the lens cell is present e= oo and the chief rays pass through the

center of the lens. Therefore, although € is a measure of eccentricity

it is of such a nature that e becomes infinite as the eccentricity

vanishes. In the Taylor sj^stem of equations the parameters em-
ployed to denote the convergence of the chief rays are

€ and (p

18 Taylor uses /3 instead of « to denote eccentricity factor and terms it the vergency of the chief rays.

30906°—27- 2
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In the continental system — is eliminated by equation (14) and one

uses

and

6. AUXILIARY RAY BY WHICH HEIGHT OF INCIDENCE OF MARGINAL
RAY IS DETERMINED

The system of equations as given by Taylor ^^ have been modified by
the introduction of the coefficients g and Ji which correspond to the y
and h of Schwarzschild. These two coefficients are also used in the

same manner in the continental system. This modification in the

Taylor system of equations makes the parallelism between the two
systems more evident, results in a neater form for the equations, and
in some cases simplifies their interpretation.

From the axial object point an auxiliary ray is traced (see figs. 1

and 4) which passes through the entrance pupil at the distance p^^

from the axis. Then by definition the ray is incident on the lens at

Fig. 4.

—

First order imagery

The entrance pupil is at AB, the entrance window at EF. The auxiliary rays by which
?• and hi are determined are indicated.

the distance pJii from the axis and Jii is the ratio of height of incidence

of ray on lens to the height of incidence of same ray on the plane of the

entrance pupil. From Figure 4 it is evident that

h = (15)
Si-Xi

The subscript 1 in equations (15) and (16) indicates that the equa-

tion only applies to a single lens or to the first lens of an optical

system. The definitions of g and Ji for the other lenses of a system

will be given later.

59 See footnote 6, p. 74.

20 p will be used as a running coordinate to give the height of incidence on the plane of the entrance window
of any ray transmitted by the lens. The maximum value of p is 0, the radius of the entrance pupil.
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It should be noted that h as here defined does not correspond to the

y as used by Taylor. With the present definition A is a dimensioniess

constant, with Taylor y is the actual height of incidence. The denom-
inator s—x is used by Schwarzschild and makes the expressions for

the angular values of the aberrations particularly simple and compact.

The distance phi serves as a measure of the divergence of any ray

from the chief ray. The extreme ray of an incident pencil is incident

on the lens at the distance oJii from the corresponding chief ray, where

o is the radius of the entrance pupil.

7. AUXILIARY RAY BY WHICH ANGULAR DISTANCE OF OBJECT FROM
CENTER OF FIELD IS MEASURED

For specifying the distance of any object point from the axis in the

formulas it is convenient to use, not yi, but the distance of point of

incidence of chief ray from axis of lens. An auxiliary ray is traced

(see fig. 4) which passes through the entrance pupil point and makes
an angle of ^o with the axis. It is incident upon the lens at the dis-

tance g tan ^o from the axis where g is defined by the equation

9i=xi (16)

The distance of point of incidence of any chief ray from the axis is

Qi tan /3i

where /3i
= angle between chief ray and axis.

8. SUMMARY OF DIFFERENT PARAMETERS

Following there is given in resume the parameters employed in the

third order equations of imagery

:

Taylor
Conti-
nental

Variation of index with color

Shape of lens

Convergence of incident bundle

Convergence of chief rays

Height of incidence of marginal ray..
Angular distance from center of field

Anor y

n, a, <p

o,hi
gi, tan Pi

A « or f

1

«> y, <p

1

T'^
1

0, ill

Q\, tan /3i

III. CHROMATIC ABERRATIONS OF A SINGLE THIN LENS

The aberrations of a lens system may be divided, according to

their origin, into two main groups—the chromatic and the mono-
chromatic. Of the first group the two principal aberrations are

longitudinal and lateral chromatic. In their derivation it is assumed
that the first order equations of imagery apply rigorously and the

aberrations arise only from the variation of the index of refraction of
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the lens with wave length. These two aberrations are of the order

o<pAn and An tanjSi. In the optical media commonly employed, An
is of such value that the chromatic and the third order monochro-

matic aberrations are comparable in their effect upon the quality of

imagery.

1. LONGITUDINAL CHROMATIC ABERRATION OF A SINGLE LENS

Eeference to equation (1) shows that the focal length of a lens is a

function of the index of refraction and the value of s' for a hetero-

chromatic object point, therefore, will be different for the different

wave lengths present in the incident bundle. For each wave length

there is formed a separate image of the object point, and these images

may be considered for the present as distributed along a short seg-

ment of the chief ray.^^ This is shown in Figure 5, where the sepa-

(lat. chr.)

Fig. 5.

—

Chromatic aberrations of a lens

The axial image point F illustrates longitudinal chromatic aberration. The oblique point

0' has both longitudinal and lateral chromatic aberration.

ration of the different images is much exaggerated to lend greater

clearness to the illustration. If an image plane is selected which

cuts this segment at some point and is perpendicular to the axis, for

some one wave length the image will be correctly focussed, and the

images formed by light of other wave lengths will be slightly out of

focus and appear as small circular disks concentric and superposed.

To make the explanation more concrete, let it be assumed that X' and

X" (see p. 81) are the wave lengths corresponding to the C and F spec-

trum lines as is customary for instruments to be used visually. Let

an image plane normal to the axis be passed through the focus of the
«>

21 In general, except for an axial point, the images formed by different wave lengths wUl not lie on a com-

mon chief ray. This is clearly shown by the location of the images 0'
j^/, 0/ ^ , and O'x'^ in Figures. Longi-

tudinal chromatic aberration is the component of the separation of the chromatic images measured parallel

to the axis. The lateral component will be ignored until the discussion of lateral chromatic aberration,

(y, infra.)
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F rays as at A B (fig. 5). Since the focal length of the lens for the

C rays is greater than for the F rays, the image formed by them will

be farther from the lens than that formed by the F rays. In such a

case one has longitudinal chromatic aberration which may be meas-

ured in two ways. In the X'' plane the image formed by the X' rays

will be a circular disk. This circular disk may be projected back-

ward through the lens by the first order equations and the conjugate

disk in the object space determined. The angle subtended by this

disk at the entrance pupil point will be designated as the angular

value of the longitudinal chromatic aberration (Ang. Lon. Chr.).

The linear distance, measured parallel to the optic axis from the

image formed by the X'' rays to the X' rays, and termed the longi-

tudinal chromatic aberration (Lon. Chr.), may be taken as a measure
of the aberration. The values of the aberration, measured by the

two methods are

(Ang. Lon. Chr.) =2^ (17)

(Lon.Chr.)=s'2^ (18)

In each case a positive sign indicates that a line originating at the

image formed by the shorter wave length—that is, X" or in the

illustrative case at the F image—and extending to the image formed

by the longer wave length—that is, X', or the C image—lies in the

direction traveled by the incident light. The Ang. Lon. Chr. is the

necessary angular separation of two points in the object space if

the two images, as enlarged by longitudinal chromatic aberration,

are to touch but not overlap.

If the trivial cases are excluded in which o, <^ or s' = 0, it is evident

that for a single lens the longitudinal chromatic aberration can not

be caused to vanish unless v = oo
. Unfortunately no media for the

construction of a dioptric system are known in which »'= oo, as this

implies an index which does not vary with the wave length. As v is

always positive, for a siQgle lens the chromatic aberration always

has the same sign as <p. In the discussion of optical systems it will

be shown that the chromatic aberration as defined above may be

eliminated by the use of two or more lenses constructed from dif-

ferent types of glass.

2. LATERAL CHROMATIC ABERRATION OF A SINGLE LENS

In Figure 5 there is illustrated the imagery of an axial and an

oblique point by a lens with the diaphragm placed some distance in

front of it. With the oblique bundle the lens may be considered as

playing two r61es. Because of the curvature of its two surfaces it

alters the convergence of the rays of the bundle and causes it to be
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brought to a focus. But, also, as the section of the lens traversed

by the bundle is thicker at one side than at the other, because of the

eccentric refraction, it is evident that the lens acts as a prism and,

in the example illustrated, bends the bundle down toward the axis.

The alteration in convergence effected by the lens on the three wave
lengths shown causes them to focus at different distances from the

lens and gives rise to the longitudinal chromatic aberration of the

same magnitude (to the present order of approximation) as that of

the axial ray. But the prismatic action, too, will be different for the

different colors with the image formed by the shorter wave lengths

bent the more and therefore nearer the axis. If all wave lengths are

present in the incident bundle, the image of an oblique point will be a

short spectrum lying in the image plane on a line passing through the

axial point of field and, in the case illustrated, with the blue end

toward the center. If the length of this spectrum, extending from

the X' to X" wave lengths, is projected by the first order equations

into the object plane, the angle subtended by it at the entrance

pupil point is the angular value of the lateral chromatic aberration

(Ang. Lat. Chr.) and its length measured normal to the axis is the

lateral chromatic aberration (Lat. Chr.). For a siQgle lens the values

of the two aberrations, measured in the manner given above, are

(Ang. Lat. Chr.) = -^^ ^ tan /8 (19)

(Lat. Chr.) = - s'S' | tan ^ (20)

If the coefficient of tan /J as yielded by either of the above equations

is positive, it indicates that the image formed by the longer wave
length is farther from the axis than that formed by the shorter wave
length, as in the case illustrated in Figure 5.

As more oblique object points are considered with images farther

from the center of the field, it is evident that the prismatic action of

the lens is greater, and consequent^ the difference in the bending of

the two pencils becomes more marked. As a point recedes from the

center of the field, therefore, the lateral chromatic aberration in-

creases and this is evidenced in the equations by the factor tan ^ in

the right-hand member. If the diaphragm is in the plane of the lens,

all the bundles of rays, oblique as well as axial, pass through the

center of the lens and the convergence is modified, but the lens does

not act as a prism. In such a case the longitudinal chromatic aber-

ration remains, but there is no lateral chromatic. This condition is

obtained from the equation by settiQg ^ = 0. The sign of lateral

chromatic aberration changes as the sign of g changes; that is, as the

diaphragm is placed before or behind the lens. If the diaphragm
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is not in the plane of the lens, the lateral chromatic aberration

can not be eliminated for a single lens.

One may approach lateral chromatic aberration from a second

viewpoint. The scale to which an object is reproduced in the image

space is a function of the focal length. As the focal length differs

for the different colors one can expect the different images to vary-

in size. Consequently, one has a series of superposed images, one

for each color, which register perfectly only at the axial point. As
one passes from the center to the edge of the field this difference

in scale becomes more apparent and the distance between corre-

sponding points of blue and red images becomes greater and greater.

3. RELATIVE IMPORTANCE OF LONGITUDINAL AND LATERAL
CHROMATIC ABERRATION

Longitudinal chromatic aberration is a function of o but not of

tan jS. It is the same, therefore, in magnitude over all parts of the

field and increases as the aperture is increased. On the other hand,

lateral chromatic aberration is independent of size of aperture.

For an optical system having a large aperture but small field of view

it is important to correct for the longitudinal chromatic aberration,

while with a large field of view and small aperture the elimination

of the lateral chromatic is the more important.

Lateral chromatic aberration is ordinarily easily detected in a

binocular or opera glass. A sharply defined dark object against

a bright background, a chimney or smokestack against the sky is a

suitable test object. Turn the binocular to bring this object wholly

to one side of the center of the field. The vertical borders will be

slightly tinged with fringes of color which increase as the binoculars

are turned to bring the object nearer the border of the field of view.

If the edge nearer the center is blue, the lateral chromatic aberration,

is positive as defined by equations (19) and (20).

IV. MONOCHROMATIC ABERRATIONS OF A SINGLE THIN
LENS

The two preceding aberrations arise because of the heterochro-

matic character of the incident bundle and the variation of the index

of refraction of the lens with wave length. The five succeeding

aberrations have their origin in the fact that the different parts of

a monochromatic bundle of rays pass through different parts of the

lens and, except in special cases, are brought to a focus at differ-

ent points on the image plane. They are, therefore, grouped as the

monochromatic aberrations. The monochromatic aberrations are

commonly adjusted to give the most desirable compromise for the

intermediate wave length; that is, for X (see p. 81). In this way a

satisfactory compensation may generally be secured over the entire
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interval extending form X' to X" and the chromatic aberrations

are adjusted, as has already been noted, to bring the images formed

by the two wave lengths, at the end of the interval, together.

The five monochromatic aberrations of the third order in ^ and

tan jS are:

0^

Spherical aberration of order, ^

Coma of order, ^ tan j8

Curvature of field ) p i o ^ „ ^
K ^' ^' of order, -> tan^ jS
Astigmatism

J j

Distortion of order, tan^ /3

and

where o is the radius of the entrance pupil and jS the angular distance

of the object from the center of the field.

Fig. 6.

—

Longitudinal spherical aberration of the axial image point V

1. SPHERICAL ABERRATION OF A SINGLE THIN LENS

Spherical aberration for an axial point is illustrated in Figure 6.

The paraxial rays, represented by the rays drawn close to the axis,

are brought to a focus at J', which is the image point as located by
the first order equations. Rays which are incident on the lens at

points farther from the center of lens are brought to a focus nearer

the lens and in particular the rays at the edge of the clear aperture

focus on the axis at 1"
. If, now, an image plane is selected perpen-

dicular to the axis at /', it is evident that the hollow cone of rays

which focuses at I" will have opened out and the image produced

by it on the image plane will be a circular annulus. Intermediate

zones of the lens will produce smaller annuli, and the image at /',

produced by the entire lens, will be a circular disk.^^ This departure

33 In discussing the character of image as influenced by third order aberrations, only the rules of geometric

optics will be applied. Actually the quality of definition as predicted by geometric optics is greatly modi-

fied by diffraction effects and other phenomena of physical optics. The condition of best focus does not

necessarily lie at the best geometric focus, and often the actual definition realized is much better than is to be

expected on the basis of geometric optics. These differences, however, do not need to be taken into account

during the stage of the design in which the third order equations are applied.
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from first order imagery is termed spherical aberration, and it is

the only one of the monochromatic aberrations which results in an

entirely symmetrical enlargement of the image of a point.

If this circular disk resulting from spherical aberration is considered

as projected backward through the lens, one obtains in the object

plane the conjugate circular area. The angle at the entrance pupil

point, subtended by the diameter of this conjugate circular area, is the

angular value of the spherical aberration (Ang. Sph.). The length

measured from /" to F (fig. 6), which is positive in the case illustrated

(extending in the same sense as the direction traversed by the incident

light), is termed the longitudinal spherical aberration (Lon. Sph.).

For a single lens the values ^^ of the aberration according to the two

methods of measurement are

(Ang. Sph.) = ~/i^^^^ (21)

(Lon. Sph.) ==§-' s''¥ <p' A (22)

The coefficient of spherical aberration A is defined by either of the two
equations

:

Taylor system

. 71 + 2
2 ,

4(ri+l)
,
371+ 2 2

,A = —, T^^<7^ +—7- ^<nr-{ x^ +n(n—iy n{n—l) n (n—iy

Continental system

(23)

A=4( ,
Zn+1 1

,
371+ 2 J^

,2+ - « - +
(ti— 1)^ n—1 (ps n ip^s^

4-) (24)
271+1 1 n + 2 J 4(71+1)

n~l ipr n <^V^ n

(a) General Characteristics of Spherical Aberration.—In

equations (21) and (22) a positive value indicates that the rays passing

through the edge of the lens cut the axis to the left of the paraxial

image when the light is traveling from left to right. The spherical

aberration indicated in Figure 6 is positive. Reference to either of

the equations shows that for a positive lens the aberration will be

positive unless A vanishes or is negative. In equation (23) all terms

are necessarily positive except the second, which will be negative if <t

and TT have opposite signs. If object and image are each real, the

absolute value of w will be less than 1. It can be easily shown that

for any available index, for values of tt less than 1 in absolute value,

there is no real value of o- for which A = 0. In other words, if object

and image are to be real, the spherical aberration can not be made to

23 Equation (21) gives (Ang. Sph.) in radians. To obtain the value in minutes, one multiplies by 3,438.

Logarithm 3,438=3.5363.
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vanish, but will have the same sign as (p. With a positive lens and a

real object and image, this condition may be described by stating

that the edge rays are always bent too much toward the axis, as ia

Figure 6. A lens acts on the marginal rays like a prism having its

surfaces tangent to the surface of lens at points of incidence and

emergence. A prism bends the rays least when in the position of

miniminn deviation; that is, when the entrant and emergent rays

make equal angles with the normals to the two faces. From this

analogy it is apparent that the edge rays will be bent least; that is,

conditions will be

most favorable for

the elimination of

spherical aberration

if the lens is so turned

that the entrant and
emergent rays near

the edge make equal

or nearly equal
angles with the nor-

mals to the two
surfaces. This is

equivalent to saying

that the total bend-

ing of the edge rays

by the lens should be

equally divided be-

tween the two sur-

faces. Reference to

the equations which
define a and tt and
to the example illus-

trated in Figure 7 will

show that this, inter-

preted mathemati-

cally, signifies that

(7 and TT have opposite

signs, which is a nec-

essary condition if A
is to be a minimum.
Minimum Spherical

Fig.

.04 .02

7.

—

Graphic representation of the third order

spherical aberration of a single thin lens

In the graph the longitudinal spherical aberration is plotted as the

abscissa against the height of incidence as ordinate. The incident

rays proceed from an infinitely distant axial object point. The
upper lens is plano-convex, the plane surface turned toward the

obiect and is in the unfavorable position as regards spherical aberra-

tion. The same lens with convex side toward the object is shown

in the second diagram. The third lens is shaped most favorably

for the elimination of spherical aberration when the object point is

infinitely distant. The focal length of the lens in each instance is 1.

(h) Shape of a Single Thin Lens for

Aberration.—In Figure 7 the first drawing illustrates the ray paths

through a plano-convex lens from an infinitely distant object. The

lens is turned with the plane face toward the distant object. The

total bending of the rays is at the second surface, and this is the

unfavorable position for a small amount of spherical aberration. If,

as in the second drawing, the lens is reversed in position, the rays are

bent almost equally at the surfaces, and the spherical aberration,
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although positive, is much decreased; but neither of these cases is

the most favorable for the elimination of spherical aberration in the

image of an infinitely distant object. To determine the most favor-

able shape, one sets ir equal to — 1 in the expression for A and deter-

mines, in the usual maner by differentiation, the value of a- which
gives the minimum value. If 7^ = 1.5, for the minimum value,

(7= 0.71, and the lens is double convex with the first radius almost

exactly six times the second. Such a lens is shown in the third

drawing of Figure 7. To the right of each of the illustrations of

Figure 7 there is a graph in which the spherical aberration as computed

by equation (22) is plotted in the usual manner. As ordinates one

plots phj the '^ height '^ as it is usually termed, or distance from

center of lens to point of incidence of ray. As abscissas the corre-

spondiQg Lon. Sph. is plotted to a scale five times as open as the

scale of ordinates. The diagram is plotted for a lens of unit focal

length and the index of refraction selected is 1.5. For each of the

above three cases there is given below the Ang. Sph. for an aperture

off/16.''

Saconds

(Ang. Sph.) Plano-convex lens +56. 7

Convexo-plane lens +14. 7

Minimum spherical +13. 5

As a general rule when object and image are each real, a given

double convex lens will give the greater freedom from spherical

aberration when turned with the surface of greater curvature toward

the more remote of the two conjugate points. If object and image

are equidistant from the lens, the lens should be equiconvex, in which

case all terms drop out of A (Taylor system) except the last.

(c) Values of it for Which a Component Free from Aberra-

tion Can Be Designed.—It has already been stated that it is

impossible to design a single lens (with spherical surfaces) to give

freedom from spherical aberration when object and image are real.

It is not difficult to determine the values of x for which the spherical

aberration may be made to vanish. The expression for A (equation

(23)) may be written

A = a(j^ + haTr + C7r^ + d (25)

where the letters a, h, c, and d represent the coefficients of equation

(23). Writing J. = and solving for o-

^=_l ^±J*V_£^_i
(26)

2 a y 4:0^ a a

"A trigonometric computation of the spherical aberration for these three lenses gives the following values:

Seconds

(Ang. Sph.) Plano-convex lens +57.0

Convexo-plane lens +14.

8

Minimum spherical +13.6



98 Scientific Papers of the Bureau qf Standards [ Vol. SS

Setting the discriminant equal to zero and solving for tt

= ±2V
ad

¥— 4:ac
(27)

Fig. 8.

—

The single lens and the

aplanatic points

The upper diagram shows a lens of zero axial

thickness (negative thickness at edge) which
images / at /' with complete freedom from
spherical aberration and coma for points near

the axis. The second diagram shows the realiza-

tion of similar freedom from aberration by
homogeneous immersion as in a microscope objec-

tive. The third lens is a meniscus with center

of curvature of first surface at the object point.

It gives similar freedom from aberration.

and substituting the values of a, 6,

c, and d

±1
7r = -^^—|VT^rr2)i (28)

The corresponding values of a by

substitutions in equation (26) are

^ =^^^/(n+ 2)n (29)

These are the boundary values for

which A can be made to vanish.

For larger absolute values of tt,A can

be made negative; that is, the lens

can be overcorrected. Using the two

formulas above, the following table

has been computed. Keal solutions

giving a lens free from spherical

aberration exist when tt has an abso-

lute value greater than that tabu-

lated. If r has the value tabulated,

spherical aberration will vanish (to

the third order) when a has the

tabulated value. The value of s for

unit focal length corresponding to

the positive value of x as tabu-

lated, is given in the fourth column.

Table 1.

—

Values of tt for which the third order spherical aberration of a single

lens may vanish

n IT <r s

1.4 5.46 3.08 -0.31
1.45 4.97 3.18 -.34
1.50 4.58 3.27 -.36
1.55 4.26 3.37 -.38
1.60 4.00 3.47 -.40
1.65 3.78 3.56 -.42
1.70 3.58 3.66 -.44
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(d) Aplanatic Points.—The thin lens illustrated in Figure 8 is

an interesting special case. Both radii are intrinsically negative and

;. = ^?lL1/ (30)n

In the illustration the lens is actually drawn of zero axial thickness

and the edge thickness is negative as the less curved surface is

actually the first surface of the lens. If

n+1
,

.„..
s = r' (31)

n ^

a solution of the first order equations shows that

1 1-71 1
(32)/ 1+71 r'

and
s' = (7i+l)r' (33)

Applying the equations for spherical aberration

cr=- (271+1) (34)

71+1
TT (35)71-1

and
^=0. (36)

For these two points, therefore, the third order spherical aberration

vanishes. But it will be noticed that s and r are identical; that is,

the object is situated at the center of curvature of the first surface.

It is impossible to realize the lens of zero thickness as shown. But
if the first surface of the lens is replaced by a plane surface passing

through the object point, as shown in the second illustration, the lens

becomes a thick lens in which the deviation of the rays occurs in

exactly the same manner as in the origiual thin lens. This lens,

therefore, is free from third order aberration. But it can also be

shown that this pair of object and image points is free from all higher

order spherical aberrations and free from coma as well.^^ A bundle

of monochromatic rays proceeding from I gives rise to a rigorously

homocentric refracted bundle with vertex at /', no matter how large

the aperture. A pair of conjugate points free from spherical aberra-

tion and coma (v. infra) is termed aplanatic, and such points are

referred to as the aplanatic points of the spherical surface. The
first component of a microscope objective is generally designed to

utilize this aplanatism. In the homogeneous immersion objective it

2» Southall, Principles and Methods of Geometrical Optics, pp. 291-292.
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is completely realized; in the water immersion or dry objectives, the

aplanatism is only approximately obtained. The third illustration

of Figure 8 shows a second form of lens for utilizing the aplanatic

points. The first surface may be any surface concentric with the

object point, and it is evident that the path of the rays is identical

with that in the two lenses already described.

