[J. Res. Natl. Inst. Stand. Technol. 98, 717 (1993)]

Wavelengths and Energy Levels of Neutral Kr⁸⁴ and Level Shifts in All Kr Even Isotopes

Volume 98	Number 6	November-December 1993		
Victor Kaufman	Interferometrically-measured wave-	large negative residuals which are		
National Institute of Standards and Technology, Gaithersburg, MD 20899-0001	compared with those of Kr ⁸⁶ . Sixty energy levels of neutral Kr ⁸⁴ derived from those wavelengths and 25 Kr ⁸⁶ – Kr ⁸⁴ isotope shifts previously measured	differences and by the specific mass shift. It appears that the volume effect causes only a very small, if any, energy level shift.		
	are given along with their shifts from the energy levels of Kr ⁸⁶ . Twenty levels of each of Kr ⁸² , Kr ⁸⁰ , and Kr ⁷⁸ are also evaluated using isotope-shift informa- tion in the literature. The differences	Key words: energy levels; interferome- try; isotope shift; krypton; wavelengths.		
	between the experimentally observed shifts and the normal mass shift leave	Accepted: September 21, 1993		

1. Introduction

In 1969, Kaufman and Humphreys [1] determined a set of 45 even-parity and 66 odd-parity levels of neutral Kr⁸⁶ based upon interferometrically-determined wavelengths of that isotope of krypton. The energies relative to the ground level, based on the vacuum-ultraviolet observations of Petersson [2], had an absolute uncertainty of ± 0.15 cm⁻¹, although their relative uncertainties were much smaller. (All uncertainties in this paper are one standard deviation estimates unless otherwise stated.) Trickl et al. [3], in 1989, measured the values of the resonance lines of Kr⁸⁶ from four of the J=1 levels of the $4p^{5}5s$, 6s, and 7s configurations with an average uncertainty of 1 part in 107. Their results led to a subtraction of (0.0679 ± 0.0061) cm⁻¹ from the values given by Kaufman and Humphreys [1]. This correction was incorporated in the compilation of the energy levels by Sugar and Musgrove [4].

2. Wavelengths of Neutral Kr⁸⁴

At the same time that the author made interferometric wavelength measurements of the Kr⁸⁶ transitions, he also did the same for a number of lines of Kr⁸⁴ I between 4264 Å and 6906 Å. The pure isotope lamps were of the hot cathode type devised by Kösters and Engelhard at the Physikalisch-Technische Bundesanstalt (PTB). They were operated in the manner recommended by the International Commission of Weights and Measures [5].

During the summer of 1967, the author was given the opportunity to spend some time with C. J. Humphreys at the Naval Weapons Center Corona Laboratories, Corona, CA. With the co-operation of Dr. Humphreys and his staff, measurements were made on Kr^{84} wavelengths between 7589 Å and 9754 Å. The orange line of Kr^{86} at 6057 Å, as emitted from a microwave-excited

electrodeless discharge lamp maintained in a bath of nitrogen at its triple-point temperature, was used as the wavelength standard. The Kr⁸⁴ spectrum was observed from a similarly cooled, microwave-excited electrodeless lamp. Both lamps were viewed along the capillary. Interferometer spacers of 50 mm, 80 mm, and 100 mm were used, but final corrections for dispersion of phase change were taken from the more extensive data of C. J. Humphreys. The 109 interferometrically measured vacuum wavelengths of Kr^{84} are given in the first column of Table 1. Also included in the table are the wavelength uncertainties in parentheses (in units of the last digit) and wavenumbers of the Kr^{84} lines, the Kr^{86} wavelengths and wavenumbers for those same 109 lines from Ref. [1], the classification of each transition and the wavenumber difference between the two isotopes. The wavelength uncertainties are the rms deviations in the set of measurements for each line.

Table 1. Interferometrically measured vacuum wavelengths of Kr ⁸⁴ 1 and differences	from	those of	Kr ⁸⁶ 1
--	------	----------	--------------------