2. COMA OF A SINGLE THIN LENS

Spherical aberration results, as already stated, in a symmetrical

enlargement of the image and as it is a function of o^, but not of tan

/3, it is the same in amount (to a third order approximation) over all

parts of the field. Coma, however, results in an asymmetric enlarge-

a

I'S'

trr

^'
Fig. 9.

—

Coma of the third order

The oblique point is imaged at 0' by the chief ray and as a circle with center at 0'

the rays which pass through the shaded annulus on the lens.

by

ment of the image, is of the order o^ tan ^ and, therefore, it is evidently

zero on the axis and increases in magnitude as one proceeds from the

center of the field outward. Eeference to Figure 6 and the descrip-

tion of spherical aberration shows that if a lens is considered as

divided into concentric circular zones each zone will focus a given

axial object point at a different axial image point, and the composite

image, in any selected image plane, is a circular disk made up of

superposed circular concentric annuK. In the absence of coma this

will also be true for the image of a point removed from the axis. In

general, however, the asymmetry in the incident bundle produced by
the displacement of the object point from the axis introduces an

asymmetric flare in the image which is superposed on the spherical

aberration and which is termed coma.

(a) Formation of Coma in the Absence of Spherical Aberra-
tion.—The formation of the image by a zone of a lens having coma
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(in the absence of spherical abberration) is shown in Figure 9. The
diagram is in perspective, and the annular zone of the lens by which

the image is formed is shaded. The chief ray from passes through
0' where the image is formed by rays infinitely near the chief ray.

The image of formed by the shaded area of lens is not concentric

with 0' but is the circular annulus with center at 0'". The relation

between the points of the zone of lens and annular ring is shown in

the two circles below the diagram in perspective and is not what one

might at first expect. Kays passing through the zone of lens at

points 1 and 5 form an image at the point most remote from 0', as

indicated by the numbers j(' and 5\ Rays traversing the lens at

points 3 and 7 focus at 5' and 7', the point nearest 0\ Intermediate

0' 0'

Fig. 10.

—

Structure of comatic flare

The first diagram shows that the tangents to any comatic circle in pure third order coma, drawn
through the image point as determined by the chief ray, include an angle of 60°. The second diagram

shows the series of comatic circles which together compose the comatic flare.

rays of the zone focus as indicated by the corresponding numbers.

Hence, the annulus in the image plane is really a double or duplex

circle, each point of which is the focus formed through diametrically

opposite points of the zone. In fact, if coma of the type here de-

scribed is the only aberration present, the image of a point will be a

complete circle even though half the zone of the lens is obscured by a

diaphragm having a diameter of the lens as one edge. Coma which

arises when the diaphragm is in the plane of the lens and when there

is no spherical aberration, as in the case here illustrated, is termed

pure coma to distinguish it from the coma, to be treated later, which

results from spherical aberration in combination with eccentric

refraction (diaphragm not in plane of lens).
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The metric relations in an image possessing pure coma are interest-

ing. If tangents to the comatic circles are drawn through 0\ as in

Figure 10, the angle included by the tangents is 60°. The image of

a point formed by the entire lens is the assemblage of the images

formed by the separate zones and is a family of circles having com-
mon tangents including an angle of 60°, as shown in the second draw-

ing of Figure 10. The image of a point, therefore, is a figure shaped

somewhat like a comet with a bright, well-defined point and an

asymmetric flare extending in a radial direction toward or from the

center which becomes more faint and diffuse as it recedes from the

bright point. The overall length of the comatic flare is 0^ A and will

be referred to as the linear pure coma (Lin. Pure Coma). If, in the

usual manner, this length is projected back into the object plane, the

angle subtended by it at the entrance pupil point is the angular pure

coma (Ang. Pure Coma)

.

In the presence of spherical aberration the structure of the third

order comatic image becomes much more complicated. For a de-

scription, the reader is referred to Taylor,^^ Section VIII. If the

entrance pupil is in the plane of the lens, the chief ray passes through

the center of the lens. For brevity this will be referred to as central

refraction. In a case of central refraction one may have pure coma
and, in addition, a further modification resulting from the presence

of pure coma, spherical aberration, and central refraction. The
total coma in such a case will be referred to as the normal coma.

This terminology is adopted because its relation to coma in the general

case is analogous to the relation of normal curvature to curvature in

the general case (see p. 110). One has angular normal coma (Ang.

Norm. Coma) and linear normal coma (Lin. Norm. Coma), of which

the values are given by the equations

(Ang. Norm. Coma)= -| o%VOtsLn(3, (37)

(Lin. Norm. Coma) = ~| o'Tis'^pWiem^. (38)

C=-:r^;^^^a +(2+iy (39)

The coefficient of coma, C, is defined by the equation in the Taylor

system

n+1
n (n—1)

or in the continental system

^
2(71+1) 1 2(271+1) 1 2n_ ,^Q.

n (pr n <ps n—1

If the coefficient of tan ^ yielded by the above equations is positive,

it indicates that the flare extends outward; that is, away from the

optic axis with the bright pointed end turned inward.

28 See footnote 6, p. 7i
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li A = 0, Cy^OjioT central refraction one has only pure coma.^^ If

A 7^0, C=0, one has pure coma sufficient to neutralize the coma
which arises from spherical aberration, and if the entrance pupil is in

the plane of the lens the image is free from coma.

(h) Flare Produced by Normal Coma and Spherical Aberra-
tion.—When the refraction is central—that is, when the diaphragm
is in the plane of the lens—one has only normal coma of the type
determined by equations (37) and (38). In a lens system, in gen-

eral, the refraction is eccentric and there will be additional coma
which arises from the combined effect of eccentric refraction and
spherical aberra-
tion. The manner
in which coma of

this nature arises is

shown diagrammat-

ically in Figure 11.

In the upper figure

the course of the

rays from an infi-

nitely distant ob-

lique object point is

shown. There is

no pure coma, and

therefore the rays

in the object space,

symmetrically
placed with respect

to the ray passing

through the center

of the lens, intersect

upon the conjugate

ray in the image

space, and the
images produced by

the different zones

of the lens are cen-

tered with respect to each other, but do not lie in one plane,

since it is assumed that there is spherical aberration. The section

of the refracted cone of rays fomied on any plane in the neighbor-

hood of the image, and perpendicular to the axis of the lens, is there-

fore circular (except for the slight foreshortening arising from the

obliquity of the object point), and there is none of the side fiare

'' Pure coma, as here defined, is the coma which arises from the failure of the lens to satisfy the sine con-

dition. See Southall, 1. c, p. 400-415. Taylor proves that C=0 and the satisfying of the sine condition

are identical when there is no spherical aberration. In the presence of spherical aberration, however, C7=0

has the significance given above.

30906°—27 3

Fig. 11.- -A lens with spherical aberration hut no pure

coma

When the bundle of rays passes through the lens centrally as in the

upper diagram, there is spherical aberration, but no comatic asymetry.

With a diaphragm without the plane of the lens, as in the lower dia-

gram, the eccentric refraction and spherical aberration conspire to

produce a comatic flare.
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characteristic of coma. In the lower part of Figure 11 the course of

the rays is shown when a diaphragm is placed some distance in front

of the lens. It is evident from the drawing that the symmetrical
character of the image has disappeared as a result of the selective

action of the stop and the spherical aberration. A complete formula
for the length of comatic flare must, therefore, include coma of this

sort and is given in the following equations:

(Ang. Coma) = |o^gWA - 21^0) tan /3 (41)

(Lin. Coma) =| oh' (gJiVA -2WC) tan ^ (42)

The interpretation of the equations is as for equations (37) and (38).

The angular and linear values are measured in a radial direction

extending from the axial point of the image plane and if the coefficient

of tan i8 as yielded by the equation is positive it indicates that the

flare extends outward. The term in A (defined in equations (23) and

(24)) represents coma arising from spherical aberration and eccentric

refraction and vanishes when the refraction is central; that is, when
^ = 0.

(c) Thin Lens of Minimum Coma.—If one has a thin lens and
central refraction—that is, the entrance pupil located in the plane of

the lens—the condition for freedom from coma is (7=0. The expres-

sion for C is linear in a and tt, and it follows that for any value of tt

one may solve for a and obtain a real root. This contrasts with
spherical aberration, in which case a real solution for A = exists

for only a limited range of values of tt. If the object is at an infinite

distance, as in Figure 7, the coma will be eliminated if <7= +0. 80

(n = l,5). This does not differ greatly from the third case illustrated

in Figure 7, that most favorable for reduction of spherical aberration,

in which case o- = + 0. 71. For a point 2° from the center of the field

and an aperture of //1 6, the angular values ^^ of the coma for the

three cases of Figure 7 are
Seconds

(Ang. Norm. Coma) Plano-convex lens +31. 7

Convexo-plane lens — 3. 5

Lens of Min. Sph +1. 6

If one solves simultaneously the equations

^ = (43)

(7=0 (44)

one obtains the values of tt and o- for which the spherical aberration

and coma both vanish. The roots are

^=±^^ v45)

<T=T{2n+l) (46)

28 A trigonometric computation of the coma for these three lenses gives the following values:

Seconds

(Ang. Norm. Coma) Plano-convex lens +32.8
Convexo-plane lens —3.

6

Lens of Min. Sph +2.0
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Reference to page 99, shows that this solution includes the aplanatic

points. Abbe was the first to limit the use of the term aplanatic

to conjugate points which are free from both spherical aberration

and coma.

A solution of the equations

^ = 0. (47)

(7=0, (48)

gives the values of tt and o- for which the lens of minimum spherical

aberration is free from coma. If the case ti = is excluded, the two

equations can be satisfied simultaneously only when (7= 0, 7r = 0.

In this case the lens is equiconvex or equiconcave and object and

image are symmetrically placed. The impossibility, in general, of

constructing a lens of minimum spherical aberration free from coma
is illustrated in the tabulated values of the coma of the three lenses

of Figure 7 given above.

If eccentric refraction is admitted, one has an additional degree

of freedom in the placing of the diaphragm. One can first design

the component so that the spherical aberration vanishes or is a

minimum after which the location of the diaphragm is determined

by solving for g in the equation

gnVA-2nVO=-0 (49)

If one applies this to the lens of minimum spherical aberration

(n = l.Dj 7r= — 1, (7= +0.71), the value of g for zero coma is —0.07.

If the lens is provided with a diaphragm serving as entrance pupil

and placed 0.07 of the focal length in front of the lens, coma due

to spherical aberration will be introduced sufficient in amount and

of proper sign to compensate for the normal coma. (See p. 102.)

3. CURVATURE OF IMAGE AND ASTIGMATISM OF A SINGLE
THIN LENS.

It has been shown that when an oblique point is imaged by a

lens the portions of the image formed hj different parts of the lens

are shifted with respect to each other in a direction lying in the

plane of the image, and that the result is an asymmetric side flare

which is kno\vn as coma. In addition to this, there is a shifting

of the different parts of the image in a direction normal to the image
plane which differs from spherical aberration m that it is different

for object points at different distances from the axis and which
gives rise to astigmatism and curvature of field, two aspects of the

aberration of order ~j tan ^/3. The principal features of this phase

of the imagery of an oblique point are illustrated in Figure 12.
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The plane which contains the chief ray before and after refraction

and the optic axis is indicated by the vertical hatching, and is

termed the primary plane. In the usual optical diagram, such as

Figures 1 and 2, only the primary plane is shown. The secondary

plane contains the chief ray, is normal to the primary plane, and
is indicated by the oblique hatching in Figure 12. As a result of

the obliquity of the object point the lens introduces different amounts
of convergence in the two planes with the result that the rays lying

in the primary plane come to an approximate focus at 'p those in

the secondary plane at 0'^. Mathematically this is described by
stating that the emergent wave front is a surface having two principal

curvatures which lie in the primary and secondary planes.

Fig. 12.

—

Formation of astigmatic image

The primary pencil of rays lies in the plane with vertical hatching and produces the Image at O'p.

The secondary rays lie in the pencil with oblique hatching and form an image at O'b.

All rays of the emergent bundle pass through a^small line per-

pendicular to the chief ray and lying in the secondary plane at

O'p, and similarly all the rays pass through a second straight line

perpendicular to the optic axis and lying in the primary plane at

O'g. These are lines only in the third order sense; that is, the

disk caused by the aberration is of the third order in one dimension

and of higher order in the other when measiu-ed in the usual manner
by the angle subtended at entrance pupil point. These two lines

are termed the Sturm focal lines and are the portions of smallest

cross sectional area of the emergent bundle, and hence of greatest

light intensity on the basis of geometrical -optics. Consequently,

they are the positions where the best image of the obHque object

point lies. But whereas each point has been considered hitherto

as having but one image, here the point has two images, one at

O'p, the second at 0\, which are referred to, respectively, as the
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primary and secondary images. The primary image is a short

line, or rather the short portion of the arc of a circle concentric

about the axial point in the image plane. This is illustrated in

Figure 13, which shows a section of the emergent bundle in the

vicinity of the image.

Let it be assumed that the object to be imaged is a system of lines

passing through the axial point of the object plane and a system of

concentric circles, as shown in Figure 14. On the primary image

surface each point is imaged as a short circular arc having its center

Fig. 13.—Imagery in the neighborhood of an astigmatic image point

The lower diagram shows the Sturm's focal lines, the elliptical sections of the bundles on either side,

and the so-called circle of least confusion between the focal lines.

of curvature at the axial point. Consequently, the image will be

as shown by the second drawing of Figure 14, with the straight lines

diffusely imaged and with the circles sharply defined. However,
the imagery of the circles is not perfect, as the dotted circle will go

over into a continuous circle less bright than the solid ones. This is

because the image of each point on the circle is a short arc, and these

arcs bridge over the interruptions in the dotted circle, thereby pre-

venting their reproduction in the image. Similarly, in the secondary

image surface, one has the straight lines sharply defined and the
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circles diffused, and as before a dotted straight line is rendered as a

continuous one. To get the best average definition for such an
object, a surface approximately halfway between the primary and
secondary image surface should be selected in which the diffusion

is approximately the same in amount in all directions (see fig. 13).

The image on this surface is shown farthest to the right in Figure 14.

(a) FouK Image Suefaces.^^—It is therefore seen that one has

four image surfaces of importance corresponding to an object plane

perpendicular to the axis. The first is a plane surface normal to

the axis, conjugate at its axial point with the axial object point.

This contains the first order or Gaussian image of the entire plane.

There is, then, a curved surface of revolution, tangent to the first

order image plane at its axial point, which is the locus of all the

primary images of the points of the object plane and which has been

referred to as the primary image surface. There is a second similar

surface termed the secondary image surface which is the locus of all

the secondary images of the points of the object plane. Midway
between these two surfaces there is the fourth image surface, the

surface of best definition which cuts each emergent chief ray at the

point midway between the primary and secondary image points.

These last three image surfaces, primary, secondary, and of best

definition, though aU tangent to the first order image surface at its

axial point are, in general, not flat but curve away from the plane

surface as one recedes from the center of field. In the case of many
optical instruments it is the primary purpose of lens design to bring

these three surfaces as nearly into coincidence with the plane image

surface as possible.

(5) Distinction Between Curvature and Astigmatism.—The
curvature of the surface of best definition is simply referred to as

curvature of image or curvature of field. The failure of the primary

and secondary image surfaces to coincide is designated astigmatism.

When astigmatism is present, no amount of focusing will give a

sharply defined image, although there will be a position of best focus

as illustrated in Figure 14. If the primary and secondary image

surfaces coincide, the surface of best definition is also coincident with

the first two surfaces. If these three coincident surfaces are curved,

one has curvature of field without astigmatism. In such a case any

circular zone of the field may be made sharply defined by appropriate

focusing, but as a result of the presence of curvature all parts of the

field can not be sharply focussed simultaneously. If the curvatures

of the primary and secondary image surfaces are equal, but in oppo-

site sense, then the surface of best definition, lying midway between

them, is flat and coincident with the first order image plane. In

such a case one has a flat field; that is, freedom from curvature,

» There is a fifth surface, the Petzval surface, which will be introduced later. See p. 110.
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but the astigmatism is not eliminated. The marginal points can

never be focussed sharply, but all parts of the field will be best

defined on a plane surface when the axial point is sharply focussed.

(c) Equations of Curvatuke and Astigmatism.—In the pres-

ence of astigmatism the primary and secondary image surfaces

are different distances from the first order image plane, and, hence,

the section which it makes of the emergent bundle is an ellipse with

its two axes lying in the primary and secondary planes (see fig. 15).

The ellipse in the object plane, conjugate to the elliptical image in the

image plane, may be determined by first order imagery. The angles

at the entrance pupil point, subtended by the axes of this ellipse^

which lie in the primary and secondary planes, are defined as angular

primary curvature (Ang. Pri. Curv.) and angular secondary curvature

(Ang. Sec. Curv.), respectively. A second measure of the curva-

FiG. 15.

—

Sturm's focal lines, the primary image surface, the secondary image

surface, and the elliptical aberration area on the plane containing the paraxial

image point

ture and astigmatism is the distance from the first order image plane

to the primary and secondary image points. These values will

be referred to as the longitudiaal primary curvature (Lon. Prim.

Curv.) and longitudiaal secondary curvature (Lon. Sec. Curv.)

and are analogous to the longitudinal spherical aberration. A third

measure of curvature and astigmatism is the inverse of the radius

of curvature at the axial point of the primary and secondary

image surfaces. These will be designated as primary and secondary

curvature, (Pri. Curv.) and (Sec. Curv.). The values of these

different measures of curvature are determined by the equations

:

(Ang. Pri. CuTV.) = o^l+ 3(<p+9%V ^-firV^)) tan^ i^ (50)

(Ang. Sec. Curv.) =o {^+(<^+SfW<p' 4~^^^'^)} *^''' ^ ^^^^
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(Lon. Sec. Curv.)=^ fe + (^+^'^V' --gWcJi tan^ /3 (53)

(Pri. QuTY.) = l-\-z{<p+gV^' ^-gh^p'^G^ (54)

(Sec.Curv.)=^+(v^ +^^7iV4-^V^) (55)

A positive sign indicates that the image surface is concave toward

the incident light.

{d) Petzval Curvatuee.—It will be noted that if the quantity

in the round brackets vanishes the primary and secondary surfaces

will have the same curvature; that is, there will be no astigmatism.

In such a case the value of the curvature will be -i which is
n

known as the Petzval curvature and which defines the Petzval

surface. This is the only case in which the astigmatism can be

caused to vanish, and it follows that a flat image free from astig-

matism can not be obtained with a single lens except for the trivial

case in which ^ = 0. The curvature of the Petzval surface is of

fundamental importance. It is independent of shape of lens and
position of object or diaphragm in third order imageiy. In the

presence of astigmatism the primary image surface always curves

away from the Petzval surface three times as rapidly as the secondary

image surface. This is shown by the identity of the values of the

two curvatures except for the factor 3 in front of the rounded

parentheses.

(e) Normal Curvature.—If the diaphragm is in the plane of

the lens, then ^^ = and the two curvatures are —\-2np and -+ <^,n n
respectively. These have been termed the normal curvatures by
Taylor, and as they are independent of <t and tt, it follows that for

a single lens with central refraction the values of the curvature

are beyond the control of the designer except as ^ and n can be

changed. If the image is in the plane of the lens, then 7i/ = 0, and

again one has only the normal curvatures. This condition is ap-

proximately reahzed in the field lens of many eyepieces.

(/) Curvature Arising from Eccentric Kefraction Plus
Spherical Aberration or Coma.—The term in A represents the

contribution to the curvature resulting from the combination of

spherical aberration and eccentric refraction. The manner in which

this arises may be readily understood. In case of a real image and

undercorrected spherical, the rays passing through the margin of the
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lens come to a focus nearer the lens than do the central rays. Con-
sequently if a diaphragm is placed in front of or behind the lens to

produce eccentric refraction the images of object points nearer the

edge of the field will be produced, because of the selective action of

the diaphragm, by the edge rays. These rays are refracted most
strongly by the lens, and the positive curvature of the image surface

will therefore be increased.

Similarly, the term in {7 is the contribution to the curvature result-

ing from the combination of coma and eccentric refraction. But as

coma is asymetric, the direction of the shift changes with the sign of

g or Ji. With a single positive lens, A is rarely negative, and it fol-

lows that coma plus eccentric refraction is the chief means by which

one can secure negative curvature to compensate for the positive

curvature of the preceding term. By choosing the proper shape

factor, one may so determine A and C that the primary image sur-

face, the secondary image surface, or the surface of best definition

(having curvature equal to the mean of the primary and secondary)

may be made flat, but this flatness can not be secured without the

presence of astigmatism and coma.

(g) Control of the Curvature of a Single Lens.—It has

already been noted that when the diaphragm is in the plane of the

lens (^ = 0), or when the image is in the plane of the lens (7i = 0), it

is impossible to exercise any control upon the curvature and astig-

matism by changing the shape of the lens. The curvatures will be

normal, and the relatively small amount of control through change of

index is all that is available. If, however, a diaphragm not in the

plane of the lens is assumed, an additional degree of freedom is avail-

able and there are several methods of correction. One may set

<P+g'JiVj-9WO=0 (56)

in which case an image free from astigmatism but having the Petzval

curvature will be obtained. If one sets

^+2(^+^2/iV ~-gWC==o (57)

(the mean of primary and secondary curvatures) the surface of best

definition will be flat, but there will be considerable astigmatism.

Also either the primary or secondary curvature may be caused to

vanish. To obtain a solution it is necessary to solve a quadratic in

g, and it may frequently happen that the roots are imaginary.

If one returns to the lens of minimum spherical aberration of

Figure 7, it will be found that imaginary roots are obtained for each

solution suggested above. A little consideration will show that this

is to be expected. A correction of the normal positive curvature can
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only be secured by the selective action of the diaphragm plus spherical

or comatic aberration. But it has been shown that this lens is sub-

stantially free from each of these. If an infinitely distant object is

to be imaged by a single lens, and the field must be sharp and flat for

a considerable distance from the axis, it is necessary to effect a com-
promise. Some coma must be introduced with a consequent reduc-

tion of sharpness for points near the axis in order that sufficient

control may be secured to enable the marginal image points to be
brought into the plane of the image. The form usually adopted is

a concavo-convex meniscus with the diaphragm in front of the lens

or a convex-concave meniscus with the diaphragm following.

Coma is an aberration which causes the definition to fall off as

an object recedes from the center of the field. Astigmatism (q. v.)

has a similar effect, but whereas astigmatism is a function of tan^jS

coma is a function of tan ^ and is therefore the more important for

small values of j8. For a lens of large aperture coma may seriously

interfere with definition, even for points very near the axis. In the

microscope objective the elimination of coma is almost if not quite

as important as the compensation of the spherical aberration.

As astigmatism and coma each increases from center of field out-

ward, the effect of coma is frequently attributed to astigmatism and
curvature of field. With a point source the two are easily distin-

guished. If the image is formed near the edge of the field and viewed

under relatively low magnification (20 to 30 diameters) in the presence

of coma, an unmistakable side flare will be present.

The elimination of curvature and astigmatism is particularly

important in the case of photographic objectives. The field of view

is relatively large and, if definition is to be good over all the field,

there must be reasonable freedom from astigmatism and curvature.

In an instrument in which the image is viewed by the eye a moderate

amount of curvature is not seriously detrimental, as the eye can

compensate for this to a certain extent by varying the accommodation,

but on the photographic plate the entire image must be registered

simultaneously on a plane surface.

4. DISTORTION OF A SINGLE THIN LENS

The presence of any of the preceding aberrations has a detri-

mental effect on the definition. Distortion differs from these, as

its presence in no wise affects the quality of definition of the image

of a point, but rather its location in the image plane. In the absence

of distortion a geometric figure in the object plane is imaged as a

geometrically similar figure in the image plane. In the presence of

distortion this metric relationship between object and image is not

preserved.
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In Figure 16 cases of positive and negative distortion are illus-

trated. If the distortion is positive, a rectangular network is imaged

as in the upper left-hand figure. This is termed *' pincushion '^

or "hour-glass '' distortion. With negative distortion the lines are

bent in the opposite sense and one has " barrel'^ distortion. The
distortion of a lens is always important if the metric properties

of the image are to be utilized. A binocular may have considerable

distortion and still be satisfactory. In fact, it may even be desirable

to introduce a small amount of positive distortion as otherwise a

straight line near the edge of the field may appear to be bowed in

at the center because of the circular boundary of the field of view.

A photographic lens used for landscape photography may, without

serious detriment, possess a great deal of distortion, as there are

generally few straight lines

in the field of view by which

the distortion may be made
evident. But if the lens is

to be used as a process lens

for copying drawings, or if it

is to be used for the produc-

tion of aerial photographs

from which maps are to be

constructed, it is obviously

of the greatest importance

that the distortion be made
as small as possible.

(a) Conditions Necessa-

ry FOR Freedom from Dis-

tortion FOR ALL Positions

OF Object Plane.—In Fig-

ures 17 and 18 the paths of

Fig. 16.- -Images as produced

distortion

a lens with

, . . - •+!, J '^^® left-hand images show positive or "pincushion"
tne prmcipal rays Wltn and distortion, in the right-hand images one has negative or

without distortion are illus- "barrel" distortion.

trated. In the upper diagram of Figure 17a bundle of rays is illustrated

which passes through the pupil pointsD and D' and which has the follow-

ing characteristics: If each incident ray and its conjugate refracted

ray are produced to intersect, all the points of intersection lie in a

plane normal to the axis of the lens. (The trace of this plane is

indicated by the dotted line.) Also the incident and refracted

pencils converge homocentrically to the pupil points D and D\
These two characteristics will be subsequently referred to as (a)

The coplanarity of points of intersection of incident and refracted

chief rays. (6) The freedom of pupil points from aberration.

In the case, illustrated in the upper diagram. Figure 17, it is evident

that
tan a' a tan a\ tan a'

tan aa tan at tan a^
etc. (58)
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and if any object plane I is selected, homologous lengths in it and
the conjugate image plane 7' 0' have the constant ratio expressed

by the equation
ro\__ro\_ro\_^^^

^^^^
10. 10, "

70,
-= etc.

Geometric figures in the object plane are imaged as geometrically

similar figures, and the image is said to be free from distortion.

In the second dia-

gram of Figure 17

the intersections of

incident and re-

fracted chief rays

are neither coplanar

nor are the pupil

points free from ab-

erration. But even

so, it is possible for

equation (59) to be

satisfied for a par-

ticular object and
image plane as, for

example, those indi-

cated in the diagram,

in which case the im-

age is free from dis-

tortion. It is only

necessary that the

distortions arising

from the two causes

compensate each
other. But in any
given case this com-
pensation can only

be effected for a

particular pair of

planes, and by such

means freedom from

distortion for all

pairs of planes, as in the first case of Figure 17, can not be obtained.

The upper diagram of Figure 18 illustrates the case in which one has

coplanarity of the intersection points, but the pupil points are not

free from aberration. On the other hand, in the lower figure one

has freedom from aberration of the pupil points but not coplanarity

of the intersection points.

{h) Equations of Distortion.—The displacement of a point from
its distortion free position is in a radial direction toward or from the

-Two lenses which give a distortion-free

image

In the upper diagram the intersections of conjugate chief rays

lie in a plane normal to the axis, and the pupil points D and 2>' are

free from aberration. Any pair of conjugate planes are free from

distortion. In the lower diagram the intersections of the chief rays

do not lie in a plane and the pupil points show considerable aberra

tion. For the particular pair of conjugate planes indicated there

is no distortion, but this will not be true for other pairs of planes
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center of the field. One may use this displacement (Dist.) as a

measure of distortion, or one may in the usual manner project this

displacement backward through the lens into the object plane and
use as a measure the angle subtended at the entrance pupil point by
this length. This last measure will be referred to as the angular

distortion (Ang. Dist.). The values of these two measures of distor-

tion are given by the two equations

(Ang. Dist.) =J^^V^^+^'^Dtan^ /3, (60)

Fig. 18.

—

Two lenses which show distortion

In the first diagram the chief rays intersect in a plane, but the pupil

points have aberrations. In the second diagram the pupU points are free

from aberration, but the conjugate chief rays do not intersect in a plane.

(61)

The coefiicients of distortion T and B are defined by the equations

Taylor
71+1

,
1r=

Continental
71(71—1) n

y^ir2(n+l)l_21_^_ 1
^L 71 r nx 71— 1 J

(62)

(63)
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Taylor

^ n+ 2 ^. 4(71+1) ,
371+ 2 , ,

n^ ,_,
?^(7^— 1)2 'n(7i— 1) n {n—iy ^ ^

Continental

p^4r 71-
, 37l+l <p2

,
37^+ 2 y 271+

l

ip^ 71+ 2 (^ 4(71+1) v?l

<^C(^^~'1)^*^^~~1 3?
"^

71 x^ n—l r n r^ n rxj

(65)

In the above formulas the distortion is measured from the position

of the distortion free point to the point where the chief ray actually

pierces the first order image plane. A positive value of the coeffi-

cient of tan^ jS indicates that the actual position of the image is

farther from the center of the field than its distortion free position,

a negative value the reverse.

Often the distortion is expressed as a percentage. In such a case

the distortion is the ratio of the displacement of the point from its

true position to the distance of distortion-free image point from

center of field expressed in hundredths. It is evident that the

measure of angular distortion or linear distortion will be identical

in this system. The percentage distortion in object plane (Per

Cent Dist. Object Plane) is readily obtained from equations (60)

or (61) and is given by the formula

(Per Cent Dist.) == 2o{gVT+ g%cp' f)tan2 /3 (66)

The condition for coplanarity of intersection points of chief rays is

2^=0. This has been sometimes referred to as the condition for con-

stancy of tangent ratio (equation (58)), but this does not seem desirable,

as the only interesting case in which the tangent condition is satisfied

is that shown in the upper diagram of Figure 17, and for this it is

equally necessary that T= and B= 0. It will be noted that B is the

same as the coefficient A except that e and x are substituted for tt and

s (see equations (23) and (24)), respectively. B may be referred to

as the coefficient of pupil point aberration, since it is a measure of

the spherical aberration of the conjugate entrance and exit pupil

points. In Figure 18 the upper diagram illustrates the case T=0,
B^O; the lower Ty^O, B= 0.

If T and B do not equal zero separately, but the quantity within

the parentheses vanishes (equations (60) and (61)) one has the type of

freedom from distortion illustrated in the lower diagram of Figure 17.

As the parentheses contain a term in h, it is evident that it will vanish

for only a particular pair of conjugate planes, an interpretation con-

sistent with the discussion of the diagram given above.

(c) Thin Lens of Zero Distortion.—Reference to equation (60)

shows at once that the distortion vanishes for the case g = 0; that is,
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when the entrance and exit pupils are in the plane of the lens. This

will be true for a thin lens of any shape and for any position of

object. A second interesting case arises when ^ = ; that is, when the

image is in the plane of the lens. The distortion is then independent

of the value of B, and a distortion-free image can always be obtained

by solving the linear equation T=0. If one attempts to solve the

equations T=0, B= 0, it is found that the roots are imaginary, and,

hence, with a single thin lens, it is impossible to obtain the condition

illustrated in the upper diagram of Figure 17. However, this case is

important, as such a condition can be obtained with a system of

lenses.

If the position of the object plane is given, h is determined. Equa-
tion (60) can then be equated to zero, yielding an equation which is

quadratic in a and linear in g. Hence, for a lens of any shape, a

value of g can be found which gives an image free from distortion, but

if the position of the entrance pupil is held fast and one tries to deter-

mine a 0- for which the distortion vanishes, there will be many cases

in which the roots are imaginary and no real solution can be obtained.

V. FIRST ORDER EQUATIONS EXTENDED TO A SYSTEM
OF THIN LENSES

In the preceding treatment of first and third order equations of

imagery, the thin lens has been considered as a unit, and the control

of the aberrations which may be exercised in the case of the single lens

has been dealt with in some detail. The limited extent to which the

aberrations may be eliminated in a single lens makes necessary the use

of several lenses forming an optical system. The introduction of

each additional lens adds degrees of freedom which permit the more
perfect compensation of the different aberrations. Before the

aberration equations can be applied to the system of thin lenses, it is

necessary to develop the application of the first order equations in

order that the different parameters may be determined for the

components of the system.

1. STEP-BY-STEP METHOD OF LOCATING THE IMAGE FORMED BY
A SYSTEM OF THIN LENSES

The image of an object point formed by a system of^thin lenses may
be located by the application of equations (2) and (3) in succession to

each lens. The lenses are numbered in order beginning with the one
which receives the incident light, and subscripts are used to denote

the lens to which any length is referred. For the first lens

h-H
3/'i= ^2/. (68)
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Before these formulas are applied to the second lens it is necessary to

use the transformation formulas

S2 = si'-t\ (69)

2/2 = 2/'i (70)

where ^'i = the distance measured along the axis from the first to the

second lens.

Equations (2) and (3) can now be applied to the second lens, after

which transformation equations similar to Nos. 69 and 70 are applied

before proceeding with the third lens. The significance of the trans-

formation equations is illustrated in Figure 19. This process is

Fig. 19.

—

Imagery by a system of thin lenses

The upper diagram illustrates the derivation of the transformation equations

when the final image is located by the step-by-step method. In the lower

diagram are shown the lengths which enter when the lenses are combined by
equations (71), (72), and (73),

continued until the image formed by the last lens, which is the image

of the original object point as produced by the entire system, is

located. This step-by-step method of locating the image is usually

necessary in the design of an optical system, as the values of the

object and image distances for the intermediate lenses are required in

the aberration equations.

2. EQUIVALENT FOCAL LENGTH AND PRINCIPAL POINTS OF A
SYSTEM OF LENSES

(a) A System Composed of Two Lenses.—If desired, the en-

tire system may be combined and replaced by an equivalent thin

lens, in which case the location of an image point can be determined
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by a single application of equations (2) and (3). The focal length

of the thin lens, equivalent to a two-lens system, is determined by
the equation

One next determines the location of the principal points Pi ,2 and

P'1,2. The first principal point is on the axis, in the object space,

and its distance from Fi, the vertex of the first lens, is given by the

equation

Similarly, the second principal point, which is in the image space, is

distant ViP'1,2 from the vertex of the second lens, where

^^^'-=/Ti#f; ^''^

If FiFi,2 or F2P'i,2 is positive, it indicates that the incident light

passes through the vertex of the lens before arriving at the respective

principal point. If the optical system consists of only two lenses,

the point conjugate to any object point can be determined by a

single application of equations (2) and (3), provided that s and s'

are defined as follows:

s = distance from Pi,2, the first principal point to the projection on

the axis of the object point.

s' = distance from P'1.2, the second principal point, to the projection

on the axis of the image point,

s or s' is positive, if a generating point, moving in the direction of

the incident light, passes through the principal point before

it arrives at the object or image point.

y and 2/' are defined as before (see p. 80).

The second drawing of Figure 19 illustrates the application of

equations (2) and (3) after the equivalent focal length of the two-

lens combination has been determined.
,

(b) A System of More Than Two Lenses.—If there are more
than two lenses in the system, equations (71), (72), and (73) may
by applied successively until the equivalent focal length of the entire

combination has been determined. It is convenient to rewrite these

equations in the following form

:

^^-/Hf^ ^'^

-P\PJ2

30906°—27 4



120 Scientific Papers oj tlie Bureau of Standards [ voi. n

The subscripts i and 2 refer to the first and second members which

are being combined, and either member may be either a single lens or

a combination. The symbols with the double subscripts /i,2, Pi,2, P'1,2

refer to the equivalent focal length, first and second principal points

of the system formed by the combination of members 1 and 2. The

length F'l P2 is the distance from the second principal point of the

first lens system to the first principal point of the second system and
is positive if, when considered in the sense indicated, it extends in

the direction traveled by the incident light. If the first or second

member to which the formula is applied is a thin lens instead of a

system of lenses, no difiiculty will be introduced if it is remembered
that for a thin lens the principal points are coincident with the

common vertex of the two surfaces. It is evident that by the

repeated application of equations (74), (75), and (76) the focal

length and principal points of a system made up of any number of

lenses can be determined. It should be noted that at each step the

location of the principal point is given with respect to the principal

point of one of the preceding subordinate members. Hence, to

determine the actual location of the principal point for the complete

system it is necessary to retrace and sum up all the partial distances.

(c) A System of Thin Lenses in Contact.—An important

special case is a system composed of any number of lenses of zero

thickness in contact. In applying equations (74), (75), and (76) the

distance between the two principal points PiP'2 in each case is zero,

and as a final result it will be found that for Ic lenses in contact

^-Si <">
1

and that the principal points of the system coincide with the common
vertices of the several thin lenses.

{d) Telescopic System.—An important case arises when two

subordinate systems to be combined are so separated that the dis-

tance between their inner principal points is equal to the sum of

their focal lengths. In such a case /i 4-/2 — -^'1^2 (see equations

(74), (75), and (76)) is zero, and the focal length becomes infinite

with the principal points at the infinite points of the object and image

space. Such a system is telescopic and equations (2) and (3) do not

apply. In a telescopic system any point on the axis in the object

space may be taken as an origin in the object space, provided that

in the image space the conjugate point is taken as origin. The
equations of imagery for a telescopic system are

'^'l2=A2-^1.2 (78)— • M 1,2

2/'i.2=A— 2/1.2 (79)
'^1,2
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/i = focal length of first subordinate member of telescopic system.

J2 = focal length of second subordinate member of telescopic system.

A = angular magnification produced by the telescopic system and is

defined by the equation

A=^j' (80)

Mi,2 = projection on the axis of the distance from any selected axial

origin to object point.

w'i,2 = projection on the axis of the distance from, origin in image

space to image point. The origin selected in the image space

must be the axial point conjugate to the origin selected in

the object space and may be located by application of equa-

tions (2) and (3) in succession to the lenses of the system

(see p. 117).

Ui,2 or u\,2 is positive if a generating point, when moving in the

direction of the incident light, passes through the origin

before it arrives at the object or image point.

2/1,2
= distance of object point from the axis.

2/'i,2
= distance of image point from the axis.

2/1,2 or y\,2 is positive if measured upward from the axis in the plane

of the diagram.

3, CHARACTERISTICS OF PARAXIAL IMAGERY

For the nontelescopic system equations (2) and (3) are the funda-

mental equations of imagery whether the system is composed of one

or several thin or thick lenses, together with reflecting prisms.

y'=jy (3)

As s and s' are the distances from the principal points to object

and image points, respectively, projected upon the axis, it is evident

that all points in a plane perpendicular to the axis at the point s = So

go into a plane in the image space perpendicular to the axis at the

point s'=s'o. Planes perpendicular to the axis, therefore, go into

a family of planes perpendicular to the axis. The plane perpendicular,

to the axis at the point s = —/ goes into the infinitely distant plane

in the image space. The plane s = —/ is called the first focal plane

of the system, and the point where it intersects the optic axis is

termed the first focal point. The infinitely distant plane perpendic-

ular to the axis in the object space goes into a plane perpendicular

to the axis at the point s' =/. This point and plane are, respectively,

the second focal point and focal plane. The distance measured
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along the axis from the vertex of the first surface of an optical system

to the first focal point is the front focal length (F. F. L.) of the system.

If FiPi, rni is the distance from the first vertex to the first principal

point of the system.

(F.F.L.) = FiP,.-/,l.m (81)

Similarly, the distance from vertex of last surface to the second

focal point is the back focal length (B.F.L.).

(B.F.L.) = F^P\„.+/,1, m (82)

These lengths are illustrated in the upper diagram of Figure 21.

(a) Lateral Magnification.—A short element of length by (see fig.

20) perpendicular to the axis at / will have its image by' perpendic-

FiG. 20.

—

Elements entering into 'the derivation of the

values of the different magnifications

ular to the axis at I'. The ratio of these two lengths is termed the

lateral magnification and will be denoted by M. From equation

(3)

M=,^ ^/=!: (83)
8y= o by s ^ '

Since M is a function of s and s' , but not of y or y\ it follows that

object and image, when they lie in two conjugate planes perpen-

dicular to the optic axis, are geometrically similar with the ratio of

homologous lengths equal to M

.

(6) Longitudinal Magnification.—Similarly, a short element

of the optic axis in the neighborhood of / is imaged as a short element

of the axis at I'. Ijet bs and bs' represent these two lengths. The

limit of -r- ^s bs approaches zero is termed the longitudinal magnifi-

cation and will be denoted by L. Then from equation (2)

lim bs!_^s'^

bs = o bs s^
(84)

(c) Angular Magnification.—Assume that there is a line

drawn through I (fig. 20) making an angle a with the optic axis.

It is imaged as a line through /', making an angle a' with the optic
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dy . by'
axis. If ^ is the tangent of a, -^ is the tangent of a'. The limit

of the ratio -r > as a approaches zero is termed the angular magnifi-
tana

cation and will be denoted by A. From equations (83) and (84)

. _ lim 5^_M_s

In general, the longitudinal and lateral magnifications are not equal,

and it follows that a spatial object and its image are not geometrically

similar. If s approaches as a limit, the ratio s'/s approaches 1 as

a lunit. For the two conjugate points s = 0, s' = —that is, for the

two principal points—therefore, M and L are equal to 1, and this

is the only pair of points in a nontelescopic system for which these

two magnifications are equal. The planes perpendicular to the

axis through these two points are planes of unit lateral and longi-

tudinal magnification. A spatial object and its image in the neighbor-

hood of the principal points are approximately similar and equal in

size, the approximation, in general, becoming better as the object

is decreased in size and brought nearer to the principal point. From
equation (85) it is evident that the angular magnification is also

unity at the principal points.

(d) Magnifications of an Optical System.—Equations (83),

(84), and (85) give the values of the magnifications for a single

lens. For a system of lenses the magnifications are equal to the

products of the magnifications of the individual lenses. Thus, for

a system of K lenses

Mi.k=MiM2M3 . . Mk (86)

with similar equations for the other magnifications.

(e) Definition of Focal Length in Terms of Tan a.—A pencil

of parallel rays in the object space may be considered as a pencil

of rays proceeding from a point of the infinitely distant plane. Since

this plane is imaged as the plane s' =/, it follows that such a pencil

of rays after refraction will come to a focus in the second focal plane.

In Figure 21 assume that the pencil of parallel rays makes the angle

a with the axis and consider the ray of the pencil which passes through

the first principal point. The two principal points are conjugate;

hence the refracted ray v/ill pass through the second principal point.

Furthermore, it will make an angle a with the axis, since the two
principal points are points of unit angular magnification. But the

distance from the second principal point to the second focal plane is
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/. Therefore, the ray, after refraction by the system, will intersect

the focal plane at the distance /tan a from the axis. But the

entire pencil of parallel rays making an angle a with the axis inter-

sects the second focal plane at the same point. HencCj^^all rays

in the object space, making an angle a with the axis, cut the second

focal plane at a point distant /tan a from the axis. This is some-

times used as a definition of the focal length, the equation being

-' tana (87)

where

/= equivalent focal length,

a = angle between a ray in the object space and the optic axis,

2/' == distance from optic axis to point where the ray after refrac-

tion intersects the second focal plane.

Fig. 21.

—

Derivation of the definition of the focal length in terms

2/' and tan a

Similarly

/= y
tan a'

(88)

where

a' = angle between a ray in the image space and the optic axis,

2/
= distance from optic axis to point where the ray before

refraction intersects the first focal plane.

(/) Magnification of a Telescopic System.—For a telescopic

system equations (78) and (79) are fundamental,

^
u^,2 (78)1.2-

y\x

A'l.2

1

a,

2

2/1.2 (79)
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With further reference to Figure 20, assume as before that dy is a

short element of length perpendicular to the axis at / and that dy^ is

its image perpendicular to the axis at /'. Then, from equation (79)

lim 5y^_J.
^-8y^o 8y-A ^^^^

Similarly from equation (78)

^ 8u= o du A' ^ ^

The angular magnification is A, and its value has already been

given in equation (80). The telescopic system, therefore, differs

from the nontelescopic system in that M, L, and A are constant for

all pairs of conjugate points.

4. APPLICATION OF FIRST ORDER EQUATIONS TO DETERMINE THE
POSITION OF STOPS AND THE FIELD OF VIEW

Before the third order equations can be applied to an optical

system it is necessary to determine the entrance and exit pupils of

the system from which one locates at once the entrance and exit

pupils of each lens. In the optical system there may be one or more
diaphragms spaced along the axis, and, in addition, the cell of each

lens will be referred to as a diaphragm. Of this series there is, in

general, some one which is the limiting diaphragm that determines

the maximum aperture of an incident bundle which is entirely trans-

mitted by the optical system. This particular diaphragm is the iris,

and the diaphragms conjugate to it (see below) in the object and

image spaces are the entrance and exit pupils, respectively.

(a) Method of Identifying the Entrance and Exit Pupil

AND Iris.—Frequently one can not determine by simple inspection

which one of the several diaphragms is the iris. In such a case each

diaphragm which is judged to be a potential iris is projected back-

ward through all parts of the optical system lying between it and the

object, and thus one locates in the object space areas each of which

is conjugate to a material diaphragm of the system. Each one of

these will be referred to as a conjugate object space diaphragm.

Kepeating the argument which was used in locating entrance and

exit pupils of a single lens (see p.84), it is evident that each diaphragm

of the system will transmit a bundle of rays which, in the object

space, just clears its conjugate object space diaphragm. It is diffi-

cult to compare the diaphragming effect of the different apertures

directly, as they lie in the different media, which are between the

different components of the system, but the corresponding conjugate

object space diaphragms can be compared directly, as they all lie in

the same medium, which is the object space of the optical system.
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Hence, it is seen that the conjugate object space diaphragm which

restricts the entering bundle the most—that is, which subtends the

smallest angle at the axial object point—^is the entrance pupil of the

system. The actual diaphragm conjugate to the entrance pupil is

the iris, and it may be in the object or image space of the system or

between any pair of components. The area in the image space con-

jugate to the entrance pupil (with respect to the entire system) and
which will also be conjugate to the iris (with respect to the compo-
nents of the system following the iris) is the exit pupil.

These relations are illustrated in Figiu-e 22, which shows the

optical parts of an elementary compound microscope with object

at 7, objective at Li, diaphragm at EF, and eyelens at L2. There

are three potential irises in the system, the clear aperture of ii

represented diagrammatically as limited by the diaphragm J.J5,

Fig. 22.

—

Pupils and windows of an optical system

the diaphragm EF, and the clear aperture of L2 represented by
diaphragm GH. As AB is in the plane of the objective, when pro-

jected into the object space, it is self-conjugate. The conjugate

object space diaphragm corresponding to EF is E^F^ and that con-

jugate to GH is G^H\ It is apparent that AB subtends the smallest

angle at I, and it is therefore the entrance pupil with entrance pupil

point at D. In this case AB is also the iris. The conjugate image

space diaphgram is A'-B'^ and is the exit pupil.

In the case illustrated, the tendency when using the microscope

is to bring the entrance pupil of the eye (this is the virtual diaphragm

in the object space conjugate to the iris of the eye and for many
purposes can be assumed to be coincident with the iris) into co-

incidence with the exit pupil of the telescope because in this posi-

tion the largest field of view is secured. This is the desirable con-

dition, and when possible an instrument for visual use should be

designed with a real exit pupil located sufficiently distant from the

field lens to permit the entrance pupil of the eye to be brought into
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coincidence with it. But in some instruments, notably the Gali-

lean telescope, the exit pupil is virtual; that is, it is in front of the

eyelens, and the eye can not be brought into the desired position.

In other cases, particularly with instruments in which a short focus

eyepiece is employed, the exit pupil is real, but so close to the eyelens

that mechanical interference by the eyelens cell prevents the desired

positioning of the eye. In such a case the positon of the eye must
be assumed and the entrance pupil of the eye must be treated as

one of the potential irises of the system. In general, the end result

will be that the entrance pupil of the eye is the exit pupil of the

instrument, and it follows that the entrance pupil of the instrument

is the conjugate diaphragm in the the object space which is con-

jugate to the entrance pupil of the eye.