Wate Engin (A) Wate number (En $^{-1}$) Classification Δ_{Patt} Previous 4264.4856(3)* 48475 2349.4871 4918 (Pr)_55 [1/2]; - (Pr)_5169			(4 b D :					
Kr ⁺ Kr ⁻ Kr ⁻ Out level Detense measurements ⁺ 42644856(3)* 48475 23449,4871 .4918 $(2P_{13})_{55}$ $(1/2)_{11}$ $(2P_{13})_{11}$ $(4A_{14})_{11}$ $(320, 794(2))$.79561 23148,4032 .4042 $(2P_{13})_{15}$ $(1/2)_{11}$ $(2P_{13})_{15}$ $(1/2)_{11}$ $(4P_{13})_{15}$ $(1/2)_{11}$ $(4P_{13})_{15}$ $(1/2)_{11}$ $(4P_{13})_{15}$ $(1/2)_{15}$ $(1/2)_{15}$ $(1/2)_{15}$ $(1/2)_{15}$ $(1/2)_{15}$ $(1/2)_{15}$ $(1/2)_{15}$ $(1/2)_{15}$ $(1/2)_{15}$ $(1/2)_{15}$ $(1/2)_{15}$ $(1/2)_{15}$ $(1/2)_{15}$ $(1/2)_{15}$ $(1/2)_{$		wavelength	I (A)	wavenumber	(cm ·)	ווייט	Class	Tree 1		$\Delta \nu_{\rm diff}$		Previous	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			KI	KI**	N 1		ever	Even	evei		mea	surements	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4264.4856(3)*	.48475	23449.4871	.4918	(² P° _{1/2})5s	²[1/2]°	$-(^{2}P_{3/2}^{\circ})8p$	² [1/2] ₀	4.7			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		4275.17220(10)	.17148	23390.8707	.8746	(² P _{3/2})5s	² [3/2] ²	$-(^{2}P_{3/2}^{\circ})6p$	$^{2}[3/2]_{2}$	3.9(5)	3.93(8) ^d		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		4284,17248(10)	.17172	23341.7306	.7348	(² P _{3/2})5s	² [3/2] ²	$-(^{2}P_{3/2}^{\circ})6p$	² [3/2] ₁	4.2	• • •		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		4287.69293(10)	.69212	23322.5657	.5701	(² P° _{1/2})5s	²[1/2]%	$-(^{2}P_{1/2}^{\circ})6p$	² [1/2] ₁	4.4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4301.69626(10)	.69545	23246.6436	.6480	(² P° _{1/2})5s	²[1/2]%	$-(^{2}P_{1/2}^{\circ})6p$	² [3/2] ₁	4.4			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		4319.7658(3)	.76561	23149.4032	.4042	(² P _{3/2})5s	²[3/2] ₂	$-(^{2}P_{3/2}^{\circ})6p$	² [5/2] ₂	1.0			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		4320.7942(3)	.79361	23143.8933	.8965	$(^{2}P_{3/2}^{\circ})5s$	²[3/2]²	- (² P _{3/2})6p	² [5/2] ₃	3.2(1.6)	3.90(8) ^d	3.86(3)°	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		4352.58282(10)	.58189	22974.8644	.8693	(² P° _{1/2})5s	²[1/2]î	$-(^{2}P_{1/2}^{\circ})6p$	$2[1/2]_0$	4.9		(-)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		4363.86767(10)	.86695	22915.4520	.4558	(² P _{3/2})5s	²[3/2]²	- (² P _{3/2})6p	${}^{2}[1/2]_{1}$	3.8(5)	3.84(7) ^d		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4377.35124(10)	.35027	22844.8654	.8705	(² P _{3/2})5s	²[3/2]ï	$-(^{2}P_{3/2}^{\circ})6p$	$2[1/2]_0$	5.1(5)	4.90(8) ^d		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		4401.20227(10)	.20109	22721.0643	.0704	(² P _{1/2})5s	²[1/2]î	$-(^{2}P_{1/2}^{\circ})6p$	$2[3/2]_2$	6.1	~ ~ ~		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4411.6068(2)	.60581	22667.4780	.4831	(² P° _{1/2})5s	²[1/2]°	$-(^{2}P_{1/2}^{\circ})6p$	$2[1/2]_1$	5.1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4420.0022(3)	.00126	22624.4231	.4279	(² P _{1/2})5s	²[1/2]¦	$-(^{2}P_{3/2}^{\circ})5f$	$2[3/2]_{2}$	4.8			
4455.16765(10) .16670 22445.8444 .8492 $(^{2}P_{32})^{2}s^{2}[^{2}]_{2}[^{2}]_{2} -(^{2}P_{32})^{2}_{2}g^{2}}_{2}[^{2}]_{2}[^{2}]_{2}$ 4.8 4464.94273(10) .94163 22396.7038 .7094 $(^{2}P_{32})^{2}s^{2}[^{2}]_{2}[^{2}]_{1} -(^{2}P_{32})^{2}g^{2}}_{2}[^{2}]_{2}]_{1}$ 5.6(5) 4.83(7) ⁴ 4503.6172(10) .61612 22204.3738 .3787 (^{2}P_{32})^{2}s^{2}[^{2}]_{2}[^{2}]_{1} -(^{2}P_{32})^{2}g^{2}}_{2}[^{2}]_{2}]_{2} 4.9(5) 4.76(8) ⁴ 5217.2701(3) .2695 19167.1119 .1141 $(^{2}P_{32})^{2}s^{2}p^{2}[^{1}]_{2}]_{1} -(^{2}P_{32})^{2}g^{4}}_{2}[^{1}]_{2}]_{1}^{2}$ 2.2 5226.63279(10) .63192 19121.8015 .8047 $(^{2}P_{32})^{2}s^{2}p^{2}[^{1}]_{2}]_{1} -(^{2}P_{32})^{2}g^{4}}_{2}[^{1}]_{2}]_{1}^{2}$ 0.3 5340.6034(2) .60296 18724.4760 .4775 $(^{2}P_{32})^{2}s^{2}p^{2}[^{1}]_{2}]_{1} -(^{2}P_{32})^{2}g^{4}}_{2}[^{1}]_{2}]_{1}^{2}$ 0.3 5340.6034(2) .60296 18724.4760 .4775 $(^{2}P_{32})^{2}s^{2}p^{2}[^{1}]_{2}]_{1} -(^{2}P_{32})^{2}g^{4}}_{2}[^{2}]_{2}]_{2}^{2}$ 3.1 5492.46155(10) .46062 18206.7729 .7760 $(^{2}P_{32})^{2}s^{2}p^{2}[^{1}]_{2}]_{1} -(^{2}P_{32})^{2}g^{4}}_{2}[^{2}]_{2}]_{2}^{2}$ 3.1 5492.46155(10) .46062 18206.7729 .7760 $(^{2}P_{32})^{2}s^{2}p^{2}[^{1}]_{2}]_{1} -(^{2}P_{32})^{2}g^{4}}_{2}[^{1}]_{2}]_{1}^{2}$ 3.1 5505.5344(3) .5339 18163.5410 .5427 $(^{2}P_{32})^{2}s^{2}p^{2}[^{1}]_{2}]_{1} -(^{2}P_{32})^{2}g^{4}}_{2}[^{1}]_{2}]_{1}^{2}$ 3.1 5505.5344(3) .5339 18162.4682 .4699 $(^{2}P_{32})^{2}s^{2}p^{2}[^{1}]_{2}]_{1} -(^{2}P_{32})^{2}g^{4}}_{2}[^{1}]_{2}]_{1}^{2}$ 4.7 5522.04373(10) .04304 18109.2373 .2395 $(^{2}P_{3})^{2}s^{2}p^{2}[^{1}]_{2}]_{2} -(^{2}P_{13})^{2}g^{4}}_{2}[^{1}]_{2}]_{1}^{2}$ 4.7 5538.1930(4) .19756 18121.2648 .8593 $(^{2}P_{3})^{2}s^{2}[^{2}]_{2}]_{2} -(^{2}P_{13})^{2}g^{4}}_{2}[^{1}]_{2}]_{1}^{2}$ 4.7 5513.8429(10) .83525 1794.7448 .4079 $(^{2}P_{3})^{2}s^{2}[^{2}]_{2}]_{2} -(^{2}P_{13})^{2}g^{4}}_{2}[^{1}]_{2}]_{1}^{2}$ 4.7 5513.3678(1) .93533 17914.9288 .9335 $(^{2}P_{3})^{2}s^{2}[^{2}]_{2}]_{2} -(^{2}P_{13})^{2}g^{4}}_{2}[^{1}]_{2}]_{1}^{2}$ 4.8 5611.12975(10) .12861 17095.5767 .5		4426.43265(10)	.43162	22591.5558	.5610	(² P _{1/2})5s	²[1/2]î	$-(^{2}P_{1/2}^{\circ})6p$	² [3/2]	5.2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4455.16765(10)	.16670	22445.8444	.8492	(² P _{3/2})5s	²[3/2]¦	$-(^{2}P_{3/2}^{\circ})6p$	² [3/2],	4.8			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		4464.94273(10)	.94163	22396.7038	.7094	(² P _{3/2})5s	²[3/2]¦	$-(^{2}P_{3/2}^{\circ})6p$	² [3/2]	5.6(5)	4.83(7) ^d		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		4503.61721(10)	.61621	22204.3738	.3787	(² P _{3/2})5s	²[3/2]¦	$-(^{2}P_{3/2}^{\circ})6p$	² [5/2] ₂	4.9(5)	4.76(8) ^d		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		5217.2701(3)	.2695	19167.1119	.1141	(² P _{3/2})5p	² [1/2] ₁	$-(^{2}P_{3/2}^{\circ})8d$	² [1/2] ⁸	2.2			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		5229.63279(10)	.63192	19121.8015	.8047	$(^{2}P_{3/2}^{\circ})5p$	² [1/2] ₁	$-(^{2}P_{3/2}^{n})8d$	211/21	3.2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5281.3038(2)	.30263	18934.7186	.7226	(² P _{3/2})5p	² [1/2] ₁	$-(^{2}P_{1/2}^{\circ})5d$	² [3/2]	4.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5336.2389(3)	.23880	18739.7907	.7910	(² P _{3/2})5p	² [5/2] ₂	$-(^{2}P_{3/2}^{\circ})9d$	2 7/21	0.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5340.6034(2)	.60296	18724.4760	.4775	$(^{2}P_{3/2}^{\circ})5p$	² [5/2] ₃	$-(^{2}P_{3/2}^{2})9d$	² [7/2] ²	1.5			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5381.1325(2)	.13155	18583.4487	.4520	$(^{2}P_{3/2}^{\circ})5p$	² [1/2] ₁	$-(^{2}P_{3/2}^{\circ})9s$	² [3/2]	3.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5492.46155(10)	.46062	18206.7729	.7760	(² P _{3/2})5p	² [1/2] ₁	$-(^{2}P_{3/2}^{\circ})7d$	² [3/2] ⁹	3.1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5502.23831(10)	.23721	18174.4218	.4255	(² P _{3/2})5p	² [1/2] ₁	$-(^{2}P_{3/2}^{2})7d$	² [1/2]?	37			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5505.5344(3)	.5339	18163.5410	.5427	$(^{2}P_{3/2}^{\circ})5p$	² [5/2] ₂	$-(^{2}P_{3/2}^{2})8d$	2[7/2]	17			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		5505.8596(3)	.8591	18162.4682	.4699	(² P ^o _{3/2})5p	² [1/2] ₁	$-(^{2}P_{3/2}^{2})7d$	2[1/2]	17			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5518.1990(4)	.19756	18121.8546	.8593	(² P° _{1/2})5s	² [1/2]8	$-(^{2}P_{3/2}^{2})6p$	² [3/2]	47			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5522.04373(10)	.04304	18109.2373	.2395	(² P _{3/2})5p	² [5/2] ₃	$-(^{2}P_{3/2}^{\circ})8d$	² [7/2]	22			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5563.76997(10)	.76905	17973.4246	.4276	(² P _{3/2})5s	² [3/2] ₂ ²	$-(^{2}P_{1/2}^{*})5p$	² [3/2]	3 0(3)	2 99/51	2.06/22.