(h) Entrance and Exit Windows and Field Diaphragm.—
After the entrance pupil point has been located, one is in a position

to determine the entrance window. Of the conjugate object space

diaphragms, the one subtending the smallest angle at the entrance

pupil point is the entrance window, as it is the one which limits

the angular apertures of a pencil of chief rays, the vertex of which

is at the entrance pupil point. The actual diaphragm to which

it is conjugate will be referred to as the field diaphragm, and the

corresponding conjugate image space diaphragm is the exit window
(see p. 86). In Figure 22 (see lower diagram) E'F^ is the entrance

window and EF is the field diaphragm. The exit window in this

case is in the plane of the image and is not shown in the diagram.

For a microscope it is ordinarily to the left of /.

As in the case of the single lens, for a combination the entrance

pupil determines the maximum aperture of an incident bundle

which is permitted to pass through the optical system. The exit

pupil similarly limits the emergent bundle although as the two pupil

points are conjugate a bundle which just fills the entrance window
will not be further restricted by passage through the exit pupil.

In a similar manner, the entrance and exit windows, respectively,

limit the field of view in the object and image spaces. The en-

trance window is said to limit the true field. The angle at the en-

trance pupil point, subtended by the radius of the entrance window,

is the maximum angle which any chief ray may have and pass

through the entrance window. Double this maximum value of

jSi is defined as the true angular field. Similarly for the Ic^^ lens

the angle subtended at the exit pupil point by the radius of the exit

window is the maximum value of ^\, and is defined as half the

apparent angular field. The value of ^i is indicated in Figure 22.

If the entrance window lies in the object plane, the exit window,

which is conjugate, will lie in the image plane, and the extent of the

image will be limited by a sharp, well-defined boundary which,



128 Scientific Papers of the Bureau of Standards [voi.22

in an instrument designed to be used visually, will be in focus when
the eye is accommodated for the image. Such a condition is usually

desirable. If the entrance window is not in the plane of the object,

the image will be vignetted at the edge and the illumination of the

field at the edge will gradually fall off as shown in Figure 3.

VI. ABERRATION EQUATIONS EXTENDED TO A SYSTEM
OF THIN LENSES

Before applying the equations of the third order to a combination

of lenses it is necessary to extend the definitions of the parameters

which have been previously defined for a single thin lens. It will be

assumed that the axial object point has been carried through the

system step by step (see p. 117), and for each lens there is an s and an

s\ Also, the entrance pupil of the system has been located (see

p. 125), and its axial point has been carried through the system by
the step-by-step method.

From the radii of curvature of each lens one determines the value

of each shape factor (c), from the values of the s's each position factor

(tt) is determined, and from the x's the eccentricity factor («) for each

lens is found. The value of h for the first lens of the system has been

defined by the equation

^^-A' (IS)

and 7ii is seen to be the ratio of the height of incidence of ray on first

lens to height of incidence of same ray on the plane of the entrance

pupil of the first lens, which is also the entrance pupil for the combi-

nation of lenses. Any subsequent lij say Ti^, is the ratio of the height

of incidence of a ray on the Z:*^ lens to the height of incidence of the

same ray on the plane of the entrance pupil of the system of lenses.

Consequently,

h =h^ (91)
1

and, in general,

7 7 gfc
7.

^2^3- '-gk /HONfh = /^-i 77— =% „/ „/
. „/
—

(92)
S k_i S iS 2' 'S k_i

These relations are illustrated in Figure 23.

In a similar manner the value of g for any lens of a system is the

height of incidence of a chief ray divided by the tangent of the angle

between the chief ray and axis at the entrance pupil point. There-

fore,

gi=xi (16)

92 =91^ (93)X 1

X^ X^3' 'Xii /(\A\
gy. = 9^-1 -}— = 9i , , _, (94)

dy b_l *C let/ 2 ' dj k_X

These relations are illustrated in Figure 23.
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Although his a. ratio and without dimensions, it may be interpreted

physically as numerically equal to the height of incidence on the

corresponding lens of a ray which originates at the axial object point

and which passes through the plane of the entrance pupil at a point

distant one unit from the axis. Of course, in general, the lenses of a

system will not be large enough in diameter to transmit such a ray,

but one can disregard this in applying the first order equations. In

the case of ^, one

has not a ratio but o ohi oh^

an actual length
which may be in-

terpreted physi-

cally as the height

of incidence of a

chief ray which
makes an angle of

45° with the axis at

the entrance pupil

point. These two

hypothetical rays

are sometimes re-

ferred to as the

two auxiliary rays

employed in ap-
plying the third
order equations.

The equations

governing the design of an optical system composed of thin lenses are

Fig. 23.- -Determination of g and h by the auxiliary rays

traced through an optical system

S=i:hcp (95)

P=s

(Ang.Lon. Chr.) = 2oS
¥<p

(Ang. Lat. Chr.)= -tan ^iZgh

(Ang. Sph.)=^S/iV^

(Ang. Coma) = |o2 tan ^{L{gW<p^A-2Wq>^0

(96)

(97)

(98)

(99)

(100)

(Ang. Pri. Curv.) =0 tan^ /3i Tp+ SS (<p+ gV^^ ^-g^^'^cS] (101)

30 The above values of the angular aberrations are in radians. To reduce to minutes, multiply by 3,438.

Log. 3,438=3.5363.
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(Ang. Sec. Curv.) =o tan^ ^^ fp+ Z {<p-{-g%V ^-^V^^^l (102)

(Ang. Dist.) =1 tan^ /3iS (^gVT+g%^' |) (103)

The condition for cementing two surfaces is

^1
= r <^i+iH T ^1 (104)

Equation (95) has been added to the aberration equations. If the

object point selected is at an infinite distance or if the entrance

pupil point coincides with the first principal point of the system, S,

as defined by equation (95), is the reciprocal of the E. F. L. of the

system ^^ In substantially all cases one or the other of these two
conditions is approximately realized, and equation (95) serves for

determining exactly or approximately the E. F. L. Its advantage

over the expressions which have been previously given for the focal

length (see equation (74)) lie in the fact that the right-hand member
is expressed in terms of the parameters which are used in the aberra-

tion equations. Equation (96) defines P, the 'Tetzval curvature"

of a system of lenses which enters later in equations (101) and (102).

Frequently in a lens system it is desired that two successive lens

components be cemented together. In such a case it is necessary

that the two adjacent faces have the same curvature. Equation (104)

gives the necessary relation between the two shape factors if the itJi

and (i+l)st lenses are cemented. This equation is readily derived

from equations (9).

The remaining equations of the group are extensions of those

already given. The summation sign in each case indicates that one

term is to be formed for each lens of the system. The angular value

of the aberration, which is the value given by each equation, is the

angle at the entrance pupil point, subtended by the appropriate

linear dimension of the aberration disk when projected backward

through the system into the object space.

For convenience the sign conventions of the aberrations will be

given in condensed form.

(Ang.Lon.Chr.) is positive if the image of an axial point formed by
the longer wave length (X') is displaced with respect to a similar

image formed by the shorter wave length (X'') in the direction trav-

eled by the incident light.

(Ang.Lat.Chr.) is positive for a positive value of tan ^i if the

image of a marginal point formed by the longer wave length (X') is

farther from the axis than that formed by the shorter wave length

(X^Q.

31 Schwarzschild; Untersuchungen zur Geometrischen Optik, III Abh, d. K. Gesellschaft zu Gottingen,

IV, No. 1, p. 9.
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(Ang.Sph.) is positive if the image of an axial point formed by
marginal rays is displaced with respect to that formed by paraxial

rays in a direction opposed to the incident light.

(Ang.Coma) is positive for a positive value of tan j8i if the diffuse

flare of the comatic image extends from the axis.

A curvature which is positive indicates that the image of an oblique

point is displaced from the image plane (a plane normal to the axis

at the paraxial image of an axial point) in a direction opposed to

that traveled by the incident light.

(Ang.Dist.) is positive for a positive value of tan /3i if the actual

image point is displaced from the axis with respect to the position of

a distortion-free image point.

VII. APPLICATION OF THE THIRD ORDER THIN LENS
EQUATIONS TO OPTICAL DESIGN

There are two applications of the aberration equations in lens

design. In the first, and perhaps less important, the optical system

is completely defined and one makes a straightforward application

of the equations to determine the values of the several aberrations.

In the second application the problem is the inverse of the first.

The desired values of the aberrations are known, and certain param-

eters of the optical system, most frequently the shape factors, are

left undetermined and introduced as unknowns in the equations. A
solution then determines an optical system having the third order

imagery of the desired characteristics.

1. DIRECT DETERMINATION OF ABERRATIONS OF A RAMSDEN
EYEPIECE BY THE THIRD ORDER EQUATIONS

The aberrations of the eyepiece system shown in Figure 24 are to

be determined. The upper drawing shows the course of a bundle of

rays proceeding from an axial object point. The lower diagram

shows the course of a bundle of chief rays which is brought to a focus

at the center of the exit pupil. The constructional data of the system

are

oo

1. 51824 2. 5

-16.20

1. 00000 23. 5

+ 16.20

1.51824 1.5
00

An assembly of dimensions in this form will be commonly used to

specify an optical system. All lengths are measured in millimeters.
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The central column gives the radii of curvature in order beginning

with the one which receives the incident hght. The column to the

left gives the index of the medium lying between each pair of surfaces,

and the right-hand column gives the axial thickness. An air space is

denoted by the appearance of the index 1.00000 in the left-hand

column. The design is that of a typical Ramsden eyepiece with the

lenses made of borosilicate crown.

{a) Application of First Order Equations.—In all the com-

putations the thicknesses of the lenses will be neglected and lengths

will be measured from the vertices of the curved surfaces. By
equation (1)

Fig. 24.

—

Ramsden eyepiece

The upper diagram shows the course of the rays from an axial object

point. The lower diagram shows a bundle of chief rays,

/i=/2= +31.26

From equations (74), (75), (76), (81), and (82):

A2= +25.04

FVPi.2= -7^1.2= +18.83

B.F.L.= -F.F.L.= +6.21

It will be assumed that the eye is accomodated for parallel rays, in

v/hich case the object is placed at the first focal plane as indicated in

the upper diagram of Figure 24 and

Si=-6.21

By equations (67) and (69)

Si =-6.21, S2 =-31.25

s'i=-7.75, s'2= o^
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(6) Determination of Pupils and Windows.—In Figure 24 a

diaphragm has been indicated at EFj which corresponds to the

pupil of the eye. It is fairly obvious on inspection that this will be

the iris of the system, but for purposes of illustration the iris and

the entrance and exit pupils will be located by the method stated on

pages 125 to 128. The three potential diaphragms to serve as the

iris are the apertures of the two lenses AB and CD and the dia-

phragm EF. Each is to be projected into the object space by all

components of the system lying in front of it. The radii of the aper-

tures of the two lenses are 9 and 7 mm. It will be assumed that EF
(in the position of the observer's eye) is 4 mm in diameter and 10

mm to the right of lens CD.

The cell AB projects into itself since it lies in the plane of the

first lens. The angle subtended by its radius at the object point is

9
tan ~^ ^-^ = tan~^ 1.45.

The cell CD is to be projected backward into the object space of

eyepiece by lens AB. The conjugate diaphragm lies 100.9 to the

right of the object point. Its radius is 28.2 mm. The angle sub-

tended by it at the object point is tan~^ =-77^7^ == tan~^ 0.28

The diaphragm conjugate to EF is found by projection backwards

through both lenses of the system. It lies 165.8 mm to the left of the

object point and its radius is 13.2 mm. At the object point the

13 2
angle subtended is tan~^ Te^K^

"^ tan~^ 0.080. It is evident that the

diaphragm conjugate to EF subtends the smallest angle and it is

therefore the entrance pupil. The diaphragm EF is both exit

pupil and iris. The entrance window is the conjugate diaphragm
in the object space which subtends the smallest angle at the entrance

9
pupil point. The radius ofAB subtends the angle tan" ^^^^ = tan~^ 0.05

28
and for CD the angle subtended is tan~^ ^^77^ =tan~^0.11. Therefore,* 266 '

AB is the entrance window and the true field of view is 2 tan~^

9r^ = 6°. The exit window is the conjugate diaphragm in the image

space of the eyepiece. It lies 104.7 mm to the left of the exit pupil

point and the radius is 36.3 mm. The apparent field of view is

2 tan-^ = 38.20.

By equations (67) and (69)

xi = -172.0 X2 = +14.70
x\= + 38.2 x'2= +10.00
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(c) Evaluation of the Parameters.—From the values of the

s^s and the x's the values of <t, ir, € g and li can be determined for

each lens.

(7i=- 1.00 7ri=+9.06 €i = -0.64

(72=+ 1.00 7r2=+1.00 €2 = -5.26

^1= -172.0 y^i=- 0.0375 ^i= +0.0320

02=- 66.2 7^2= -0.1512 ^2= +0.0320

The index, j^-value, reciprocal of v and functions of n required in

subsequent substitutions are given below

:

71X=546 1.51824

- 0.01555

8.63

12.80

4.32

8.58

3.20

2.66

0.66

nF~nc
1

V

'n+2
n{n-iy

4(n+l)
n{n—l)

dn+ 2

n

n^

{n~lf

n+1
n{n—l)

I2n+ 1

n

I

n

By direct substitution in equations (23), (64), (39), and (62):

^1= +255.84

^2=+ 34.33

i5i=+ 27.17

^2==+ 69.41

(7i=+ 20.90

^2=+ 5.86

Ti=- 3.62

7^2=- 0.27

id) Application of the Third Order Equations.—The
value of 0, the radius of the entrance pupil, has already been found

to be 13.2 mm. The maximum value of ^ will be taken to be 1.52°,

which corresponds to an apparent field of approximately 20°. This

is approximately the limit of satisfactory definition in a system of
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this character. It has been found above that the actual angular

field, transmitted is 38**, but in use, as the eyepiece of a telescopic

system, a field stop in the front focal plane would be added which
would cut down the field, the amount depending upon the character

of definition considered satisfactory for the purpose at hand. There
will now be given in some detail, the numerical substitutions in the

various third order equations which lead to values of the aberrations

for this Ramsden eyepiece.

From equation (97)

(Ang. Lon. Chr.)

,
.
|(-0.0375)3 (0.0320) (0.01555) \.= +0.000018

^
*" A(-0.1512)2 (0.0320) (0.01555) i =+0.000300

+0.000318 radians.

.

.", =+1.09 minutes.
From equation (98)

(Ang. Lat. Chr.)

,. _ »J(-172.0) (-0.0375) (0.0320) (0.01555)1= -0.000085
g U.UZOi)^^_

gg^^ (-0.1512) (0.0320) (0.01555)/= -0.000132

—0.000217 radians.

= —0.75 minutes.
Fromequation (99)

(Ang, Sph.)

=fn Q'i^ (t-i 2^3
/(-0-0375)* (0.0320)3 (255.84)1 =+0.000010

\\}.M} Kio.£j
\(-0.1512)* (0.0320)3 ( 34.33) i = +0.000338

From equation (100)

(Ang. Coma)

= (0.375) (13.2)3 (0.0265)-

+0.000348 radians.

= +1.20 minutes^

[(-172.0) (-0.0375)3 (0.0320)3 (255.84)] =+0.000132

|-2(-0.0375)2 (0.0320)3 (20.90) I =-0.000104

I

(-66.2) (-0.1512)3 (0.0320)3 (34.33) [=+0.000445
[-2(-0.1512)3 (0.0320)2 (5.86) ] =-0.000475

-0.000002 radiaas

= —0.01 minutes.
From equation (101)

.
(Ang. Pri. Curv.)

(0.0320) (0.66) =+0.000196

3(0.0320) =+0.000890

3(-172.0)2 (-0.0375)2 (0.0320)3 (255.84) (0.25) =+0.002425

=13.2(0.0265)2
-3(-l72.0) (-0.0375) (0.0320)2 (20.90) = -0.003839

(0.0320) (0.66) =+0.000196

3(0.0320) =+0.000890

3(-66.2)2 (-0.1512)2 (0.0320)3 (34.33) (0.25) =+0.000783

^-3(-66.2) (-0.1512) (0.0320)2 (5.86) ^ = -0.001670

= -0.000129 radians.

= —0.44 minutes.

If similar substitutions are made in equation 102, the corre-

sponding terms are identical, except that the factor 3 is omitted
in the second, third, fourth, sixth, seventh, and eighth terms. Sum-
ming the terms with this modification

(Ang. Sec. Curv.) =+0.000218 radians

=+0.75 minutes
From equation (103)

(Ang. Dist) =
[(-172.0)2 (0.0320)2 (-3.62)

]
= -0.000510

I
(-172.0)3 (-0.0375) (0.0320)3 (27.17) (0.5000)1 =+0.000395

(-66.2)2 (0.0320)2 (-0.27) |= -0.000006

[(-66.2)3 (-0.1512) (0.0320)3 (69.41) (0.5000) J =+0.000232

(0.0265)3 (0.25)-^

=+0.000110 radians.

=+0.38 minutes.
30906°—27 5
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The angular aberrations determined above are in the object space

and represent the angle at the entrance pupil point subtended by the

aberration area. It is desirable to determine the conjugate angles

at the exit pupil point, as this gives the angular value of the aber-

ration disk as presented to the eye. To determine these values, one

multiplies those already obtained by the angular magnification

between the two pupil points (see equation (86)).

(-172.0) ( + 14.70)A = - 6.6
( + 38.20) ( + 10.00)

Following there is given in tabulated form the different aber-

rations, measured in minutes, in the object and image space.

Table 2.

—

Third order ahberrations of Ramsden eyepiece

Aberra-
tion in
object
space

Aberra-
tion in
image
space

(Ang. Lon. Chr.) -rl.09
-.75

-fl.20
-.01
-.44
+ .75

+.38

+7.19
-4.95
+7.92
-.07
-2.90
+4.95
+2.51

(Ang. Lat, Chr.)
(Ang. Sph.) --

(Ang. Coma)
(Ang. Pri. Curv.)
(Ang. Sec. Curv.)
(Ang. Dist.).

In multiplying the aberrations in the object space by the angular

magnification the sign of A is ignored. The negative sign indicates

that the angle between chief ray and axis after passage through the

eyepiece is the negative of the corresponding angle in the object

space. Note, however, that this does not effect a change in the

signs of the aberrations as defined on pages 130 and 131.

2. DESIGN OF A LENS SYSTEM WHICH HAS GIVEN ABERRATION
CHARACTERISTICS

The second application of the third order equations in which the

desired values of the aberrations are given and the constants of the

lens system determined by a solution is the inverse of the first prob-

lem and from the theoretical standpoint is but little different. In

practice, however, the inverse solution is the more useful, much the

more difficult, and knowledge based on experience, together with

many trials, are often necessary before a solution may be obtained.

The difficulties arise from the fact that the roots of the equation

must not only be real, but must fall within a limited numerical range

if the solution is to serve for the design of a useful optical system.

(a) Given Conditions to be Satisfied.—The designer begins

with certain first order constants of the system which are given. If

it is a photographic objective the focal length is specified, if a tele-

scope the magnification is assigned, or if an eyepiece the focal length

and the position of the exit pupil may be given. A second restriction
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arises from the limited varieties of optical glass available. Although

the number of types of optical glass has been increased greatly since

the founding of the glass plant at Jena, even yet the range of index

and r-values falls within a restricted region. And a further restric-

tion is often imposed by the requirement that glass already at hand

be utilized.

(&) Determination of the Focal Lengths and Spacing of the
Components.—It will be noted that equations (95), (96), (97), and

(98) contain as variables the power but not the shape factor of each

lens. Consequently, the first step is to determine the power, spac-

ing, and glass to be used for each lens such that the first order con-

ditions alluded to earlier in the paragraph, and equations (95), (96),

(97), and (98) are satisfied to the desired extent. If the system is

sufficiently simple, this may be accomplished by a direct solution. In

a more complicated system this requires a method of trial and suc-

cessive approximations which is often facilitated by breaking the

original system into a series of subordinate systems for each of which

a direct solution may be obtained, after which the subordinate

systems are combined. Equation (95) gives the curvature of the

image surface if the completed system is anastigmatic. The con-

dition P= is necessary, but not sufficient to determine a system

giving a fiat field free from third order astigmatism. If P = the

field will be anastigmatic and flat, provided that the subsequent

design of the system is such as to cause the quantity in parentheses

in equations (101) and (102) to vanish. If Pt^O, no subsequent

modifications of the shape of the lens or diaphragm position will

enable a flat anastigmatic fi^ld to be obtained so long as one is limited

to third order imagery (see p. 110). Actually experience has shown
that higher order aberrations materially modify the conclusions

regarding curvature and astigmatism dravxrn from the third order

equations and that in some cases large, sufficiently flat fields may be

obtained even though the value of P departs considerable from zero.

The equation

P = (105)

is commonly referred to as the Petzval condition.

With this preliminary design completed one has given or can easily

obtain the values of (p, s, s\ x, x\ g, 7i, tt, and e for each lens. The
system is now completely specified except that a for each lens remains

undetermined.

(c) Determination of the Shapes of the Components.—Equa-
tions (99) to (103) give the values of the different monochromatic
aberrations, and an equation is formed by the msertion of the values

of the different known quantities for each aberration which is to be

controlled. For each cemented pair of surfaces there will be an addi-

tional condition of the form of equation (104). The o-'s will be the
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only unknowns in these equations, and it might seem a priori that

with five or more components one has five equations and five unknowns
from which a solution can be obtained in which all third order mono-
chromatic aberrations are eliminated. For a useful solution, however,

it is necessary that all the o-'s be real, and in most cases the values

obtained should lie withia a relatively narrow range in the neigh-

borhood of zero, the extent of range decreasing as ratio of diameter

of component to focal length increases. This restriction greatly

limits the possibilities open to the designer.

It follows that in laying out the powers and spacings of the different

lenses of the system, not only must equations (95) to (98) be satis-

fied but at the same time the designer must have in viev/ the determina-

tion of a design which will yield satisfactory roots when equations

(99) to (104) are applied. It is here that a good physical picture of

==14^z
Fig. 25.

—

Lenses Jor which g=0

The upper diagram shows a simple telescopic system. For the components of the objective

^=0 and hence by a change in their shape factors no control can be exercised upon lateral

chromatic aberration, curvature, or distortion. The lower diagram illustrates the system of

a periscope. For the objective and erecting lens ff=0 and a similar limitation of control of

aberrations exists,

the manner in which the aberrations arise, a knowledge of the charac-

teristics of existing systems and experience in design become valuable.

{d) Control Exercised by a Lens for Which g is Small.—Cer-

tain general conclusions may be drawn from the equations which

are of help ia arriving at a satisfactory design. Suppose one has

a thin lens in the plane of the entrance or exit pupil or at one of

the real images of the pupil formed withia the system. Two
such cases are illustrated in Figure 25. The first sketch shows the

objective of a telescope in the plane of the entrance pupil, a case

frequently realized. In the second case the erecting lens of a

periscopic system is placed at the real image of the entrance pupil

as formed by the collector lens. The auxiliary ray which serves

for the determination of the ^'s is drawn, and it is evident that for

each of the lenses referred to ^ = 0. Reference to equations (101)
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and (102) shows that the contribution to the curvature of the entire

system by either of these lenses is o tan ^jS^ -+ 3^? jand o tan ^^l-+ (pj

in the prunary and secondary planes, respectively, and that it is en-

tirely independent of the shape of the lens. Consequently, in any
system having lenses for which ^ = the shape of the lens may be

left undetermined and the shapes of the other lenses adjusted to

give the required values to the two curvatures and distortion. In

general, there will remain residual amounts of spherical and comatic

aberrations. Now, if it is possible to determine the shape of the

components for which g= ia such a manner as to compensate for

the spherical and comatic aberrations this can be done without

disturbing the previously adjusted curvature. In this way the

aberrations may be adjusted successively instead of simultaneously.

This is an advantage, as the solution of the simultaneous equations

Fig. 26.

—

Lenses for which h=
A simple telescopic system is shown in which the field lens of the eyepiece is placed in the

plane of the image produced by the objective. The course of the auxiliary ray indicates that

A=0 for the field lens. In such a case the lens contributes nothing to the magnification of the

system. A change in the focal length of the field lens, therefore, will not change the power of

the telescope (for this special case where ft=0). A change in power, however, will change the

positions of the exit pupil and with it the value of g for all following lenses. Indirectly, there-

fore, it offers a means of modifying the curvature of image of the system. Since ft=0, a change

in shape or power will have no effect upon the spherical aberration of the system.

is simpler, and one is more easily able to follow the physical signifi-

cance of the modifications introduced in the successive trials which

may be necessary.

(e) Control Exercised by a Lens for Which ^ is Small.—

A

second typical case which it is useful to recognize is that in which

a lens is placed in the plane of a real image of the object. The col-

lector lens in the eyepiece of most telescopes very nearly satifies

this condition. In Figure, 26 it is represented as exactly satisfied

for the lens CD and the tracing of the auxiliary ray shows that ^ = 0.

A lens in this position contributes nothing to the magnification of

the system. This is clear from equation (95) and such freedom is

useful, as the power of the lens may be changed at will without

altering the size of image produced by the instrument. This lens

does, however, control the position of the entrance and exit pupils

as it acts with full effect upon the bundle of chief rays, and conse-
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quently a change in its power affects the value of g for all lenses and
thus indirectly changes the contribution to coma, curvature, and
distortion for each lens through the alteration in value of the

term whixjh contains ^ as a factor. A lens for which Ji = Q, or is

nearly zero, is commonly termed a collector or field lens, and it

should be noted that such a lens makes no contribution, or only a

small contribution, to either of the ciiromatic aberrations, to

spherical aberration, or to coma. Furthermore, after its power has

been fixed its contributions to the curvatures of the sytsem are

completely determined and are tan ^/S ( - + 3^ ) and tan ^^(- +
(pf

just as in the case of the telescope objective. Consequently, modify-

ing the shape of the collector lens offers opportunity to alter the

distortion through the g^<p^T term while leaving all other aberrations

unchanged.

In the two special cases selected, g ot Ti has been zero or small

enough to be neglected. In the usual system many lenses belong to

neither of these types, but are so placed that neither g nor % vanishes

and a change in shape is followed by a complicated modification of all

the aberrations which it is difficult to follow. The shapes of such

lenses must, in general, be determined by a solution of simultaneous

equations.

(/) Petzval Condition and Chromatic Aberration.—A system

of thin lenses in contact is an important special case. For such a

system both g Sindli have the same value for all components and may
accordingly be placed before the summation sign. To satisfy the

Petzval condition and eliminate the chromatic aberration simultane-

ously one must have

2^= (106)

2^= (107)

The first equation is identical with equation (105). The second is

derived from equation (97). As n and v are always positive, these

two equations can only be satisfied if ip for some of the components is

negative. If the complete system is to have a positive power, the

combined power of the positive lenses must prevail over that of the

negative components. If the Petzval condition is to be satisfied,

equation (106) shows that the negative lenses must in the average

have the smaller index of refraction. Similarly, if the chromatic con-

dition is to be satisfied the negative lenses must in the average have

the lower v values.

Prior to the development of the new glasses by Abbe and Schott

there were no pairs of optical glass available in which the glass of the
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lower index had the smaller i^-value, and consequently a thin lens con-

tact combination which was achromatic could not simultaneously

satisfy the Petzval condition. New glasses are now available in

which the value of ti and z^ range in such a manner as to permit both

conditions to be satisfied. It is customary to refer to such combina-

tons which are achromatic and satisfy the Petzval conditions as ''new

type achromats" in contradistinction to the older or so-called normal

achromats.

But even the newer type glasses leave much to be desired. In a new
type achromat the values of v differ so slightly in a series of compo-
nents that the sum of the powers of the negative lenses almost equals

in absolute value the sum of the powers of the positive components.

Consequently, if the net power of the combination is to be very great

the individual components must be of very short focal length and this

carries with it the necessity for steep curves, small aperture, and
large higher order aberrations. In a thin lens combination if the

Petzval condition is satisfied it is possible to have a flat field free

from astigmatism provided that a diaphragm is so placed on the axis

as to give a value of g for the components which will cause the quantity

in parenthesis in equations (101) and (102) to vanish. If a thin lens

contact combination has the diaphragm in the plane of the lens ^ =
for all components and the primary and secondary curvatures are

o tan%(^~+ 32^ j and o tan ^jSi (^ ~+ S^V Taylor has termed these

the normal curvatures of a lens, and considers that these are always

present but modified in the case of eccentric refraction (gy^O) by the

superposition of the curvatures represented by the terms in g and g^ in

equations (101) and (102). It is impossible to design a lens system

composed of thin lenses in contact which will give a flat field free

from astigmatism (on the basis of third order theory) unless a dia-

phragm is properly placed without the plane of the lens.

The conflict between the Petzval condition and achromatization

which exists in the case of optical systems consisting of thin lenses in

contact is not so sharp when dealing with a system composed of thin

lenses spaced along the axis. A positive and a negative lens having

nearly the same absolute powers may be separated to produce a com-

bination of considerable power. Assume that two glasses are used

which satisfy the condition for achromatization. By hypothesis '^(p is

relatively small in comparison with the power of the system, and as

the values of n for optical glass fall within a relatively narrow range

it follows that S - will also be small with reference to the power of the

combination. In fact, with a separated system it is not difiicult to

satisfy the Petzval condition and achromatize with the older glasses.

It is, of course, true that with a system of thin lenses in contact the
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older glasses may be used and P may be made small by making X(p = 0,

but for the contact system this becomes a trivial case, as Xcp is the

power of the complete system and the resulting system has insuffi-

cient power to be useful, whereas in the case of the separated lens

system the power of the system may be many times greater than

X(p. Taylor was the first to recognize the importance of this feature

of the spaced system and used it in the design of the Cooke lens, which

serves as a basis for many of the air-spaced photoghraphic objectives,

(g) Symmetrical Lens System.—Symmetry, either partial or

complete, in an optical system permits useful generalizations to be

Fig. 27.

—

A symmetrical photographic lens of the type commonly
termed a rapid rectilinear

By reason of the symmetry, the coma and distortion are small. They vanish

completely for the pair of conjugate planes for which M =— 1.

drawn. Figure 27 shows a symmetrical photographic lens, of the type

usually termed a rapid rectilinear in this country, in which not only the

components but also the object and image are symmetrical and

symmetrically placed with respect to the central diaphragm, which is

the iris of the system. The two lower drawings show the courses of

the auxiliary rays for the determination of g and Ti. In the general

case let it be assumed that there are Ic components, where Jc is necessar-

ily an even number, symmetrically placed.

It is evident from inspection that

Similarly
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and reference to equations (8), (10), (12), (24), (39), (62), and (64)

shows that
0-1 = — o-fc

TTi = - TTfc

Bi = B^

Ci= —C]i

with similar expressions for each pair of similarly placed components.

A consideration of the third-order equations shows that the symmetri-

cal system will have no lateral chromatic aberration, coma, or distor-

tion, as the terms after the summation sign will vanish in pairs. If

the object and image are not symmetrically placed, the ^V^ term

still vanishes in the equation for distortion, but the term in B does not

vanish as Bij^B^. A neglect to appreciate the B term—that is, the

distortion arising from the spherical aberration of the iris—has lead

to the inference in many of the earlier books on optics that a sym-
metrical lens is entirely free from distortion without a definite state-

ment that this is only true when object and image are symmetrically

placed or when entrance pupil point is imaged at exit pupil point

without spherical aberration. This has given the name ''rapid rec-

tilinear'^ to the symmetrical photographic objective, as rectilinearity

of Unes is a corollary to freedom from distortion.

Qi) Hemisymmetrical Lens System.—The lens system shown in

the upper diagram of Figure 27 is completely symmetrical about the

iris. If now all lengths, object distances, image distances, spacings,

radii of curvature, etc., on one side of the iris are multiplied by a con-

stant, the parts on the two sides of the diaphragm remain geometri-

cally similar, but not equal. Such a system is said to be hemisym-

metrical. If m is the constant multiplier in such a system

TTi = — TTis

€l= -^
Ai~A]s,

B,^B^

with similar expressions for each pair of similarly placed components.

Such a system will have no lateral chromatic aberration or dis-

tortion. For the elimination of any of the other aberrations it is

necessary that each half be corrected separately.
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(i) Aberkation Equations not Always Equated to Zero.—
It is not always desirable that the third order aberrations be equated

to zero. In fact, for the final system the third order aberrations

should not be zero, but of such a value as to neutralize the higher

order aberrations at some intermediate zone of the aperture. If one

has at hand details of a system similar to the one to be designed

its higher order aberrations may be determined by trigonometric

ray tracing for the zone at which complete compensation of the

aberrations is desired. As a first approximation one may then

assume that the new system will have higher order aberrations of

the same character and so may introduce compensating first order

aberrations in the first solution. The assumption that the higher order

aberrations will remain constant from system to system is, of course,

doubtful and only to be justified empirically, and it becomes more
hazardous as the difference between the two systems increases. But
in the case where the only difference arises in the exhaustion of a

melt of glass and the substitution of a new melt differing but slightly

in index, a case continually arising in the production of a stand-

ardized product, such an assumption is especially helpful. When
a similar system is not available, the third order design may at

times proceed in two steps. First, the aberrations are equated to

zero and a solution obtained trigonometrically. A second solution

is then carried through in which the third order aberrations are set

equal to the negative of the higher order aberrations at the zone

where complete compensation is expected.

(j) Choice of Glass as an Independent Variable.—Usually

the shape factors are reserved as the only unknowns but not always.

Within some ranges of index it is possible to find several glasses having

the same index for the D line (X), but differing in ?'-value. In such

a case one may retain more degrees of freedom in the elimination

of the monochromatic aberrations by retaining both (j) and o- as

unknowns for each component. Only in the simpler cases can a

solution be obtained in a straightforward manner, as the 5's and
x's are functions of the 0's and must be so expressed, a feature which
usually makes the equations unwieldy if there are more than two
or three lenses. After the (/)'s and cr^s have been determined the

values of v to eliminate the chromatic aberrations are determined.

If the values fall within available limits, a solution has been made
in which the choice of glass as well as shape factor has been made use

of to correct the aberrations. Roughly this is the method employed
by Harting ^^ in his classic investigation of the two-lens cemented

objective. With two shape factors as the tadependent variables one

should expect to satisfy two conditions which might be

1. Freedom from spherical aberration,

2. That the inner surfaces have the same curvature

32 Halting, Zeits. Instrumentenk, 18, p. 357; 1898.
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in order that they may be cemented together. Harting showed that

by the proper selection of available glass one can also cause the

coma to vanish without giving up either of the two preceding

conditions.
^

(Jc) Choice OF Roots.—Some of the aberration equations are of

the second degree in <j. Consequently ^ one may expect to usually

obtain two sets of roots. By varying the types of glass additional

solutions can often be obtained, all of which satisfy the third order

equations equally well.

When two or more solutions are obtained, a criterion is necessary

to determine which is to be selected for the actual design. The
cost of manufacture, number of glass-air surfaces, weight, and similar

characteristics must be given consideration varying in amount from

instrument to instrument and can not be generalized. From the

standpoint of the aberrations it is ordinarily considered that of two

systems having equal residual third order aberrations the one having

the less strongly curved surfaces, and more particularly the less

curvature in the glass-air surfaces, is the better. Deeply curved

surfaces generally imply large higher order aberrations, and this

carries with it the implication that the final design must have large

third order aberrations to compensate the higher order aberrations

at the selected intermediate zone. Compensations can be accom-

plished at all zones only when the aberrations of each order vanish

separately, and if the higher order aberrations are large the compen-
sation at one zone will not be inconsistent with large aberrations

at the other zones.

3. APPLICATION OF THE THIRD ORDER EQUATIONS TO THE DESIGN
OF A KELLNER EYEPIECE

To illustrate the foregoing, a detailed numerical application of the

equations to the design of an eyepiece will be made. The statement

of the problem is as follows : An eyepiece is to be designed for which

mm
E.F.L. of field lens = +31.30
E.F.L. of eye lens = +31.30
Distance between field lens and eye lens= 23.50

Distance from eye lens to observer's eye= 10.00

The eyepiece will be of the Kellner type in which the eye lens is

composed of two components cemented together with the flint turned

toward the observer's eye. It has already been shown that the field

lens by a change of shape offers little opportunity for control of

spherical aberration, coma, curvature of image, or astigmatism
because of the small value of Ji. It will, therefore, be assumed that
the field lens is a plano-convex lens with plane surface turned toward
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the object. This follows the usual practice and leads to economy in

production. With the above data the focal length of the eyepiece

will be 25.06 mm.
The characteristics of the glasses to be used in the eyepiece,

together with such constants as are necessary in the solutions, are

given below.

Optical glass to be used in eyepiece

Borsili-

cate
crown for

field

lens

Barium
crown
for eye
lens

Light
flint

for eye
lens

n(X=646)

p

j_
V

n+2
n{n-iy

4(71+1)

7i(«-l)

3«+2
n

(«-l)a

71+1

n(n-\)

2n-\-l

n

n

1. 5180

64,30

.01555

8.637

12.809

4.318

8.588

3.202

2.6588

.6588

1. 5750

57.72

.01733

6.865

11. 373

4.270

7.503

2.8433

2.6349

.6349

1.6240

36.58

.02734

5.731

10.357

4.232

6.773

2.5894

2.6158

.6158

With the above data decided upon there remain three degrees of

freedom, the ratio of the powers of the two components of the

eyelens, and the shape factors of the two components. The powers

of the two components will be selected to give zero lateral chromatic

aberration. The remaining degrees of freedom ^e required by the

conditions that the two components are to be cemented and that

the primary image surface be flat. In other words, equations (98)

and (101) are to be satisfied when their left-hand members are zero

and equation (104) is to be satisfied for i= 2. This exhausts the

degrees of freedom, but after a solution has been obtained an inves-

tigation of the other aberrations will be made to determine whether

a compromise may not be obtained which wiU favor them.

(a) Determination of the s^s, jc's, g^s, and h/s.—The compu-
tation of the Ramsden eyepiece (p. 131) makes it evident that the

pupil of the observer's eye is the exit pupil of the eyepiece. Con-

sequently cc'3= +10; and, as it is assumed that the eye is accomo-

dated for parallel light, §'3 = 00 . The two components of the eyelens
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are in contact and, for the initial computations, will be treated as a

single lens denoted by the subscripts 2, 3. Then, by the first order

equations one readily obtains the values

Xi=- 173.25 Si=- 6.244

x'i=+ 38.20 s'i=- 7.800

X2,3=+ 14.695 §2,3= -31.30

i2j'2,3=+ 10.00 S'2,3= °°

As the two components of the eyelens are in contact it further

follows that g2=gz and hz^Tis. From equations (15), (16), (91), and

(93)

pi=- 173.25 Til =-0.03739

^2= -66.65 ?i2= -0.15004

^3= -66.65 7^3= -0.15004

(b) Condition For Freedom From Lateral Color.—One now
has the data necessary for substitution in equation (98). As the

left-hand member is zero the factor tan /3i may be omitted and the

condition for achromatism becomes

0.003218 + 0.17330<i^2+ 0.27340^3 = (a)

From the initial conditions of the problem

^2+ ^3=31^= 0.03195 (b)

Solving, the eyepiece will be free from lateral chromatic color if

^2= +0.11942

<P3= -0.08747

(c) Determination of the Constants of the Third Order
Equations.—With the powers of the three components known, one

is now in a position to determine all the constants of the third order

equations.

a;i=- 173.25 Si=- 6.244

a;'i= +38.20 s'i=- 7.800

j»2= -1-14.695 S2= -31.30

{3c'2= +5.334 s'2=+ 11.432

X3= +5.334 §3= +11.432

aj'3= +10.000 s'3=oo

For convenience there is tabulated

yi=- 173.25 ^1= -0.03739 ^i= +0.03195

gr2= -66.65 ^=-0.15004 ^2= +0.11942

fif3= -66.65 ^=-0.15004 ^3 =-0.08747
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It is assumed that <ti= —1 and the other two shape factors will be
the unknowns for which values are to be obtained. From equations

(10) and (12)

<7i=-l €1= -0.6387 7ri= +9.026
€2= -2.1396 7r2= -0.4650
€3= +3.286 7r3=+l

From equations (23), (39), (62), and (64)

^1= +253.40

A2 = 6.865(72'- 5.288(72 + 8.426

^ = 5.731(73'+ 10.357(73+ 11.005

A =+27.167
52 = 6.8650-22-24.334(72 + 27.051

53 = 5.731(73^+ 34.03(73+ 52.47

(7i= +20.796

(72 = 2.8433(72-1.2252

(73 = 2.5894(73 + 2.6158

Ti= -3.623

T2 = 2.8433(72 -13.584

^3 = 2.5894(73 + 2.0235

(d) Equations for the Determination of 0-2 and 0-3.—If the

left-hand member of equation (101) is set equal to zero and the factor

tan^ jSi omitted, the equation becomes
0= +0.021049

+ 0.09585

+ 0.0010266(253.40)

-0.019839(20.796)

+ 0.07582

+ 0.3583 . .

+ 0.12774(6.865(72'-5.288(72 + 8.426)
^^^

- 0.4278 (2.8433cr2- 1.2252)

-0.05386

-0.26241

-0.05020(5.731(732+10.358(73+11.005)

-0.22953(2.5894(73 + 2.6158)

which further reduces to

0.8769(722-1.8919(72-0.28770(732-1.1142(73 + 0.5297 = (d)

Equation (104) becomes
(72= -0.6750(73 + 0.3250 (e)

Solving equations (d) and (e)

0-3= +0.0341 or +1.9515

Rounding these values off to accord with the degree of significance

of the solution the final solution becomes

(72= +0.3020 or- 0.991

cr3= +0.034 +1.950
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The specifications for these two eyepieces, presented in the usual

manner, are
No. 1

cr2= +0.3020

(Ta =+0.034

No. 2

0-2= -0.991

(73 =+1.950

1.518

1.000

1.575

1. 000

1.624

16.21

+ 7.40^

-13.80

-13.80

2.5

23.5

2.3

0.0

1.518 2.5
-16.21

1.000 23.5
+ 1070

1.0

575 2.3
— 4.84

000 0.0
— 4.84

624 1.0

-15.02

i

+ 14.77

The two systems are illus-

trated to scale in Figure 28.

The thicknesses of the lenses

have been determined to

give sufficient mechanical

strength for a field lens 16

mm and an eyelens 9 mm
in diameter. It will be

noted that for the first eye-

piece the flint component is

almost equiconcave, for the

second the crown compo-

nent is almost planoconvex.

(e) Third Order Char-
acteristics OF THE Two
Eyepieces.—In the subse-

quent calculations it will

be assumed that /3i
= 1.52° and o = 13.2 as was done for the Ramsden

eyepiece already studied. If the missing factor o tan^ jSi is multi-

plied into equation (c) and if the equation is multiplied by 3,438

to reduce the curvature to minutes, one obtains the equation

28.026(72^-60.470-2-9. 195(73'-35.61(73+ 16.929 = (Ang.Pri.Curv.) (f)

This is an equation in 0-2 and a^. Contour lines may, therefore, be

appropriately plotted on a (72, (^3 plane which will connect points for

which the (Ang. Curv.) has equal values. In Figure 29 contour lines

are shown for the values +10, 0, and —10 minutes. Similarly, the

equations for the other monochromatic aberrations are

11.713(72^-9.023(72 -3.842(73^-6.944(73 + 7.031 = (Ang. Sph.). (g)

15.694(72^-22.973(72-5.148(732-14.622(73 + 8.787= (Ang. Coma), (h)

4.172(72^- 11.894(73- 1.3686(73=^-6.712(73 + 3.231 = (Ang. Dist.). (i)

Fig. 28.

—

The two Kellner eyepieces of the

illustrative example for which az— -{-0.034

and -\- 1.950, respectively
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It is evident that each of these equations represents a family of

hyperbolas and the absence of cross terms in U2, 0-3 indicates that they

are not rotated with respect to the coordinate axes. The contour

lines of the four equations are shown in Figure 29. Equation (e), the

condition that the two components of the eyelens can be cemented,

is plotted as the heavy-dashed straight line on each diagram. In

each graph for a considerable distance the contour lines are approxi-

^\ Ar
^^ , -lOX-Vi

+lo\\

\

//

^
V

\

2 -JL 1(3 +jL +2 +3

ANGULAR SPHERICAL ABPRRATJON ANQULAR COMA

ANGULAR PRSMARY CURVATURE ANGULAR DISTORTION

Fig. 29.

—

Contour lines showing the manner in which the aberrations change

as the shape factors of the components of eyelens of eyepiece of Figure 28

are changed

The heavy dashed straight line is the locus of points for which the two components may be
cemented together. For each diagram the hyperbolas connect points for which the respective

aberration has the values +10, 0, and —10 minutes.

mately parallel to the line of cemented components. This indicates

that the eyepiece is relatively insensitive to a change in shape factor

so long as one remains on the line of cemented components.

This last characteristic is, perhaps, better shown by Figure 30. If,

in equations (f), (g), (h), and (i) one eliminates 0*2 by equation (e),

the equations are obtained which give the values of the aberrations

as functions of 0-3 for eyepieces in which the two components of the
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eyelens are cemented. In Figure 30 these values are plotted against

0-3 and the values corresponding to eyepieces Nos. 1 and 2 (0-3 = + 0.034

and +1.95Cr, respectively) may be readily read from the diagram.

For convenience the points corresponding to eyepiece No. 1 are

indicated by the small solid circles, those corresponding to No. 2 by
the small open circles. An exami-

nation of Figure 30 shows at once

that spherical aberration is very

much better corrected in eyepiece

No. 1 than in No. 2, and that the

coma correction is also somewhat
better in No. 2. Curvature of image

is, of course, equally well corrected,

and there is not much difference

in the correction for distortion of

the two systems, although No. 1 is

slightly the better. The curvatures

of the glass-air surfaces of No. 2 are

much less than of No. 1, and this

is a favorable condition, as it carries

with it the implication that the

higher order aberrations are less.

On the other hand, the cemented
surface of No. 2 has a very steep

curve which not only suggests that

it should be examined for the

presence of higher order aberra-

tions, but which also increases the

difficulty of manufacture and sets

a definite limit for the maximum
possible diameter of eyelens.

(J) A Comparison of the Eye-
pieces Based upon Thick Lens
AND Trigonometric Computa-
tion.—To discuss the method of

trigonometric computation as ap-

plied to these eyepieces is beyond

the scope of this paper. However,
the results of such work will be

given for comparison with the results of the third order computations.
Preliminary to this it is interesting to see the manner in which the
first order constants of the eyepieces have been modified by the intro-
duction of the necessary thicknesses.

30906°—27 6

f
10

i lol

I

2.0O 1.0

Fig. 30.

—

Variations of aberrations with

change in shape of eyelens

If it is assumed that the shape factors of the

two components of eyelens of eyepiece shown
in Figure 28 are permitted to vary only in such a
manner as is compatible with cementing them
together, the aberrations may be plotted as

functions of crz. These diagrams may be con-

sidered as sections of the aberration surfaces of

which the contours are shown in Figure 29,

made by a plane perpendicular to the Vj, as plane
and containing the heavy dashed straight line.



152 Scientific Papers of the Bureau of Standards

Table 3.