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5571.83623(10)	.83525	17947.4048	.4079	(² P _{3/2})5s	²[3/2]%	$-(^{2}P_{1/2}^{\circ})5p$	${}^{2}[1/2]$	3 1 (3)	2.00(J) 2.95(10)f	2.00(3)*	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		5581.93678(10)	.93533	17914.9288	.9335	(² P° _{1/2})5s	²[1/2]¦	$-(^{2}P_{3/2}^{\circ})6p$	${}^{2}[1/2]_{0}$	47	2.03(10)	2.8/(3)*	2.85(2) ^{n.1}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5613.3678(3)	.3669	17814.6175	.6203	(² P _{3/2})5p	² [5/2] ₂	$-(^{2}P_{1/2}^{\circ})5d$	² [5/2]	28			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5651.12975(10)	.12861	17695.5767	.5803	(² P° _{1/2})5s	² [1/2] ₀	$-(^{2}P_{3/2}^{\circ})6p$	${}^{2}[1/2].$	3 6(3)	2 22/2011		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5674.0250(2)	.02398	17624.1733	.1765	$(^{2}P_{3/2}^{\circ})5s$	² [3/2] ₂	$-(^{2}P_{1D}^{\circ})5D$	${}^{2}[3/2]$	3.0(5)	5.55(20)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5703.7524(3)	.7513	17532.3179	.3212	$(^{2}P^{\circ}_{3/2})5p$	² [3/2] ₁	$-(^{2}P_{3p}^{2})8d$	² [5/2]	3.2			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		5709.0964(2)	.09462	17515.9067	.9122	$(^{2}P_{1/2}^{\circ})5s$	² [1/2]°	$-(^{2}P_{3p})6p$	² [3/2]	5.5			
5728.1764(4) .17554 17457.5629 .5656 $({}^{2}P_{9,2})5p {}^{2}[5/2]_{3} - ({}^{2}P_{3,2})9s {}^{2}[3/2]_{2} {}^{2}$ 2.7 5764.4937(4) .4927 17347.5773 .5803 $({}^{2}P_{9,2})5p {}^{2}[3/2]_{2} - ({}^{2}P_{3,2})8d {}^{2}[7/2]_{3} {}^{3}$ 3.0 5785.4977(4) .49685 17284.5977 .6002 $({}^{2}P_{9,2})5p {}^{2}[5/2]_{3} - ({}^{2}P_{3,2})7d {}^{2}[5/2]_{3} {}^{2}$ 2.5 5807.15097(10) .14992 17220.1481 .1513 $({}^{2}P_{9,2})5p {}^{2}[5/2]_{2} - ({}^{2}P_{3,2})7d {}^{2}[5/2]_{2} {}^{3}$ 2.5 5821.7315(2) .73068 17177.0203 .0227 $({}^{2}P_{9,2})5p {}^{2}[5/2]_{3} - ({}^{2}P_{3,2})7d {}^{2}[7/2]_{8} {}^{2}$ 3.2		5723.4644(4)	.46398	17471.9354	.9366	(² P _{3/2})5p	² [5/2] ₂	$-(^{2}P_{32})9_{5}$	² [3/2] ²	1.5			
5764.4937(4) .4927 17347.5773 .5803 $({}^{2}P_{3,2})5p$ ${}^{2}[3/2]_{2} - ({}^{2}P_{3,2})8d$ ${}^{2}[7/2]_{3}^{3}$ 3.0 5785.4977(4) .49685 17284.5977 .6002 $({}^{2}P_{3,2})5p$ ${}^{2}[5/2]_{3} - ({}^{2}P_{3,2})7d$ ${}^{2}[5/2]_{3}^{3}$ 2.5 5807.15097(10) .14992 17220.1481 .1513 $({}^{2}P_{3,2})5p$ ${}^{2}[5/2]_{2} - ({}^{2}P_{3,2})7d$ ${}^{2}[5/2]_{2}^{3}$ 3.2 5821.7315(2) .73068 17177.0203 .0227 $({}^{2}P_{3,2})5p$ ${}^{2}[5/2]_{3} - ({}^{2}P_{3,2})7d$ ${}^{2}[7/2]_{2}^{3}$ 3.2		5728.1764(4)	.17554	17457.5629	.5656	$(^{2}P_{3/2}^{\circ})5p$	² [5/2] ₃	$-(^{2}P_{32})9s$	² [3/2]	1.2			
5785.4977(4) .49685 17284.5977 .6002 $({}^{2}P_{3,2})5p = {}^{2}[5/2]_{3} - ({}^{2}P_{3,2})7d = {}^{2}[5/2]_{3}^{3} - ({}^{2}P_{3,2})7d = {}^{2}[5/2]_{3}^{3} - {}^{2}[5/2]_{3}$		5764.4937(4)	.4927	17347.5773	.5803	(² P _{3/2})5p	² [3/2] ₂	~ (² P%)8d	2[7/2]2	2.1			
5807.15097(10) .14992 17220.1481 .1513 $({}^{2}P_{3/2}^{\circ})5p$ ${}^{2}[5/2]_{2} - ({}^{2}P_{3/2}^{\circ})7d$ ${}^{2}[5/2]_{2}^{\circ}$ 3.2 5821.7315(2) .73068 17177.0203 .0227 $({}^{2}P_{3/2}^{\circ})5p$ ${}^{2}[5/2]_{3} - ({}^{2}P_{3/2}^{\circ})7d$ ${}^{2}[7/2]_{2}$ 3.2		5785.4977(4)	.49685	17284.5977	.6002	(² P _{3/2})5p	² [5/2] ₃	$-(^{2}P_{3p})7d$	2[5/2]9	3.U 3.E			
5821.7315(2) .73068 17177.0203 .0227 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{3} - ({}^{2}P_{3/2}^{\circ})7d {}^{2}[7/2]_{2} 2A$		5807.15097(10)	.14992	17220.1481	.1513	$(^{2}P_{3/2}^{\circ})5p$	² [5/2] ₂	$-(^{2}P_{3n})7d$	2[5/2]3	2.5			
		5821.7315(2)	.73068	17177.0203	.0227	(² P _{3/2})5p	² [5/2] ₃	$-(^{2}P_{3/2}^{3})7d$	² [7/2]2	3.2 2.4			