—

First order constants of eyepieces Nos. 1 and 2

[ Vol. SS

Eyepiece No. 1 Eyepiece No. 2

Based on
thick lens
computa-

tion

Based on
thin lens
computa-

tion

Based on
thick lens
computa-

tion

Based on
thin lens
computa-

tion

E. F. L _ 22.40
-2.29

-173.25
+6.13
-2.29
oo

7.63

25.06
-6.24

-173. 25
+10.00
-6.24
oo

6.66

26.64
-2.92

-173. 25
+9.01
-2.92
oo

6.42

25.06
r F. L -6.24
Xl >. -173 25
arV - - +10.00
Si -6.24
sY oo

6.66

The values ^^ of Xi, x\,, Si and s^y are measured from the nearer

vertices of the respective components. In the thin lens computation,

of which the results are tabulated in the third and fifth columns, the

thicknesses of the components were ignored. In the original condi-

tions of the problem it was required that E. F. L. = 25.06 and x'3'

(the eye distance) = 10 mm. A comparison of the data above shows

that the introduction of thicknesses has caused departures from these

conditions which are much greater for No. 1 than for No. 2. In the

thin lens computations it has been assumed that the eyelens consists

of two components in contact. In the thick lenses, although the

components are in physical contact, nevertheless from the optical

standpoint they are spaced along the axis as the optical separation

is measured from principal point to principal point. If one surface

of a lens is much more strongly curved than the other, the principal

point is closer to the strongly curved surface, and in the special case

where the one surface is plane the one principal point lies in the curved

surface. An application of this consideration to the eyelenses of

eyepieces Nos. 1 and 2 will show that the separation is much less in

No. 2 than in No. 1. This probably accounts for the better agree-

ment, which has been already noted, between the two computations

for No. 2.

If the departure of the thick lens system from the original speci-

fication, which has been tabulated above, is too great an adjustment

may be secured by one of the two following methods

:

(a) All dimensions of the eyepiece may be multiplied by the same
ratio. This will leave the aberrations unchanged in angular value

and will enable any desired first order constant to be given the pre-

assigned value. For example, if it is necessary that the eye distance

be exactly 10 mm, aU radii and thicknesses of No. 2 may be multip-

10.00
lied by

9.01
This, however, will at the same time change all other

lengths in the same ratio and in the present case will make the E.F.L.

29.46 mm, which is still farther away from the value initially

33 The primed subscript indicates the second surface of the corresponding component.
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desired. In general, it will be impossible to correct more than one of

the first order values by the ratio method.

{h) As an illustrative example of the second method, let it be

assumed necessary to hold the focal length at 25.06 mm and at the

same time have the eye distance 10. The present design may be

considered as a first step. A second algebraic computation might be

made in which the preassigned values are

E.F.L. = 25.06 - (26.54 - 25.06)

a;V = 10.00- (9.01 -10)

If the changes caused by the introduction of thicknesses are the same
in the second design as before, the thick lens computation correspond-

ing to eyepiece No.2 will have the focal length 25.06 and eye distance

+ 10.00. Even if the change is different a better approximation will

be obtained. Usually there is sufficient flexibility in the initial con-

ditions to make the ratio method given above quite sufficient.

The values obtained by the trigonometric computations are given

below

:

Table 4.

—

Aberrations of eyepieces Nos. 1 and 2

Eyepiece No. 1 Eyepiece No. 2

Trigo-
nometric

Third
order

Trigo- Third
nometric order

Ang. Lon. Chr -0.19
-.24
+8.00
+2.18
-1.22
-.42

-0.59

+5.09
+2.77
-.08
+.81

-0.57
-.04
-.70
-1.94
+.99
+.02

—0.59
Ang. Lat. Chr
Ang. Sph. . . ... —.67
Ang. Coma
Ang. Pri. Curv -

-1.13
—.03

Ang. Dist -.21

The trigonometric values are based on computations in which

4/5 significant figures ^* are employed. It is important to note

that the trigonometric as well as the third order computations

show that the design of eyepiece No. 2 is the better. The algebraic

results given above show the values of the third order aberrations

for eyepieces composed of components of zero thickness, the trigono-

metric results give the third order aberrations of a thick lens system
plus the higher order aberrations which are sufficiently large to appear
in computations of the given precision. Consequently, these differ-

ences between the two parallel columns arise not only from the

introduction of higher order aberrations, but also from the introduc-

tion of thickness. The agreement for eyepiece No. 2 is again

the better and for the same reason; that is, the thicknesses mtro-
duced have not done so great violence to the first order constants

upon which the third order equations were based.

3^ See p. 158.
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(g) Compensation of the Aberrations of the Objective
System.—The reader familiar with eyepiece design will, perhaps,

be somewhat surprised to note that for each eyepiece the surface

of the flint component which is nearer the eye is strongly curved,

whereas in most of the examples one sees this surface is nearly flat.

It must, however, be recalled that one of the original conditions

imposed was that the primary image surface be flat. Such a con-

dition might be imposed on an optical system designed to read a

scale and a vernier. The usual eyepiece, however, is used with

an objective system as in the microscope and telescope. The image

presented to the eyepiece by the objective system, in general, pos-

sesses positive curvature. It is therefore necessary to have an eye-

piece with negative curvature if the complete optical system is to

present an image free from curvature. An examination of Figure

30 shows that the negative curvature of maximum absolute value

corresponds to 0-3 = + 1 .0 and this, in turn, indicates a flint com-
ponent with the outer surface plane. It follows that eyepieces of

this type with negative curvature will have the external surface of

the flint flat or nearly so.

In a telescopic system the aperture of the objective is commonly
the entrance pupil. Therefore, in designing an eyepiece for a tele-

scope the exit pupil of the objective system is the entrance pupil

of the eyepiece. Furthermore, the position of the exit pupil of the

eyepiece must be so determined as to provide ample clearance for

the observer's eye. Even though the entrance pupil of the eyepiece

is fixed by the location of the objective, the position of the exit

pupil can be controlled by varying the power or position of the field

lens.

(A) Modifications Which May be Introduced to Secure
Additional Degrees of Freedom.—It must not be assumed
that Figure 30 shows the entire possibilities of our choice of glass

in the design of Kellner eyepieces. Assume that none of the com-
binations of aberrations as there indicated appear to offer a satis-

factory compromise. One may start out anew with a different

choice of ratio of power of eyelens to field lens and with the spacing

altered to hold the focal length constant. If the distance to the

exit pupil can be changed, this changes the values of the ^'s and
e's but leaves the Ji's and tt^s as before. Consequently, this will

change all aberrations except spherical, which is not a function of

the ^'s or e's. To investigate the entire range of possibilities of

so simple a system as a Kellner eyepiece of specified glass becomes,

therefore, rather a long task, and the amount of work required to

completely study a system increases rapidly as the number of com-
ponents becomes greater.

(^) Sensitiveness of the Design to Small Departures From
Specifications.—Other things being equal the design is superior
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which shows the smallest variation in its essential characteristics

as a result of the unavoidable changes which arise in actual produc-

tion. For a study of this feature the algebraic equations are par-

ticularly useful.

From equation (f) one may write to a sufl&ciently good approxima-

tion

d (Aug. Curv.)

and
d (Aug. Curv.)

g- =56.r,~60 (j)

^ =-18(^3-36 (k)
00-3

Substituting the values of 0-2 and 0-3 for the two eyepieces one obtarns

the following values:

No. 1 No. 2

' (^'^g- ^"^-^ -43 -116
O0-2

' ^^, ^"•"•>
-37 -71

Roughly speaking, a change of 0.01 in 0-2 or 0-3 makes a change of from

0.5 to 1 minute in the curvature. Design No. 1 shows the greater

stability.

From equation (8)

da 2r' da -2r
dr {r'-ry' dr' {r' -rf

Substituting values from eyepieces Nos. 1 and 2 one has

No. 1 No. 2

^ -0.061

P^ -0.033 -0.002

(1)

dr _

^ +0.036 -0.287
drz

P^ +0.034 +0.092
or 3

Combining this with the results already given

No. 1 N0.2

3 (Aug. Curv.)
^2.6

dr2

^-^^^2|CurvJ+1.4
+0.2

9(Ang^urv.) _^3 ^^l.g
orz

d (Ang. Curv.)

dFT ^-^ "^-^
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and it is evident that for a given change in the radii of curvature

design No. 1 shows much the greater constancy. Such values as these

are often very useful, as they show the possibiUty of using radii of

curvature for which tools and test plates are already at hand instead

of the exact values as prescribed by the computation. This results

in a great saving in the cost of production.

From equations (101) and (c) it is apparent that

a(Ang. Pri.Curv.)^ o tan^ ftrA(>?V3^^ + .128^^-.428f^l

(m)

and

dnz
'

L^^'3\^3/ 6^3 ^f^z dnzj

(n)

The following values are obtained with sufficient accuracy by the

use of a slide rule. The derivatives of the functions of n are readily

obtained from the tabulated differences of Appendix 4.

^=-26 (72^ + 10.5 (72-17.2

^'=-5.6 0-2+ 0.18
^712

^'=-20 (73^-19(73-14
onz

dnz

Substituting in a straightforward manner it can be shown that a

change of 0.0001 in 712 changes the curvature for eyepieces Nos. 1 and
3 by 0.002 and 0.03 miuute, respectively. The variations resulting

from a similar change in 713 are 0.02 and 0.2 minute. In this com-
parison design No. 2 appears the more unfavorable for production.

In a similar manner the stability of the design with respect to varia-

tions in the other aberrations can be studied.

ij) Precision Necessary in the Computations Involving the
Third Order Equations.—At best the computations necessary in

the design of a moderately complicated optical system are long and
tedious, and it is desirable to shorten the labor as much as possible.

If many computations similar in nature are to be made, it is accord-

ingly well worth while to carefully determine the number of signifi-

cant figures required in the final result and to limit the precision of

the numerical work in accordance with this finding. It is at once

apparent that there are at least three considerations, any one of

which may determine the number of significant figures necessary in

the computations. They are: (1) The limiting precision with which
control is to be exercised during manufacture which will determine
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the fidelity with which the finished system corresponds to the com-

puted system, (2) the demands to be made upon the instrument in

use, and (3) the approximation in the equations involved in the

neglect of the higher order terms.

Of these three the last will usually be the limiting one which deter-

mines the precision of the computations. Optical tests of surfaces

are precise and simple to make, and, except in the very cheapest

instruments, it is feasible to carry the control to a precision beyond
that of the third order equations. The second consideration will

rarely apply as it is, in general, as easy and as economical to con-

struct the system according to the best design (from a given number
of components) as it is to begin with an imperfect design. But so

long as one is restricted to third order equations the approxima-

tions involved in their derivation set a definite limit of precision

beyond which the numerical computations should not be carried.

In the majority of better grade instruments the third order compu-
tations will be followed by empirical adjustment in accordance with

the results of trigonometric ray tracing, and here again the compu-
tations should be carried out to the limit of precision of the equations

in order to make the trigonometric adjustment as simple as possible.

An exact appraisal of the precision of the third order equations

is difficult to make and can not be made sufficiently general to justify

its inclusion here. However, a rough estimate can be made on the

following basis: In the development of the third order equations

the approximation arises from the fact that series developments

of the sines and tangents of the half aperture and half field angles

are broken off with the second term. A value of 0.1 radian is a fair

approximation of the maximum value of these angles for any lens in

an optical system. The next term is of the fifth order, and hence as

a first assumption (but perhaps the best that can be made without a

special consideration of each case) the error in any one of the prod-

ucts of equations (99) to (103) may be considered as of the order

of 1 per cent (the ratio of the fifth power of the angle to the third).

The significance of this will be evident from an application to the

illustrative example already given. The entire expression for the

(Ang. Pri. Curv.) will consist of 12 terms, 4 for each lens. For sys-

tems Nos. 1 and 2, expressed in minutes, they are as follows:
No. 1 No. 2

+ 0.67 +0.67
+ 3.06 +3.06
+ 8.31 +8.31
-13.19 -13.19
+ 2.42 +2.42
+ 11.45 +11.45
+ 30.43 +83.30
+ 5.01 +55.28

Field lens.

Crown component
of eyelens.
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No. 1 No. 2

-1.72 -1.72
-8.39 -8.39
-18.23 -85.00
-19.83 -56.23

Flint component
of eyelens.

— 00. 01 minutes. —00. 04 minutes.

In No. 1 the largest single contribution is of the order of 30 min-

utes, and it may accordingly be estimated that the error from this

particular approximation will be of the order of 0.3 minute. Similarly

for No. 2 the minimimi value will be of the order of 0.9 minute. It

must be understood that from this consideration one can form no

conclusion regarding the maximum error to be expected, as there are

other important sources of error which will be considered later, but

the minimimi error to be expected is desired at present as it sets the

limit to the precision which may b6 usefully employed in the compu-

tations. Eeferring to the values of -^^

—

~ ~ and -^^—% -

given in the preceding section, it is evident that 0-2 and 0-3 should be

determined to the nearest hundredth, and the computation should be

planned with this purpose. The computations are rather long, and

there are usually places where subtractions are encountered in which

there is considerable loss of significance. One can determine the

number of significant figures in the final result by a careful scrutiny

of each step, but for the example already worked the degree of signif-

icance retained in the final result was determined by carrying three

computations along in parallel. In the first, in all results, both inter-

mediate and final, only three significant figures were retained except

when the first digit was 1 or 2, in which case four were retained.

This will be referred to subsequently as a computation in 3/4 signif-

icant figures. Similarly in the second computation, of which the

results are given in the preceding text, four and five figures were

retained and in the third 5/6 significant figures were preserved. The
values obtained for 0-2 and 0-3 in the computations are given below.

0-2

{

SU 415 5/6

+ 0.300 +0.3021 +0.3021
or -0.971 or -0.9916 or -0.9924

+ 0.036 +0.0339 +0.0340

"^M or +1.916 or +1.9505 or +1.9520

The above results show that the 3/4 computation is not sufficiently

precise and that the 5/6 computation involves more labor than is

useful. The above computations were carried out on a computing

machine, but the 3/4 work may be considered to be approximately

the same, as regards precision, as work with a four-place logarithm
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table. The 4/5 computation corresponds to the use of a five-place

table. A more critical examination of the computation for the illus-

trative example would, of course, show that the number of significant

figures should be varied at different stages of the computation, and

the designer having a very large amount of work to do may find an

investigation along this line profitable.

When an isolated computation is made, it is probably simpler to

err in the direction of too many significant figures. But if a number
of computations on systems of the same general character are to be

made, the importance of determining carefully the number of signif-

icant figures to be retained can not be overemphasized. For eyepiece

work of the character of the illustrative example it appears that 4/5

significant figures are sufficient for final third order computations.

For preliminary work or for a general reconnaissance, in which the

glasses or other factors are to be varied, good qualitative results m.ay

be obtained by the 20-inch slide rule or four-place logarithm table,

and the saving of time effected by their use will be very great. This

last point can hardly be overemphasized. Unfortunately, it seems to

be the general impression that a very large number of significant

figures are necessary in all optical computations, and as a result very

interesting problems and researches are made to appear most unat-

tractive.

In the foregoing consideration of the precision of the third order

equations the only source of error which has been treated was that

arising from the breaking off of the series developments of the trigo-

nometric functions. This sets a minimum value for the error to be

expected, and it at once suggests the desirability of obtaining an

estimate of the maximum value. But this is more difficult and can

only be dealt with in a very general manner. Before the third

order equations are apphed the thick lens system is replaced by an

idealized thin lens system. If one is dealing with a telescope objec-

tive, consisting of two or three thin components cemented together,

the approximation yielded by the thin lens system is good. But if

one has thick components with large separations the first order

differences between the thick lens and thin lens combinations may
be large. The eyepiece is particularly unfavorable, and Table 3,

page 152, well illustrates this. As the first order constants are the basis

of the third order equations, this in turn introduces large variations

in the values of the aberrations as evidenced by Table 4, page 153.

These errors will be detected in the first stage of the trigonometric

adjustment or can be estimated with considerable accuracy if the

third order equations are applied to the equivalent system of elements

as defined by Taylor.^^

3« Taylor, H. D., A System of Applied Optics, Section n. Macmillan & Co, (Ltd.), London; 1906.
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VIII. DESIGN OF OPTICAL SYSTEMS WHICH CONTAIN
THIN LENSES AND PLANE PARALLEL PLATES OR RE-
FLECTING PRISMS

In the equations which have been given thus far the thicknesses of

the lens components have been considered as negligible. If the

optical system contains plates of glass having plane parallel surfaces

placed normal to the axis of the system and of thicknesses comparable

in magnitude to those of the lens components, their aberrations

may, in general, be neglected as of the same order of magnitude as

the thickness aberrations of the lenses. But if the plates are of

great thickness or if the system contains reflecting prisms, aberra-

tions are introduced by the excessive length of glass path which

can not be ignored.

1. ABERRATIONS OF PLANE PARALLEL PLATES

The determination of the aberrations of a plane parallel plate

proceeds in two steps.

1. The plane parallel plates are replaced by equivalent air thick-

nesses and the first order equations applied. This gives the values

of s's and x^s which are subsequently used to determine the values

of g, Thy (T, TT, and e for each component.

2. The third order equation for the plane parallel plate is applied.

For this the s, x, g, and A as determined in (1) are used, but the

actual thickness of the plate and not the equivalent air thickness is

applied in the equation.

(a) Keplacement of Plane Parallel Plates by Equivalent
Air Thicknesses.—For first order imagery each plane parallel plate

may be removed from the system and replaced by an equivalent path

length in air, after which the first order equations are applied in the

usual manner. Figure 31 will make the manner of substitution clear.

In the upper diagram a system is shown which comprises two plates

and two lenses. The first plate is between the lens ii and the object

at I. The second between Zi and L2. In first order imagery a plate

of thickness d is equivalent to an air thickness d/n where

d= thickness of plate,

n= index of refraction of plate.

The simplified system obtained when the plates are replaced by the

equivalent air thicknesses is shown in the lower diagram, and the

manner of replacement is evident from the equations written on the

dimension lines.

If one has given a system with plane parallel plates and wishes to

apply the first order equations, it is only necessary to pass from the

given system to one without plates in the manner indicated, after
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which the first order equations are applied in the usual manner. Con-

versely, if a system has been designed without plane parallel plates

and it is desired to determine the distances between the lenses and

their conjugate planes after the introduction of the plates, the alter-

ation is made which is indicated in passing from the lower to the upper

drawing of Figure 31. Any optical path measured along the axis

in which the ray is transmitted by the glass is increased by the

length d( j. But equations (1) and (2) can only be applied to

distances in which

the air equivalents

are inserted as in

the lower diagram

of Figure 31. Dis-

tances measured on

the upper diagram

in which the actual

thicknesses of the

glass plate appear

are not to be used

in the first order

equations, but are

only applied in the

determination of the

lengths to be used

in designing the me-
chanical parts. A
plane parallel plate

may be considered

as a lens of zero

power and does not Fig. 31.

—

Manner in which plane parallel plates of glass

affect the ma^nifi- ^^^ replaced hy equivalent air thicknesses for first order

. £ , computations
cation 01 a system. ^

TTar»/^o iTYiofroG in ^^ ^"^^^ order imagery a plate of thickness d is equivalent to an air
Xience, miages m

thickness d/n where

homologous COnjU- d=thickness of plate.

gate planes of the
r^^index of refraction of plate.

two systems of Figure 31 are the same size and the values of the

2/'s in the two systems are identical.

In the preceding paragraphs it has been assumed that the axial

ray is normal to the plane parallel plate. If this is not the case, the

thickness is to be measured along the path of the axial ray and not

normal to the surface of the plate.

(Jb) Third Order Aberrations of Plane Parallel Plates.—
The imagery as defined by the first order equations is identical for

the two systems of Figure 31. But each plate of the upper system
introduces third order aberrations and consequently to the terms of
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equations (96) to (103) there must be added one term for each plate

present. The manner in which a plane parallel plate introduces

spherical aberration is indicated by Figure 32. Assume that a

bimdle of rays proceeds from an optical system, not shown, lying to

the left of the plate and that an axial image free from aberration is

formed at /'. When the glass plate is introduced, on the basis of

first order imagery, the paraxial rays form a new image at /" where

the length /' /" iBdl j . A marginal ray passes through a greater

thickness of glass, and, hence, its intersection with the axis is displaced

farther to the right than is the paraxial image. The net result is

that the image at /"
has negative spheri-

cal aberration. If

in a similar manner
a point off the axis

is considered, it will

be found that all

aberrations, both
chromatic andmono-
chromatic, are intro-

duced by the plate.

The equations giv-

ing the magnitudes

of these aberrations

may be readily ob-

tained from the Sei-

del equations ^^ by
a method similar to

that used to deter-

mine the spherical

aberration of a thin lens. The terms for two successive surfaces are

written, after which one writes r= r' = oo and applies reductions

similar to those used in the derivation of the lens equations. If one

does this for the plane parallel plate lying between lenses Tc and ^+

1

and having the surfaces a and h as illustrated in Figure 33, the equations

Fig. 32.

—

Introduction of spherical aberration by a
plane parallel plate

The paraxial image is transferred from F to /" when the plate is intro-

duced. The marginal rays travel a greater distance in the glass, and

hence the image produced by them is transferred to the right of /".

At /", therefore, there is negative spherical aberration although the

original image at /' was aberration free.

will contain the ratio or -r according to the manner in which
^ 6

the elimination is carried out. But any ray which enters a plane

parallel plate after emergence is traveling in a direction parallel to

that which it originally had. It follows that

Ji

(108)

36 See Appendix 2.
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In the first order equations, which will have already been ap-

plied to the system, all plates will have been replaced by equivalent

air thicknesses. The values of ^a? ^b, s^, s\ can only be determined

by an additional computation, \7hile A^, 7ik+i, s\, s^+i will be

already available. Consequently, in the formulas the last two ratios

of equation (108) will be used. In the terms for the other aberra-

tions a similar elimi-

nation will be made pn^ pna,

in the ratios of g and
^

\^^

X which occur. As
a corollary it follows

that the aberrations

introduced by a

plane parallel plate

are independent of

the axial position of

the plate so long as

it remains between

any two given lenses.

(c) Third Order
Aberration Equa-
TioNS OF Plane
ParallelPlates.—
Following are the
formulas for the

different aberrations

produced by a plane parallel plate placed normal to the optic axis

of thickness d and index n:

Fig.

K+l

33.

—

A plane parallel plate between lenses K and
K+1

It is evident that
hb h

Aberrations referred
to preceding lens

Aberrations referred
to following lens

(Ang. Lon. Chr.)

2od^(¥)'

(Ang.Lat.Chr.)

-'^XM)'-"'
(Ang. Sph.)

(109)

o^d
n^ Vsk+i/

(Ang. Coma)

(110)

(111)

""'^ii^ipj'-'^'
(112)
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Aberrations referred to preceding lens. Aberrations referred to following lens.

(Ang. Pri. Curv.)

(113)

(Ang. Sec. Curv.)

(114)
(Ang. Dist.)

(115)

In the above equations the signs of the aberrations are to be inter-

preted in the same manner as for equations (95) to (103). (See pp.

130-131.) A complete expression for a third order aberration of a

system composed of thin lenses and plane parallel plates will contain

one term from the appropriate equation (95) to (103) for each thin

lens, and, in addition, for each parallel plate there will be a term from
corresponding equation (109) to (115), Each of the plane parallel

plate equations is preceded by a negative sign. This indicates that

the aberration is of the same character as is generally introduced by
a negative lens. Accordingly, a system of lenses and plates which
gives an aberration-free image will, in general, be undercorrected in

the absence of the plates. The aberrations increase as the ratio

- or - increases, and it follows that a plane parallel plate introduces
S tC

the more aberration accordingly as the apertures of the transmitted

bundle of rays or the divergence of the chief rays is large. In all

cases the aberration is directly proportional to the thickness. If

s= 00 ; that is, if a plane parallel plate is introduced in a portion of

the system when the bundles of rays are parallel, there is no contri-

bution to the third order aberrations.

2. THIRD ORDER ABERRATIONS OF PRISMS

Plane parallel plates are commonly used as windows to protect

the surfaces of prisms or other large components from scratching or

mechanical injury. For this purpose they are often used in military

fire-control instruments and other instruments subjected to particu-

larly rough usage. In the compound microscope the cover glass

placed between objective and object forms an important part of the

optical system. In the majority of such cases, however, the plates are

of so little thickness that the aberrations when determined are found
to be negligibly small in comparison with the aberrations of the lenses.

In fact, it will be remembered that the thicknesses of the lenses are

neglected in the thin lens equations, and the errors which arise from
the neglect of the aberrations of plane parallel plates of approxi-

mately equal thickness will be of the same order of magnitude. But
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it will be shown below that a reflecting prism is equivalent, as far as

aberrations are concerned, to a plane parallel plate, the thickness of

which equals the length of path of axial ray. Consequently, prisms

are equivalent to plane parallel plates of great thickness, and the

application of equations (109) to (115) is necessary to secure a satis-

factory approximation.

(a) Replacement of a Pkism by an Equivalent Thick Plate.—
In Figure 34 there is illustrated the course of two bundles of rays

through a 90° reflecting prism. In the lower diagram the prism and

the emergent bundles have been reflected in the reflecting surface of

the prism. In the two illustrations it will be seen that the angles

of incidence and refraction are identical at the corresponding surfaces.

As reflection at a plane sur-

face introduces no aberra-

tions, but only a change in

direction, it follows that the

third order aberrations of the

prism in the upper design and

the thick parallel plate in the

lower diagram are identical.

When a system contains
prisms, the process is there-

fore as follows:

1. Each prism is consid-

ered as replaced by a thick

plate which has a thickness

identical with the path length

of the axial ray within the

prism.

2. The thick plate thus ob-

tained is replaced by the

Fig. 34.

—

Equivalence in third order imagery

of a reflecting prism and a plane parallel

plate

equivalent air thickness and the first order equations applied. The
s's and x's obtained in this stage are used to determine the tt's, e's,

^'s, and ^'s of the lenses.

3. In the formation of the third order equations one term is intro-

duced for each prism by applying equations (109) to (115) to the

equivalent thick plate of (1).

(h) Peincipal Types of Prisms Used in Optical Instruments
With the Thicknesses of the Equivalent Plane Parallel
Plates.—In Appendix 3 there is a series of plates prepared by O. K.
Kaspereit and which formed a part of the revised 1924 edition of

''Elementary Optics and Applications to Fire Control Instruments, ''

United States Army Ordnance Document No. 1065. Below, for

convenience of reference, there is tabulated a list of the different

prisms, together with the values of the lengths of light paths for unit
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aperture, which will be found represented on each plate by the symbol

dp. These lengths are the thicknesses of the plane parallel plates

equivalent to the prisms.

Table 4.

—

Equivalent parallel plate thicknesses of reflecting prisms

Type of prism

dp= equiva-
lent parallel

plate thickness
for prism of

unit aperture

Inverting prisms:
No. 1 by Abbe . _ . . 5.20

4.30
5.33
4.50
5.20
1.71
3.41
4.83
3.14
3.41
7.44
3.75
3.46
6.46
3.46
3.00
1.00

No. 2 by Abbe
Hensolt

Leman ... ..

Amici
Pentagon. ._ . - . .

Camera Lucida
40° deviation "D-40"
45° deviation "D-45-a"
45° deviation "D-45-b" .

50° deviation "D-50"
60° deviation "D-60-a"
60° deviation "D-60-b"
120° deviation "D-120"
Rhomboid
Right angle reflecting. .

To obtain equivalent parallel plate thickness for any prism, multi-

ply tabulated value of dj^ by diameter of aperture. The equivalent

air thicknesses which are used in the first order equations are ob-

tained by dividing dp by the index of refraction and multiplying by
diameter of aperture.

The following prisms of Appendix 3 have not been listed in the
above table:

The inverting prism by Wirth,

Keflecting prism ''D-90,''

Dove reflecting prism.

In each of these three prisms the angles of incidence and emergence

at the two glass air surfaces are not zero. The equivalent plane

parallel plate which replaces the prism is not a plate placed normal
to the axis of the system, but one inclined to give the same angle of

incidence as that of prism. Such a plate of a thickness equivalent to

the prism, if placed in a position where the pencils are convergent,

introduces aberrations so large that the system is useless for most
purposes. Consequently, these prisms can only be used where the

rays within a bundle proceeding from any point of the object are

parallel; that is, s= oo. One finds such prisms used either in front

of the objective or back of the eyepiece of a telescopic system. In

such a position no aberration is introduced, and the equivalent glass

thickness is of no import as it is a finite length to be subtracted from
the relatively very large or infinite s.

The method of the replacement of prisms by parallel plates can
not be applied to prisms which are used to introduce dispersion as in

the spectrograph or spectrometer. Obviously, these prisms can not

be replaced by equivalent plane parallel plates, since the latter

introduce no dispersion. Dispersion components must be dealt with

by a method of ray tracing.
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3. APPLICATION OF THIRD ORDER THEORY OF IMAGERY TO A TELE-
SCOPIC SYSTEM WHICH CONTAINS A PARALLEL PLATE AND A
PRISM

A telescopic system is to be designed for which the following data

hold:

Diameter of objective 25 mm.
E. F. L. of objective 125 mm.
E. F. L. of eyepiece 25 mm.
Angular magnification 5 times.

Such a thin lens system is shown in the upper diagram of Figure 35.

A window of borosilicate glass 4 mm thick is to be placed in front of

the objective to pre-

vent mechanical in-
''"' '^^

jury. An Amici in-

verting prism, com-

monly referred to as

a roof prism, is to be

placed back of the

objective. The in-

sertion of these two
components is

shown in the lower

diagram.

The window is in-

dicated with its in-

ner surface 10 mm
in front of the first

vertex of the objec-

tive. As this is a

telescopic system,

Si = 00 , and the path

length within the

window can, there-

fore, be ignored.

The inverting prism

is to be placed with Fig- 35.

—

Telescopic system with plane parallel plates of

its first surface 10 the illustrative example

mm back of second principal point of the objective. The aperture

of the prism is 25 mm. Reference to the table, page 166, shows that

the equivalent parallel plate thickness of this prism will be 25 X 1.71 =
42.75 mm. It will be assumed that the prism is made of borosilicate

glass, the constants of which are given on page 146. The equivalent

air thickness for light of wave length 546 m/x is 42.75-^1.518 = 28.16

mm. In the upper diagram the distance from objective to image
(s= oo) = l25 mm. In the lower diagram

P'i,2^ + equivalent air thickness of prism + ^/' = 125 mm
30906°—27 7
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and on substituting 57' = 86.84 mm. The details of the eyepiece

will not be entered into, but this gives the necessary data for design

of mechanical parts so far as the objective system is concerned.

It is evident that the window will introduce no aberrations, as it is

placed in front of the objective where Si = oo . It will be assumed that

the entrance pupil is in the plane of the objective. Then

Si = 00 £Ci =

The values of ^\ and s^ will depend upon the manner in which the

power is divided between the two components of the objective, and

this, in turn, is dictated by the choice of glass and the condition for

elimination of longitudinal chromatic aberration. But it can easily be

seen that

s'2= + 125

also

The ratio

X 2

This provides the necessary data for the formation of the term giving

the aberrations of the prism. For spherical aberration (equation

(111)

(Ang. Sph.) = - (12.5)3 (42.75) ^^^g^ {^^
= -0.000084 radians

In writing the equations for the spherical aberration of the entire

system to the 5 terms corresponding to the 5 lens components (2

in the objective, 3 in the eyepiece) from equation (98) there would

be added the above term and the whole equated to zero. The
equations for the other aberrations are formed in a similar manner.

IX. APPENDIXES
APPENDIX 1.—NOTATION AND SIGN CONVENTIONS

Below there is given a list of the characters which have been used,

together with their significations. In the second column there will

be found the equivalent characters as used by Taylor.^^

The lenses of an optical system are assumed to be numbered in

order, beginning with the one which first receives the light from the

object. Subscripts attached to a symbol relate it to the lens bearing

the same number. Unprimed characters refer to magnitudes in the

object space, primed characters to the homologous magnitudes in the

image space of a lens. An exception has been made in the case of

" Taylor, A System of Applied Optics. Published by Macmillan & Co. (Ltd.), London; 1906.
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the primes affixed to X (see below), but this will lead to no confusion.

Additional subscripts may be added to n to indicate the wave length

for which the index of refraction is indicated. The subscript may
be a letter, in which case it refers to the Fraunhofer designation of

the line; or it may be a number, in which case it refers to the wave
length measured in mju. A double subscript applied to characters

other than n indicates that the magnitude is not referred to a single

component, but to the optical system composed of the lenses from

the first to the second subscripts, inclusive. Thus s 1,5 is the axial

object distance for the system composed of the first five compo-

nents and would be measured from the first principal point of this

system to the projection of the object point.

Pres- Tay-
ent lor

nota- nota-
tion tion

A A' =the coeflEicient of spherical aberration. It is defined by equations

(23) and (24).

A =the angular magnification. It is the limit of the ratio of the angle

between a ray and the optic axis in the image space to the angle

between the conjugate ray in the object space and the optic axis

when the last-mentioned angle approaches zero as a limit. It is

defined by equation (85).

B B' =the coefficient of distortion which is a measure of the distortion

produced by the aberration of the pupil points, and is defined by
equations (64) and (65).

h =the deformation coefficient for an aspherical surface. It is defined

by equation (122) in Appendix 2.

C C =the coefficient of coma. It is a measure of the amount of normal

coma present and is defined by equations (39) and (40)

.

d =the thickness of a plane parallel plate or path length in a prism.

It differs from t (q. v.) in that it is a length measured in glass.

/ =the focal length. For a thin lens it is defined by equation (1).

g =the height of incidence of a chief ray divided by the tangent of

the angle between the axis and the conjugate chief ray in the

object space oj sijstem. It is defined by equations (16), (93),

and (94).

h =the height of incidence of a ray from an axial object point divided

by the height of incidence of conjugate ray in entrance pupil

plane of optical system. It is a dimensionless quantity defined

by equations (15), (91), and (92).

L =the longitudinal magnification. It is the limit of the ratio of a
short length of the optic axis in the image space to the conjugate

segment in the object space when the last approaches zero as a
Hmit. It is defined by equation (84)

.

IVf =the lateral magnification. It is the Hmit of the ratio of a short

length normal to the optic axis in the image space to the conju-

gate segment in the object space when the last approaches zero

as a Hmit. It is defined by equation (83)

.

n /i = index of refraction of any optical medium relative to air which is

assumed to be the common medium surrounding the optical

components.
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Pres- Tay-
ent lor
nota- nota-
tion tion

An
o

P
P

Si

Su
Sill

SiY

8'

Am
A

-n\" —nV. If not otherwise qualified, it usually refers to nr— nc.
= the radius of the entrance pupil of the optical system.

= the Petzval curvature. It is defined by equation (96).

:the distance measured in the entrance pupil plane from axis to

point of incidence of a ray proceeding from an axial object point.

The maximum value of p is o.

:the invariant of the object point for the ^th surface. It is defined

by equation (123) in Appendix 2.

=the invariant of the pupil points for the ^th surface. It is defined

by equation (124) in Appendix 2.

= the radius of curvature of first surface of lens; that is, the surface

which receives the incident light.

= the radius of curvature of second surface of lens; that is, the surface

from which the light emerges.

r and r' are positive when the surfaces are convex toward the

incident light, negative if concave toward it.

These are the Seidel sums and are defined by equations (116) to

(120), inclusive, in Appendix 2.

u =

T r =a

t s

u

the ''axial distance" of object point, which is the distance from the

common vertex of the two surfaces of a thin lens (for a thick

lens or lens system s is measured from the first principal point)

to the projection on the axis of the object point.

the "axial distance" of image point, which is the distance from the

common vertex of the two surfaces of a thin lens (for a thick

lens or lens system s' , is measured from the second principal

point) to the projection on the axis of the image point.

s or s' is positive if a generating point, when moving in the

direction of the incident light, passes through the common vertex

of the two surfaces (or principal point in the case of thick lenses

or lens systems) before it arrives at the object or image point,

respectively.

second coefficient of distortion, which is a measure of the dis-

tortion that arises from lack of coplanarity of intersections of

chief rays, and is defined by equations (62) and (63)

.

the distance between two optical components. It differs from
d (q. V.) in that it is a length measured in air.

the axial distance of object point for a telescopic system. It

may be measured from any arbitrary origin in the object space

on the axis to the projection on the axis of the object point.

the axial distance of image point for a telescopic system. It must
be .measured from an origin conjugate to the origin arbitrarily

selected in the object space to the projection on the axis of the

image point.

u or u' is positive if a generating point, when moving in the

direction of the incident light, passes through the origin before

it arrives at the object point or image point, respectively.
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X U =the axial distance of the entrance pupil point. It is the distance

from the common vertex of the two surfaces of a thin lens (for

a thick lens or lens system x is measured from the first principal

point) to the entrance pupil point.

a;' V =the axial distance of the exit pupil point. It is the distance from

the common vertex of the two surfaces of a thin lens (for a thick

lens or lens system x' is measured from the second principal

point) to the exit pupil point.

X or x' is positive if a generating point, when moving in the

direction of the incident light, passes through the common
vertex of the two surfaces (or principal point in the case of thick

lenses or lens systems) before it arrives at the pupil point.

y =the ''lateral distance" of the object point and is the distance from

optic axis to the object point.

y' =the "lateral distance" of the image point and is the distance from
optic axis to the image point.

When indicated on a diagram, y or y' is positive if measured
upward.

Greek characters

a =the angle in the object space between a ray and the optic axis.

/S tp =the angle between the chief ray and the axis in the object space.

With the subscript 1 it becomes the angle between the chief

ray and the axis in the object space of the optical system. The
vertex of this angle will be at the entrance pupil point.

6 /S =the eccentricity factor, a dimensionless parameter applied in the

Taylor system of third order equations, which is a measure of

the eccentricity of point of incidence of chief ray. It is defined

by equation (12).

X' =the longer wave length of the two for which chromatic aberration

is eliminated in equations (97) and (98). In instruments for

visual use it is commonly the wave length of the C spectrum line.

X =the intermediate wave length for which the monochromatic
aberrations are corrected. In instruments for visual use it is

commonly the wave length of the mean of the D spectrum
lines. The value 5,460.7, corresponding to the mercury line,

may also be adopted for X.

X" =the shorter wave length of the two for which chromatic aberration

is eliminated in equations (97) and (98). In instruments for

visual use it is commonly the wave length of the F spectrum line.

n^-1 nn-l~
If not otherwise qualified it is usually equal to

riyr-riy ^ -a np—nc

=the position factor, a dimensionless parameter applied in the

Taylor system of third order equations, which is a function of

the axial distances of object and image. It is defined by equa-

tion (10).

=the shape factor, a dimensionless parameter, applied in the Taylor

system of third order equations, which indicates the manner
in which the power of the lens is divided between the two sur-

faces. It is defined by equation (8)

.

= the power of a lens and is the reciprocal of the focal length. For
a thin lens it is defined by equation (1).



172 Scientific Pajpers of the Bureau of Standards Woi.n

APPENDIX 2.—THIRD ORDER EQUATIONS AS GIVEN BY SCHWARZ-
SCHILD

The five Seidel sums in the fonn employed by Schwarzschild ^^ are

given below without change other than that necessary to make
notation and sign convention uniform with body of article.

Sx= |2;..^[A'(n'.-.,) +«\,(^-^)l .
(116)

S„=is,W.|(«'.-«.) + eV>(;^-„-^)| (117)

-e.>«2M-e.)(^-^}) (119)

Sv=i2,./.^[^^^(n'.-«.) + eMe.,.(;7^-^)l (120)

The summation indicates that one term is to be taken for each

surface in the system. If, as in the following, the subscript i is

assumed to change from lens coTrfponent to lens component, with the

second surface of each component denoted by a prime, then i must
take on the values

i=l, 1', 2,2', 3, 3', etc.

With this notation a cemented surface—say, between the second and

third components—will be considered as two surfaces, 2' and 3,

separated by a layer of air of zero thickness.

The new symbols to be defined are given below

:

6 = deformation coefficient. The equation of a spherical surface

with origin at the vertex, if the development is broken off with

the fourth order term is

.=^+(^ ' (121)

where x, y, and z are rectangular coordinates.

-^-^V^^(l + 5) (122)

M Schwarzschild, K., Untersuchungen zur geometrischen Optik. I. Einleitung in die Fehlertheorie

optischer Instrumente auf Grund des Eikonalbegriffs. Abh. der Koniglichen Gesellschaft der Wissen-

schaften zu Qcittingen. Math-Phys. Kl. Neue Folge. 4, No. 1; 1905.
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is the equation of a "deformed" surface of revolution for which h,

the "deformation coefficient," is taken as a measure of the departure

from sphericity. Only spherical surfaces have been dealt with in

this article, for which h = 0. lih= —1 the surface becomes a parab-

oloid of revolution. If --l<Ch<^Oj the section of the surface revolu-

tion is an ellipse lying between the circle and the parabola; if

6<; — 1, the surface is a hyperboloid of revolution. For any value of

h the radius of curvature of the surface at the vertex is r.

Til is the index of refraction of the medium preceding the ith surface.

The index following this surface is ?ii' or rii+i.

Qa,i is an optical invariant of the surface defined by the equation

Qx,i is similarly defined by the equation

«-= '^'CVx^)='^'' Cl-^')
(124)

The angular values of the aberrations in the object space are de-

fined by the equations

(Ang. Sph.) =2o'Si (125)

(Ang. Coma) =S o' Sy Un^i (126)

(Ang. Pri. Curv.) =2 o(2 ^n + ^m) tan% (127)

(Ang. Sec. Curv.) = 2 o Sju tan^iSj (128)

(Ang. Dist.) =^ivtan3|8i (129)

The third order equations of imagery for a single lens may be

obtained by a straightforward but rather tedious elimination between

the appropriate aberration equation and the following equations

descriptive of a single lens of zero thickness, index of refraction n,

in a medium of index 1.

The aberration equation is to be applied to the two surfaces I

and 1'.

'^T'^
• =n (130)

ni=nr=n]

Ti r

Ti r' r n~lf

(131)
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1 1

1 ^1 ^1 ^n-l
%i Si' ns nr

111 —Thl>=ll

[ Vol 2g

(132)

(133)

As an illustrative example the substitution will be made in the

equation giving the spherical aberration.

Q.
1 1

Cb,!—
1 1 n
r s n—1 j

1 l-n^ I n-l 1

n'lS'i niSi s n^ r

1 1 ^ n-n" 1 n-\ 1_1A
n\'s'i' %'Si' \ n^ s n^ f j

)

It follows that

\r s 71—1 // \ 71^ s n^ r j)

This can be reduced to the expression

(Ang.Sph.) =o37.^|_(^^^+^^-^ T+-^ ?
2n+l (^2 7^ + 2 (^ 4(7i+l)

(134)

(135)

(136)

(137)

(138)

71-1 n ]
(139)

=^7tV^^. (See equations (21) and (24).)

If, at any stage of the substitution — and — had been eliminated
r s

by introducing their equivalent expressed in terms of tt and cr (equa-

tions (9) and (11)), the value of A would have been similarly obtained

for the Taylor system of notation. The generalization by which

equation (79), applicable to a system of thin lenses, is obtained is

evident. Also, in a manner similar to that employed above, one

can obtain the equation for any aberration of a plane parallel plate

of thickness d and with surfaces of zero curvature.
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APPENDIX 3.—SPECIFICATIONS FOR REFLECTING PRISMS

The following 20 plates were prepared by Otto Kaspereit, optical

designer, Frankford Arsenal, and are given in Elementary Optics

and Applications to Fire Control Instruments, Document No. 1065,

revised edition, January, 1924, Ordnance Department, United

States Army, and are here republished through permission kindly

granted by the War Department.

Drawings are given of substantially all types of reflecting prisms

in general use. For each prism J.p is the diameter of a cylindrical

beam of light traveling along the ''optic axis" which is wholly

transmitted by the prism. Literal expressions for each dimension

in terms of A^ and numerical values of each dimension for ^p= 1

are given. The length d^ is the thickness of the thick plane parallel

plate equivalent to the prism of unit aperture, If <Zp is multiplied

by diameter of prism aperture—that is, A^—and divided by the index

of refraction, one obtains the equivalent path length in air.
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DESt^NiMfr OP PRISMS AND PRISM- SVSTE.HS
Ape CLEAR APERTURE OF PRISM * 1.00 IN ALL EXAMPLES*
ap« LENGTH OF PATH OF RAY THROUGH PRISM C6LASS).
4= UHCcTH OF PATH OF RAY IN PRtSM TO IMA^ PLANL.(RAN6E-FlN0E.RHALVIf«iPRI$ro)

r^^nfrtMJlHt IMO&C OF PRISM GUSS»I.5I65 FOR ALL EAAMPLES.
U.=PARALLEL pISPLACEMEMTOFlflTERSEdTlON DISTANCE CAUSED BY PRISM.
nilfe=WIMU£LDI5PLACCMFNr OF INTERSECTION OISTAMCEON IMA&E-PLANe)

' CAUSEP fty PRJSrt.

iNV^ERTrWCrPRtSN-SYSTEM NO. I BY A&&E

THfS PRISM IS MADE OUT OF THREE PIECES WHICH ARE CEMENTED TOGETHER
WITH CANADA BALSAM. THE PRISM flADE BY ZEISS CONSISTED OJr ONLY
TW0PIECE5, TWO CF THE THREE PABTS SMOWN BELOW WERE C0M6III'

ED mTO ONE PIECE AND WERE WOT CEMENTED.
THIS PRISM INVERTS THE IMACcE. COMPLETELY BUT NEITHER

DEVIATES NOR DISPLACES THt AAIS.

$|ZE PF PRISMS

k-Ay-^

OC* 60*

B» 21Af>»2.00

^« 30»

<^'-T^=<'-5^'^

^»IZ0* 6= 90*

D«Af»COTAN0= 1.752

E» coll"* ^^^'^'^ L«2AfC0T7»«|5-3.464 a-
Y'^N^T*"'^*^'^*

•^e—l^--^'* 0.50 d|.« SApC0TANp^5.l*)b llf« ^^f^*^ - 1.7697

Fig. 36.
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DESIGNING OF Pf^lSMS AND PRlSM-SY^TEMSX

INVERTING PRISM BYWIRTH

THIS PRISW IS MADE OUT OF ONE. PIECE OF GLASS. IT INVERTS
THE IMAGE COMPLETELY BUT NEITHER DEVIATES NOR DISPLACES
THE AXIS. IT 1$ RARELY USED ON ACCOUNT OF ITS GREAT LENGTH.

rii. $ irifM.Jk^y^''M^^4^ii'i^

a-Ap5ir>lu>= 0.7C7I

^ TAN &
Aj

SIZE OP PRISM
e = 90* oJ 4-5«

"b- a-

B^ a -1- « I.Z07I

F«Apl-B«SS6^5

^ EAySINui

= 0.2O7I

C» Ap4- 2L « 1.7071

E = B-Ap«* 3.56G5

H s —^£ = I 414.1

•4-.7805 Uf

L«ApfB-f2^«5.9807

Fig . 37.

lll£d[lir..|.6t5L
Tip
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t>ESI6NIN6 or PRISMS ANP PRISM- SYSTEMS

INVERTIWCr SYSTEM BY MEN^OLT

THIS SYSTEM COMS»STS OF TWO PRISMS OME OF WHICH IS ARl^T
AmXJL PRISM. THIS RlQrHTANOrLE PRISM JSCEMEMTE-O TO A^PENT/I-
PRlSn^ CHE REFLEJCTIN€r SURFACE OF THI4 PRiSn iS QrROUNO TO THE
SHAPE OP A ROOF OR AT 90.* TH\S SYSTEM COMPLETE UY INVERT®

THE IMAGrE-.
THIS SYSTEM POES NOT PEVIATt T>iCAXIS BUT DISPIACES THE SAME.