Wavenumber (cm⁻¹) Classification $\Delta \nu_{\rm diff}^{\rm b}$ Previous Wavelength (Å) measurements^e Kr⁸⁶ Kr⁸⁴ Kr⁸⁶ Odd level Even level Kr⁸⁴ $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{2} - ({}^{2}P_{3/2}^{\circ})7d {}^{2}[7/2]_{3}^{\circ}$ 2.5 .13246 17164.0426 .0451 5826.1333(2) $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{3} - ({}^{2}P_{3/2}^{\circ})7d$ ²[7/2]² 3.3 .47251 17139.5067 .5100 5834.47363(10) $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{3} - ({}^{2}P_{3/2}^{\circ})7d$ 17080.8855 .8895 ²[3/2]² 4.0 .49603 5854.4974(3) $(^{2}P_{1/2}^{\circ})5s^{2}[1/2]_{1}^{\circ} - (^{2}P_{3/2}^{\circ})6p$ ²[1/2]₁ 4.5 5868.37627(10) 17040.4888 .4933 .37472 3.77(5)^d $({}^{2}P_{3p}^{\circ})5s {}^{2}[3/2]_{1}^{\circ} - ({}^{2}P_{1p}^{\circ})5p$ $2[3/2]_2$ 4.7(3) 3.94(20)^j 5872.54320(10) .54160 17028.3975 .4022 $({}^{2}P_{3/2}^{\circ})5s {}^{2}[3/2]_{1}^{\circ} - ({}^{2}P_{1/2}^{\circ})5p$ $2[1/2]_1$ 3.8 .52867 17002.3787 .3825 5881.52997(10) $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{2} - ({}^{2}P_{1/2}^{\circ})5d$ 2[3/2]3 2.8 16979.8933 .8961 5889.3185(2) .31753 5947.09957(10) .09902 16814.9194 .9210 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{1} - ({}^{2}P_{3/2}^{\circ})9s$ ²[3/2]î 1.6 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{1} - ({}^{2}P_{3/2}^{\circ})7d$ ²[3/2][°] 5979.30154(10) .30061 16724.3614 .3640 2.6 5995.51035(10) .50899 16679.1473 .1510 $({}^{2}P_{3/2}^{\circ})5s {}^{2}[3/2]_{1}^{\circ} - ({}^{2}P_{1/2}^{\circ})5p$ ²[3/2]₁ 3.7 6013.7274(2) 16628.6219 .6256 $({}^{2}P_{3/2}^{\circ})5p \; {}^{2}[3/2]_{2} - ({}^{2}P_{3/2}^{\circ})9s$ ²[3/2]² 3.7 .72611 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[1/2]_{1} - ({}^{2}P_{3/2}^{\circ})6d$ 6013.8206(2) .81950 16628.3644 .3674 ²[3/2]² 3.0 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{1} - ({}^{2}P_{3/2}^{\circ})7d$ 6037.50529(10) .50415 16563.1325 .1356 ²[5/2]² 3.1 6057.80312(10) .80211 16507.6345 .6373 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[1/2]_{1} - ({}^{2}P_{3/2}^{\circ})6d$ ²[1/2]° 2.8 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{2} - ({}^{2}P_{3/2}^{\circ})7d$ 6076.93707(10) .93635 16455.6583 .6603 ²[5/2]₃ 2.0 6084.54518(10) .54409 16435.0822 .0851 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[1/2]_{1} - ({}^{2}P_{3/2}^{\circ})6d$ ²[1/2]ő 2.9 6093.5139(2) .51242 16410.8922 .8962 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{1} - ({}^{2}P_{3/2}^{\circ})7d$ ²[3/2]² 4.0 6110.0094(4) .0082 16366.5869 .5902 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{1} - ({}^{2}P_{3/2}^{\circ})7d$ ²[1/2]₀° 3.3 16251.9466 .9496 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{2} - ({}^{2}P_{3/2}^{\circ})7d$ 6153.10907(10) .10794 ²[3/2]² 3.0 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{2} - ({}^{2}P_{3/2}^{\circ})7d$ 6165.3817(2) .38052 16219.5959 .5991 ²[1/2]° 3.2 6224.45490(10) .45402 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{2} - ({}^{2}P_{3/2}^{\circ})8s$ 16065.6638 .6661 ²[3/2]î 2.3 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{3} - ({}^{2}P_{3/2}^{\circ})8s$ 6238.07680(10) .07589 16030.5817 .5841 ²[3/2]² 2.4 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{2} - ({}^{2}P_{3/2}^{\circ})8s$ 6243.13125(10) .13005 16017.6034 .6064 ²[3/2]² 3.0 15751.9093 .9122 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{3} - ({}^{2}P_{3/2}^{\circ})6d$ 6348.43676(10) .43559 ²[5/2]₃ 2.9 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{2} - ({}^{2}P_{3/2}^{\circ})6d$ 15738.9312 .9345 6353.6716(2) .67024 ²[5/2]3 3.3 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{3} - ({}^{2}P_{3/2}^{\circ})6d$ 6370.0818(3) .08059 15698.3855 .3885 ²[5/2]² 3.0 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{2} - ({}^{2}P_{3/2}^{\circ})6d$ 6375.35220(10) .35100 15685.4079 .4109 ²[5/2]² 3.0 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[1/2]_{0} - ({}^{2}P_{3/2}^{\circ})7d$ 6411.9444(2) .94347 15595.8932 .8955 ²[3/2]i 2.3 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{3} - ({}^{2}P_{3/2}^{\circ})6d$ 6417.45257(10) .45135 15582.5071 .5100 2[7/2] 2.9 6422.80178(10) .80048 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{2} - ({}^{2}P_{3/2}^{\circ})6d$ 15569.5292 .5324 ²[7/2]₃ 3.2 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{3} - ({}^{2}P_{3/2}^{\circ})6d$ 6450.58162(10) .58042 15502.4781 .4809 ²[3/2]² 2.8 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{3} - ({}^{2}P_{3/2}^{\circ})6d$ 6458.07313(10) .07189 15484.4948 .4978 2[7/2]: 3.0(2) 2.80(7)^d $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{1} - ({}^{2}P_{3/2}^{\circ})8s$ 6489.86196(10) .86103 15408.6482 .6504 ²[3/2][°] 1.8 6506.70156(10) .7732 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[5/2]_{2} - ({}^{2}P_{3/2}^{\circ})6d$.70024 15368.7700 ²[1/2]î 3.2 15360.5879 .5908 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{1} - ({}^{2}P_{3/2}^{\circ})8s$ 6510.1675(3) .16628 ²[3/2]² 2.9 15294.3610 .3636 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{1} - ({}^{2}P_{3/2}^{\circ})6d$ 6538.3575(2) .35639 ²[3/2][°] 2.6 15250.0743 .0771 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[1/2]_{0} - ({}^{2}P_{3/2}^{\circ})7d$ 6557.3451(3) .34388 ²[1/2]î 2.8 15249.7010 .7038 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{2} - ({}^{2}P_{3/2}^{\circ})8s$ 6557.50560(10) .50442 ²[3/2][°] 2.8 6578.23694(10) 15201.6416 .6441 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{2} - ({}^{2}P_{3/2}^{\circ})8s$.23583 ²[3/2]₂ 2.5 .3952 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{1} - ({}^{2}P_{3/2}^{\circ})6d$ 6654.07167(10) .07041 15028.3924 ²[5/2]² 2.8 6701.07916(10) .07793 14922.9695 .9723 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{2} - ({}^{2}P_{3/2}^{\circ})6d$ ²[5/2]₃ 2.8 14869.4460 .4486 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{2} - ({}^{2}P_{3/2}^{\circ})6d$ 6725.2001(3) .19896 ²[5/2]² 2.6 .4876 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{1} - ({}^{2}P_{3/2}^{\circ})6d$ 6741.9591(3) .95742 14832.4839 ²[3/2]² 3.7 14711.7545 .7575 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{1} - ({}^{2}P_{3/2}^{\circ})6d$ 6797.2858(3) .28442 ²[1/2]; 3.0 14673.5380 .5410 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{2} - ({}^{2}P_{3/2}^{\circ})6d$ 6814.98902(10) .98762 ²[3/2]² 3.0 6830.9733(3) $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{1} - ({}^{2}P_{3/2}^{\circ})6d$.97210 14639.2023 .2049 ²[1/2]⁸ 2.6 6848.2895(3) $({}^{2}P_{3/2}^{\circ})5p {}^{2}[1/2]_{1} - ({}^{2}P_{3/2}^{\circ})7s$.28879 14602.1864 .1879 ²[3/2]; 1.5 6871.5262(3) .52476 14552.8078 .8108 $({}^{2}P_{3/2}^{\circ})5p {}^{2}[3/2]_{2} - ({}^{2}P_{3/2}^{\circ})6d$ ²[1/2]₁ 3.0 $\binom{2P_{3/2}^{\circ}}{5p} \binom{2[1/2]_1}{2} - \binom{2P_{3/2}^{\circ}}{7s} \binom{2P_{3/2}^{\circ}}{5p} \binom{2[1/2]_1}{2} - \binom{2P_{3/2}^{\circ}}{7s} \binom{2P_{3/2}^{\circ}}{5p}$ 6906.5836(2) .58254 14478.9386 .9408 ²[3/2]² 2.2 7589.5025(2) .50024 13176.0942 .0981 $2[1/2]_0$ 3.9(4) 3.53(4)* 7603.6384(2) .63663 13151.5986 .6016 $({}^{2}P_{3/2}^{\circ})5s {}^{2}[3/2]_{2}^{\circ} - ({}^{2}P_{3/2}^{\circ})5p$ ²[3/2]₂ 3.0(4) 2.30(4)* 7687.3612(2) $({}^{2}P_{1/2}^{\circ})5s {}^{2}[1/2]_{1}^{\circ} - ({}^{2}P_{1/2}^{\circ})5p$.3590 13008.3650 .3687 ²[1/2]₀ 3.7(3) 3.46(5)k 7696.6579(2) $({}^{2}P_{3/2}^{\circ})5s {}^{2}[3/2]_{2}^{\circ} - ({}^{2}P_{3/2}^{\circ})5p$.65631 12992.6523 .6550 ²[3/2]₁ 2.7(2) 7856.9844(2) $({}^{2}P_{1/2}^{\circ})5s {}^{2}[1/2]_{0}^{\circ} - ({}^{2}P_{1/2}^{\circ})5p$ 2.27(5)^t .98253 12727.5294 .5324 ²[1/2]₁ 3.0(3) 7915.6020(2) $({}^{2}P_{3/2}^{\circ})5p {}^{2}[1/2]_{1} - ({}^{2}P_{3/2}^{\circ})5d {}^{2}[1/2]_{1}^{\circ}$ 2.31(4)* .60014 12633.2779 .2809 $({}^{2}P_{3/2}^{\circ})5p \; {}^{2}[5/2]_{2} - ({}^{2}P_{3/2}^{\circ})5d \; {}^{2}[7/2]_{3}^{\circ}$ 3.0 7930.7798(2) .77813 12609.1006 .1032 $({}^{2}P_{1/2}^{\circ})^{5}s {}^{2}[1/2]_{0}^{\circ} - ({}^{2}P_{1/2}^{\circ})^{5}p {}^{2}[3/2]_{1}$ 2.6 8061.7211(5) .71987 12404.2991 .3010 12322.6585 .6617 $({}^{2}P_{3/2}^{*})5s {}^{2}[3/2]_{2}^{*} - ({}^{2}P_{3/2}^{*})5p {}^{2}[5/2]_{3}$ 1.9(8) 2.20(5)* 8115.1320(2) .12988 3.2(3) 2.19(6)*

Table 1. Interferometrically measured vacuum wavelengths of Kr⁸⁴1 and differences from those of Kr⁸⁶1 - Continued

Wave	length (Å)	Wavenumber	(cm ⁻¹)		Classif	ication		$\Delta \nu_{\rm diff}{}^{\rm b}$	Previous	
Kr ⁸⁴	Kr ⁸⁶	Kr ⁸⁴	Kr ⁸⁶	Odd level		Even level			measurements ^e	
8192.3082((3) .30538	12206.5720	.5762	(² P _{3/2})5s	²[3/2]°-	$(^{2}P_{3/2}^{\circ})5p$	² [3/2] ₂	4.2(4)	3.35(4) ^k	
8265.5140((3) .51129	12098.4611	.4651	(² P _{1/2})5s	² [1/2] ¹ -	$(^{2}P_{1/2}^{\circ})5p$	$2[3/2]_2$	4.0(4)	3.31(5) ^k	
8283.3284((2) .32590	12072.4418	.4454	$(^{2}P_{1/2}^{\circ})5s$	² [1/2] [°] ₁ -	$(^{2}P_{1/2}^{\circ})5p$	² [1/2] ₁	3.6(3)	3.24(5) [±]	
8300.3907((3) .38801	12047.6257	.6296	(² P _{3/2})5s	²[3/2]°-	$(^{2}\dot{P}_{3/2}^{\circ})5p$	$^{2}[3/2]_{1}$	3.9(4)	3.44(5) ^k	
8511.2106((4) .20763	11749.2099	.2140	$(^{2}P_{1/2}^{\circ})5s$	² [1/2] [°] ₁ -	$(^{2}P_{1/2}^{\circ})5p$	² [3/2] ₁	4.1(6)	3.27(5)*	
8779.1607((3) .15807	11390.6105	.6139	(² P _{3/2})5s	² [3/2] [°] ₁ -	$(^{2}P_{3/2}^{\circ})5p$	$2[5/2]_2$	3.4(4)	3.30(7) [±]	
8931.1447((2) .14294	11196.7730	.7752	(² P _{3/2})5s	² [3/2] ² -	$(^{2}P_{3/2}^{2})5p$	$2[1/2]_{1}$	2.2	.,	
9754.4352(4) .43235	10251.7468	.7498	(² P _{3/2})5s	²[3/2]î-	(² P _{3/2})5p	² [1/2] ₁	3.0		