TO THE AMOUNT OF "B".

HEHSOLTerS^MS USETHll SYSTEM IN THEIR BINOCUIAR FIELD-eLASSBS,

%• A{»smu> « 0.7D7f

SIZE OF PRISMS
6« ^O*

i»» a - -|e-» oicrn

u) . AS*

12071

Cm
SlNu> IAH2 &* or-&- 22*30' T>' -C^^-IOS^-^

e3-^^^+{Af-a.>0.8787 r=:B+AfTAN^» \.62»5

4f
» -lAf SINui+ 2.5Af a 5.3284 Uf* f'Pf^- '^^f . 1.81^9

5ILVER THfc RE-FLE-CTINCr SURPACE MARKCP "^'^

Pig. 38.
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PESIGNinGr OF PRISMS AHt^ PRISM -^ SY3TE MS

!NVERTtN<5' PRISM- SVSTtM NQ.Z BY ABBE

THIS SYSTEM CONSISTS Of TWO PRISMS OF LIKE CONSTRUCTION
CEMENTED TOQrETHER. THE SHARP CORNE.RS ARE REMOVEP BY
MAWNfr THE ENPS OF PRISMS ROUMP WHlCtt WILL REPUCE. THE
WEl&HT ANPALSO LE.SSEN THE CHANCE OF BREAKlMQ.

THIS SYSTE.^\ INVERTS THE IhlAQrE COMPLETELY; IT
POES NOT PEV/ATE THE >AXIS BUT DISPLACES THE. SAME
TO THE AMOUrtT OF Ap .

SCHUTZ & CO.m KASSEL USE THIS SYSYEH IN THLlR BmOCULAK
fJELP-CH-ASSES.

\ SURFACES TO BE
CEMENTEP TOGETHER

SIZE. OF PRISNSS
ft, c 0.05 uj « 4 5"

SIN
BsAp^2^*I.IO C^ 3tgP^ H.4I4I D

E^-|fl^= 1.464*} F^Ap+a-I.OS |i== 2F = Z.IO

-^ I.555G

Mc a+|j= 2.15 ^^ O.50 a- 0.55

Uj,^ ..iTi^^aHp.,^^^^.

FlO. 39.
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PESI6N(M& OF PRI3M5 ANP PRJSlVf- SYSTEMS
INVERTING- SYSTEM BY PORRO

THE. PORRO PRISM SYSTEM CONSISTS OF TWO PRISMS
OF LIKE CONSTRUCTION. IT IS ONE OF THE OLPEST ERECTmOr
SYSTEMS EVER USEP. THERE ARE NUMEROUS MOPIFICATIONS OF
THIS TYPE OF WMICM ABBE*S PESlGrN (SHOWN OM DRWG- B-J0i78>)

IS PROBABLY THE BEST. THE PORRO SYSTEM INVERTS THE IMACiE?

COMPLETELY. IT POES NOT PEVIATE THE AXIS BUT PISPLACES
TrtE SAME UP (OR POWN) AHV AT THE SAME TIME TO TtlE merWT
(OR left; to the AMOUNT OF (Apt a,).

SIZE OP PRISMS

a « OJiS "b'-^sao&zs
SlHu^

:LS*)I vu^A^
5= ^ff^ "1-414 D= 2(Ap + ei)=f.25 E» 2Af + a »£.125

F = Apfa=MZS M^Ap+'b-l.OGiS R»-^*0.50

FiQ. 404
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PE5IGN1N& OF PRISMS AMP PRtSM- 5lYSrE.M3
INVERTING- PRISM 3Y UCMAN

THIS PRISM CONSISTS OF ONE PIECE OF QrLASS AND TRANS-
MITS MORE LieHT THAN ANV OF THE OTHER PRISMA A LREAPY
PESCRl&ED. IT INVERTS THE IMAGE COMPLETEUT ANP DOES
NOT PEVIATE THE AASS BUT DISPLACES TH^ SAME TO THE. A-
riOUMT OF 3Ap.

Z.S

SIZE OF PRISM
d -60* (i-30'» r^= \ZQ^

C= ApCoTflrt^ - 1.732.

f-= I. 155

H' 5Ap « 5.00
K » Ap a 1.00

kj 0.707

5i^-^="-5»
C ' ApTAN^s 0.577
a.p-3/ipC0TAN§=. 5.196

D^f

*>

PlQ, 41*
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DESIGNING OF PRISMS ANP PRISM- SYSTEMS

llSlVERTINGc PRISM BY AfvUCI

THIS PRISM CONSISTS OF ONE PIECE OF GrLASS ANP TRANS-
MITS EVEN MORE UCrHT THAN THE INVERTING- PRISM BY LEMAW.
IT IS BETTER KNOWN BY THE NAME OF "ROOF-ANGtLE" PRISM
ON ACCOUNT OF ITS SHAPE. IT PEVIATE^ THE A;^IS THROUGH
AN ANQ-LE OF <^0*AnP INVE.RTS TME iMACsrE. COMPLETE. UY.

^^=^

A

-«L-1.

SIZE OF PRISM

i.eo7 M» K --J'=^'*3^'^ ap'AfSmu)+Afi.7o7

Fig. 42.
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/PESiQNING OF PRISMS ANP PRISM-5rSTEMS
TH£^'PENTAeON**PRISM BY PRANDL

THIS PRISM C0>JSI5T5 OF ONE PIECE OF GLASS. IT
/deviates the A>^IS THROUeH AN ANfrLE OF 90* BUT POES
NOT CHANGE THE IMAGrE. THE IMA^E REMAINS STAT-
iONARr WHEN TURNING THE PRISM HENCE THE PRISM
JS CALLEP THE "OPTICAL- SOlUARE" THE TWO REFLE.CTIK<as
SURFACES OF THIS PRISM HAVE TO BE SILVERED.

CSC

^" COS'6

^ Sllg OF PRISM
12*30' ^B 22*3©' e- ^*
^s^ I.OSt C « -4?^^^ =O.S9G B

.707 L

SlN

-^= MI4 ir':^!fc + 2«p-'-^'^ Up=i2M2dp= 1.163

IF THJS PRISM IS TO B£ USED IN CONNECTION
WnrH*^WEDfirEPR»SMS"lN RANGE-FINDERS THEN
THE AN&LES WILL HAVE TO BE CWAN&LD TO
A SMALL AMOUNT. FOR INSTANCE, A RANGrE-
FINDER PRISM. MADE BT BAUSCH BfLOMB-
ZEISS, HAD THE FOLLOWINCr AN&LES ;

30906°—27 8

CX « 112* 25* ± -4'

JS « 90**5'3O"± Z'
IS » HZ* 22'45' i: 4-*

> = A5f» -4*45"* SO'

Fig. 43.
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'Vt5\Gmhi& or PRISMS ANP PRISM^ SVSTEM^

CAMERA LUCIPA OR CAMERA CLARA

THIS CAMERA CONSISTS OF ONLY ONE PRISM AS SHOWW
IN SKETCH BELOW. WHEN LOOKING THROU&H THIS PRISM AT
AN OBJECT "A»*TWE IMAGrE "B"WILL BE ERECT ANP APPEAR
IN FRONT OF THE OBSERVER. IF IT IS THE DESIRE. OF TH£
OBSERVER TO MAKE A PENCIL SKETCH OF THIS OBJECT HE WILL
PLACE A PIECE OF WHITE PAPER WHERE IMAGE "©"APPEARS.
IN ORDER THAT HE MAY SEE THE IMA&E ANP PENCIL SIMUL-
TANEOUSLY HE WILL HAVE TO MOVE THE-EYE A LITTLE OVER
THE EP6E OF THE PRISM; AFTER A LITTLE PRACTICE THE OBc^

SERVER WILL SEE THE OBJECT ANP PENCIL VERY SHARP,
IF THIS PRISM IS TO BE USEP IN A TELESCOPE THE SHAPES?

PORTION m FI&.I WILL BE G-ROUNP OFF IN ORPER TO REPUCE TH&
IVElfrHT Fi(x,Z %mW$ A FiMISHIP PRISM.

a «G7**30'
o

Tf» 2 0C*135«

^"'
aiN^ *g.GI3 R=Ap COTArt ^^ZA\A if ZApCOTAN ^^^,%l&,

Fig. 44,
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JgESiSRiNQ OF PRISMS ANP PR^SM- SYSTEMS
THE REFLECTING PffiSM "P-^0."

THIS PRISM CONSISTS OF ONE. PIECE OF GLASS. tT
fPOES NOT CHANGE THE IMAGE BUT WILL PEViATE
THE AM^ THROUGH AN AN^LE OF 4.0*

^^^^S"

%

-ArH

A£.

SIZE OF PRt-SM

« « 115*

^ » 4.0*
£
5

160
155'

SlINOL

1x * Ap SIN («! + ^) » 0.76e

C^-^%B^-i.52, D« ^,„^Ac '»I.4I'4

L«^-T^r^-^fS»»^'^-2.787

T^ncK
+ A|»» 3.145 TJty , . C^p-XHr « 1.071

4'

FlQ. 46.



186 Scientific Papers of the Bureau of Standards t Vol. ti

D£StGNm6 OF PRISMS ANP PRISM- SVSTE.MS

THE REFLECTtNQ PRISM "V-AS-dLy

THIS PRI3M CONSISTS OF ONE PIECE OF GLASS, It
170ES NOT CHAW6E THE IMAGE BUT WILL PEVIATE THE
AXIS THROUaH AN ANGLE 0F'4-&?

rs
Ar

1— AfH

SIZE OF PRISM
« e 67*»30' if- IIZ* SO' e= IS7* SO*

H * ApSlNio cr0.707 L*P-2ApC0^^»3.l2l

^ e
^l^-

Aj COTAN ^ ?= 3.414 %- ^^^^j^^
^''^

**?ISei

Fig. 46.
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PE5I6NINQ or PmSMS ANP PRISM-' SYSTEMS

THE RE.FLECT1NG PRISM *'V-AB " h *:

THIS PRISM CONSISTS OF ONE. PIECE OF GLAS5. IT
DOES NOT CHANGE THE IMAGE BUT WILU PEVIATE THE AXIS
THROUGH AN ANGLE OF 45! THE TWO REFLECTING SURFACES
WILL HAVE TO BE SILVERED.

1/

'^r T
t

SIZE OF PRISM
CC*e2*30' §« 33*4.5* If- o(-»-^«5G»IS' .3--^2 0l-45*
e,- ^-0-irts' ^-iiz*3o'^- 146* 15* r-iori5'

» -5^ '-^'Om C^ %f!^^ ^ 1.648 D..3^f|!NJ.^- 2.215

E -
^iij^'^

's Z.GI3 F - A^tA^ COSc(» 1.924 }» , • ^ SlN> - 0.707

llpe-ilMi~Oit 9 t.534.

Fia. 47*
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P£Si6NlM<S OF PRISMS AMP T=»RISM- gySTEMa
THE REFLECTING PRI&IVI ^^P-SO**

THIS PRISM CONSISTS OF ONE PIECE OF (atASS. IT
POES NOT CHANGE THE IMAGE BUT WILL PEVIATE
THE AMS THf^OU^H AN AN^LE. OF 60.*

tk « £0"

t « ISE^

B = Ap
SiNol

SIZE. OF PRISM

^« 70*" r = MO* > « 50*

\ « C Sm Ol = 0.76G ap«Ap+ -T^JoT
" ^•74-S

Fig. 48.
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^'PESIGNIKja OF PRISMS AH0 Pf?ISM^SySTEMS
THEREFLECTIhQ PRISM "P-feO-a"

THIS PRISM CONSISTS OF ONE PIECE OF QLASS. IT
POES NOT CHANqE THE IMAQE BUT WILL PEVIATE THE
AMS THROLKyK AN ANQLE OF 60** THE. UOWER REFLECT-
IN^ SURFACE. WILL HAVE TO BE SILVEREP.

« 1
kp

t'

—t^
aizc OF pmsM

^ - 50*^ * Il0» ^ - 50* ^ « GO*

<^'—m^- ^^^^ p- cos^

*^- ~^B~JMf-.„ ,.,^

Fig, 49.

- kiss
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PESiQNINQ OF PRISMS ANP PRISM- aVSTEMS
THE R£FLECTlNO T'^'FnSM ^'P-CO- V*

THIS PRISM CONSISTS OF ONE PIECE OF QLASS.tT
DOES NOT CHAN<5E THE IMAGE. BUT WILL. PEVIATE
THE AMS THROUGH AN ANQLE OF GO* THE TWO
REFLECTINCq SURFACES WILL HAVE TX> BE SlLVEREp.

'^P

01 • I20»

SIZE OF PffISM

e - I05*

Fig. 50.
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PESIGNINa OF PRISMS ANP Pt^SM-SY3TE.M5
THE REFLECTING PmQM"P-90i'

THIS PRISM CONSISTS OF ONE PIECE OF GLASS. IT
pOE£» NOT CHANGE THE IMAGE. BUTWILL PEVIATE
THE AAIS THROUGH AN ANGLE OF 90f ITS LOWER
REFLECTING SURFACE MUST ^E SILVEREt?.

SIZE OF PRISM

^ =r -,^^ *«f^ -tu = + !?• IZ* Z5/?l ^<l80Vfi).^f u^)-+-t7^-f7^4.09

f^.- SIN*' Tip 5lN<p4- + -45* ^ - TOTAL DEVIATION

^—^^fc-=''^'^ ^- TAN^5lHu>-^-^^^ D=C.B = |.26<^

a^PSlNcv -0.6^7 V-siH^^Tip- 3.033

Fig. 51.

TT-p
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PEStGN^HG OP PRISMS ANP PRISM- SYSTEMS
THE REFLECTiNe PRISM^^'P^ I20 "

THIS PRISM CONSISTS OF ONE PIECE OF GLASS. IT

POES NOT CHANGE THE IMAQE BUtwiLU DEVIATE THE
AX\S THROUQH AN ANGLE OP 120.*

»

StZE OP PRISM

a * €0* ^-lEO* ^ - 30»

^*
GoS<X ^^^r* ^^® C- A^ T^Hc*. - 1.732

L - 3A. -* 3.00 R- A^ - 1. 00

a^ - 2Ap TAN o^- 3.4-6 4- ^« (^r^i^^r n.ieo

L52.
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PESIONIMG OF PRISMS AHP PRI5M-SYSTEMS
^^

THE.*^RHOMBOIl7 PRISM* *

THI5 PRISM CONSISTS OF ONE PIECE OF 6LASS. IT
POES NOT CHANGE THE IMAGE NOR PEVIATE THE.
AAtS ANP IS ONLVUSEP IN INSTRUMENTS WHERE tT l€|

FOUND NCCESSARr TO PJSPLACE THE AMS*

m.

Ap

AK
<.

SIZE OP PRISM.

ApW - -*3« D- 2.00 (ASSUtVtEP). B«—STRuyl.4l#

L-Af+P a S.OO if » i- • a.pc

flG. 53.
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/JD€SISffl>4G OFPRiSWS AMD PRI8M-SYSTEMS

THE '"dove REFLECTINQ PRISM'*

•mrS PRtSM CONSISTS OP ONE PIECE OF GLASS. IT
WILI-NEITHER DEVIATE NOR DISPLACE THE AXIS. THE
IMAGE WILL APPEAR ERECT BUT THE SIDES REVERSED
WHEN PRISM 15 HELD AS SHOW/NIIN FIG.IANDTHE IMAGE WILL
APPEAR INVERTED BUT THE SIDES IH THEIR CORRECT
POSIT 10US WHEN PRISM IS HELD AS SHOWN IN FIG. 2.

SIZE OF PRISrA

3.i2^

1« C-Ap» 2.224

a^.-.
IIP&Ag.

U-C +Ap

3.3^0 Up-

-.2.2.9

ust
5 IN u-»On^-siN2u^ - SINi»^"

THE FOLLOWING TABLE GIVES THE DIMENSIONS OFPRlSMSMADE
OUT OF DIPFERENT GLASSES, m EACH CASE THE APERTURE.
OF THE PRlSr^ Ap*l.00 AnP, THEREFORE B= I.-4 1-4-

Up* \% 1.4 1.5 t.G 1.7 r.8 1.9 j 2.0
<f = ^.<985 3.822 3.297 2.94^ 2^$G ^492 2.339I2.2IJS
1 - 3.&85 2.822. 2.2^7 L94Z I'G&G 1.4^92 1.33^ I.21S

.,.!.-

Fig. 54.
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OtSKSHING OP PRISMS AMb PRISM-SVSTEMS:

THE" RIQHT AM6LE REJ^LECTING PRISM "

THIS PRISM CONSISTS OF ONE PIECE. OF GLASS. ITV/iLU
DEVIATE THE AAIS THROUGnANANGLE OF90*ANDTHE VMAGE WILL
BE INVERTED, BUT SIDES WILL REMAIN IN THEIR CCRREjCT
POSITIONS,WHEN PRISM IS HELD A3 SHOWN IN FIG.I^THE.
IMAGE WILL APPEAR ERECT BUT THE SIDES REVERSED,
WHEH PRISM IS HELD AS SHOWN IN FIS,2.

SIZE Qg PRlSrv^

^
5tfflo =^'414 Up--l^le^lHjL-.0.34l

3,^ a Af a 1.00

Tig. 65.
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APPENDIX 4.—FUNCTIONS OF INDEX OF REFRACTION REQUIRED
IN FORMING ABERRATION COEFFICIENTS

The following table, computed by H. U. Graham, gives the values

of the several functions of n which enter into the aberration coeffi-

cients for values of n differing by 0.001 and extending from n=lA
to n= 1.75. On each page, at the foot of each column, there will be

foimd tables of proportional parts to facilitate interpolation. Val-

ues for which the first significant figure is 1 or 2 are given to 5 sig-

nificant figures. Other values are, in general, given to 4 significant

figures. This accuracy will be found sufficient for substantially all

computations with third order equations.
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n+2 4(71+1) 3n+2 n2 n+1 J.n W(«-1)2 nin-1) n (»-l)2 n{n-l) n

1.400 15. 179 o„
.097 »2

14.935
«0

.855 |0

17.143 .0

.095^1

.047 g

.000 g
16.953 g

4.429 . 12. 250 44
. 206 it
.163 g
. 120 l^
.077 g

:Sii9
.2500

119

.2382
118

0.7143 -

38^
335
28^
23^

.401 .428 ,

.402 .427 1

.403 .426 ,

.404 .425
1

1.405
.696 no
.618 21
.tmlz
.mil

16.906 .7

.859^

. 813
*6

.767^

.721
t^

4.423
1

12.035 40
11. 993 ^

.951 J2

.909 |2

.868 2

4.2265 ...
. 2149

116

. 2033
116

. 1917 JIJ

.1803
114

.7117 .

12 5

07^
02^

.7097^

.406 .422 1

.407 .421 i

.408 .420 ,

.409 .419
J

1.410

.087
11

16. 675 4.
.630 f.
.585 g
.540 f.
.495 g

4.418,
.786 4^
.746 J9
.705|1
.665^0

4.1688 ,.„
.1575

113

. 1462 1}^

. 1349
113

.1237
112

. 7092 .

87^
82 ^

72^

.411 .417 1

.412 .416 !

.413 .415 j

.414 .414
J

1.415 14.013 .yo

13.940 l^
.868^2
.796^
.724 g

16.450 44

.362 JJ

.318
II

.274 g

4 413
1

:m?39
.508

39

.469
39

4.1126 ...

. 1015
111

.0904
111

.0795 09

.0685
IIO3

.7067 .

62^
57^
52 I
475'

.416 .412 1

.417 .411 1

.418 .410 i

.419 .409
J

1.420 13.653 70

•Si 69

^75 69
.375

gg

16.231 44

.144
1^

. 102 ^0

.059 g

4.408. 11.431 ,0
. 393 ^l.35538
•317 it
.279338

4.0577 .^g
.0469

108

.0361
108

.0254 107

.0147
107

.7042 .

37^
32 5
27^
22^

.426 .407
1

.422 .406 j

.423 .405
}

.424 .404
J

1.425 13.307
68

•239
68

•.0566

.038 g

16.017 4.,

15.974*3
•932 g
.890^2
.849 g

4.404 . 11.24237

:l3l36
.096

36

4.0041 ,0.
3.9936

105

.9831
105

.9726
105

39519'^'

.7018 K

•135
08^
03 ^

.6998^

.426 .403 t

.427 .402
}

.428 .401 1

.429 .400.1

1.430
.431 '-?f5

714 64
.714

g4

J5.8O74.
* . 766 *}

.725|J

.684^1

.644^

4. 399 .

.398
1

11.059 0.;

.02435
10.988 f.

. 953 ,«
•917 i

'•9416 }g
9211

102

•9109 1^2

.6993 ,

88 ^
83^
78 5

74t

.432 .397
1

.433 .396
1

.434 .395
1

1.435 12. 650 „,
.587 63

.525
62

.462 63

•401 g

15-6^40

•^^fo

4. 394
,

10. 882 04
.848 ^!
•813 34.77934
.74534

':Kioo
.8808

100

.8708 100

.8609
99

. 6969 ,
64 5

59 ^
54 5
49^

.436 .393 t

.437 .392
1

.438 .391
1

.439 .390
}

1.440 12. 339 „.

.278 61

. 218 fin

.09859

.326
39

.287 39

.248
39

4. 389 , 10. 711 04
. 677 ^
.644

33

. 610 it

.57733

8. 8510 oa
.8412 98

.8314 98

.821797

.8120 97

.6944 4
40 i
355
30^
25^

.441 .388
1

.442 .387 t

.443 . 386 1

.444 .385
1

1.445 12.039 ,0
11.981

11
.922^9
.864^
.807 g
. 750

^7

15. 209 ^„
.171

38

. 133 ^l

.095g

.057
38

.019
-^8

4.384 . 10. 544 «o

•47933

. 415 ^i

.383
"^•'

3.8023 ftc

.7927 96

. 7832
95

.773795

.7642 95

. 7548
^*

.6920 .

16 t
11

^

.446 .383
1

.447 .382 1

.448 . 381
1

06 5
01

I
97

4
.449 .380.1
.450 .379

1

P.P. 80 75 70 48 46 44 42 40 38 118 113 108 6 5 4

1

2
3
4
5

6

7

8
9

8
16
24
32
40

48
56
64
72

8 7 5

10
14
19

24

29
34
38
43

5

9
14
18

23

28
32
37
41

4

9
13

18
22

26
31

35
40

4
8

13
17
21

25
29
34
38

4
8
12
16

20

24
28
32
36

4
8

11

15
19

23
27
30
34

12
24
35
47
59

71

83
94
106

11

23
34
45
57

68
79
90
102

11

22
32
43
54

65
76
86
97

1

1

2

2

3

4

4

5

5

1

2
2
2

3

4

4
4

1

1

2

2

2

3

3
4

15 14
"'"""

23
30
38

45
62
60
68

21

28
35

42
49
56
63

P.P. 66 63 59 42 40 38 36 35 33 104 100 96

1

2
3
4
'

6
7
8
9

7
13
20
26
33

40
46
53
69

6
13
19
25
32

38
44
50
57

6
12
18

24
30

35
41
47
53

4
8
13
17
21

25
29
34
38

4
8
12
16

20

24
28
32
36

4
8

11

15
19

23
27
30
34

4

7

11

14

18

22
25
29
32

4

7
10
14

18

21
24
28
32

3

7
10

13
17

20
23
26
30

10
21

31
42
•52

62
73
83
94

10
20
30
40
50

60
70
80
90

10
19
29
38
48

58
67
77
86
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n
71+2 J

r

(n+1) 3n+2
n ~(

TO2

)' 7

n+1 1

«(«-!) 2 (n-1) 71-1 1(71-1) n

1.450 11. 750 „
. 693 g
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Washington, October 9, 1926.