Table 1. Interferometrically measured vacuum wavelengths of Kr⁸⁴1 and differences from those of Kr⁸⁶1 – Continued

^a This is the uncertainty in the Kr⁸⁴ wavelength.

^b Wavenumber of the Kr⁸⁶ transition minus that of the Kr⁸⁴ transition in units of 10⁻³ cm⁻¹. The uncertainty of the last digit of the Kr⁸⁴ measurement is given in parentheses for those transitions for which direct isotope shift measurements are available. ^c In units of 10⁻³ cm⁻¹.

^d Direct (Kr⁸⁶-Kr⁸⁴) isotope shift measurement by Ref. [6]. The uncertainty of the measurement is given in parentheses. ^e Direct (Kr⁸⁶-Kr⁸⁴) isotope shift measurement by Ref. [7]. The uncertainty of the measurement is given in parentheses. ^g Direct (Kr⁸⁶-Kr⁸⁴) isotope shift measurement by Ref. [8]. The uncertainty of the measurement is given in parentheses. ^g Direct (Kr⁸⁶-Kr⁸⁴) isotope shift measurement by Ref. [9]. The uncertainty of the measurement is given in parentheses. ^b Direct (Kr⁸⁶-Kr⁸⁴) isotope shift measurement by Ref. [10]. The uncertainty of the measurement is given in parentheses. ⁱ Direct (Kr⁸⁶-Kr⁸⁴) isotope shift measurement by Ref. [11]. The uncertainty of the measurement is given in parentheses. ^j Direct (Kr⁸⁶-Kr⁸⁴) isotope shift measurement by Ref. [12]. The uncertainty of the measurement is given in parentheses. ^k Direct (Kr⁸⁶-Kr⁸⁴) isotope shift measurement by Ref. [12]. The uncertainty of the measurement is given in parentheses.

A number of investigators [6-13] have made direct measurements of isotope shifts between Kr^{86} and Kr^{84} . These are also given in Table 1. Direct measurements, by their very nature, are much more accurate than the difference between two completely independent measurements. This is evident in the stated uncertainties following both the differences, $\Delta \nu$, and the direct isotope separations in Table 1. However, it should be noted that there is agreement within the stated uncertainties in most cases.

3. Energy Levels of Kr⁸⁴

Trickl et al. [3] also measured the isotope shifts in the aforementioned four vacuum-ultraviolet lines for several of the isotopes of krypton, including those between Kr^{86} and Kr^{84} . Without those measurements, it would not be possible to give separate values for the energy levels of the two isotopes relative to the ground level.

With the aid of the same iterative level-calculation program used in Ref. [1], the 109 wavenumbers of Kr^{84} given in Table 1 were combined with the $Kr^{86}-Kr^{84}$ isotope shift measurements from Refs. [6-13] and with the vuv values for Kr⁸⁴ from Ref. [3] to determine the Kr⁸⁴ energy-level values. Table 2 includes these newly determined values with their uncertainties (in units of the last digit) in parentheses. Also included are the Kr⁸⁶ values for these same levels from the work of Kaufman and Humphreys [1], the Kr⁸⁶-Kr⁸⁴ differences and the number of transitions to or from each Kr⁸⁴ level included in the 109 wavelength measurements.

Jackson [6,13] measured wavenumber shifts between pairs of the five stable even isotopes of krypton in fifteen 5s-5p lines, six 5s-6p lines, and one 5p-6d line. Champeau and Keller [8] did the same for two other 5s-5p transitions and one 5s-6ptransition for all but the Kr⁷⁸ isotope. Further information on four of these 25 lines can be found in Refs. [7] and [9-12]. Combining these previously reported data with the vuv high resolution measurements of the isotope shifts between Kr⁸⁶ and each of Kr⁸², Kr⁸⁰, and Kr⁷⁸ given by Trickl et al. [3] for the $4p^{6}-4p^{5}(^{2}P^{\circ}_{1/2})5s^{2}[1/2]^{\circ}_{1}$ transition, it is possible to evaluate a total of 20 excited levels in each of these isotopes. These values are given in Table 3. The isotope shifts of these levels with respect to those of Kr⁸⁶ are also given.

Table 2. Energy level of Kr⁸⁴1 in units of cm⁻¹

Energy level value		$\Delta \nu_{\rm lev}^{a}$	$\Delta \nu_{nm}$	Configuration	Level	N ^b
N I ^{***}	KI***					<u> </u>
0.0000(62)	.0000(62)	0.0	17.0	4s ² 4p ⁶	¹ S ₀	3
79971.7301(3)	.7321(1)	2.0	5.0	4s ² 4p ⁵ (² P _{3/2})5s	² [3/2] ²	12
80916.7564(3)	.7575(1)	1.1	4.8		² [3/2]i	12
85191.6050(5)	.6075(1)	2.5	5.0	4s ² 4p ⁵ (² P° _{1/2})5s	² [1/2] ⁸	6
85846.6930(4)	.6945(1)	1.5	4.9		²[1/2]ĭ	14
91168.5034(3)	.5073(1)	3.9	3.2	4s ² 4p ⁵ (² P _{3/2})5p	${}^{2}[1/2]_{1}$	15
94092.8510(6)	.8557(1)	4.7	2.8		²[1/2j ₀	3
92294.3896(3)	.3938(1)	4.2	3.1	4s ² 4p ⁵ (² P _{3/2})5p	${}^{2}[5/2]_{3}$	14
92307.3670(3)	.3/14(1)	4.4	5.1		-[<i>3</i> / <i>2</i>] ₂	14
92964.3827(3)	.3871(1)	4.4	3.0	4s ² 4p ⁵ (² P _{3/2})5p	${}^{2}[3/2]_{1}$	15
93123.3293(3)	.3337(1)	4.4	5.0		[5/2]2	14
97595.9037(6)	.9086(2)	4.9	3.1	4s ² 4p ⁵ (² P ^o _{1/2})5p	$\frac{2[3/2]_1}{2[3/2]_2}$	4
97945.1548(6)	.1597(2)	4.9	5.0		[3/2]2	5
97919.1352(5)	.1400(1)	4.8	3.0	4s ² 4p ³ (² P _{1/2})5p	$\frac{2[1/2]_1}{2[1/2]_1}$	4
98855.0582(10)	.0632(3)	5.0	2.9		[1/2]0	-
102887.1820(6)	.1878(1)	5.8	1.5	4s ² 4p ³ (² P _{3/2})6p	${}^{2}[1/2]_{1}$ ${}^{2}[1/2]_{2}$	3
103761.6220(7)	.0280(2)	0.0	1.4		2(2)0	-
103115.6227(16)	.6286(4)	5.9	1.4	4s ² 4p ³ (² P _{3/2})6p	${}^{2}[5/2]_{3}$ ${}^{2}[5/2]_{3}$	1
103121.1303(12)	.1302(2)	5.9	1.4	. 2. 5/200) /	[<i>2</i> /2]2	-
103313.4610(6)	.4669(2)	5.9	1.4	4s ² 4p ³ (² P ³ _{3/2})6p	$\frac{2[3/2]_1}{2[3/2]_2}$	3
103362.0008(6)	.0007(3)	5.5	1.4	4-24-5/209 154	2[1/2]2	- 1
103801.7813(10)	.7882(1)	6.9	1.3	4s-4p*(-r _{3/2})5u	[1/2]]	1
104916.4676(10)	.4746(2)	7.0	1.2	4s ² 4p ⁵ (² P _{3/2})5d	²[7/2]§	1
105647.4420(10)	.4482(2)	6.2	1.0	4s ² 4p ⁵ (² P _{3/2})7s	² [3/2] ²	1
105770.6898(10)	.6953(1)	5.5	1.0		*[3/2]î	2
107603.5853(7)	.5924(2)	7.1	0.8	4s ² 4p ⁵ (² P _{3/2})6d	² [1/2] ⁸	2
107676.1373(5)	.1446(1)	7.3	0.8		-[1/2]i	4
107778.8846(10)	.8916(1)	7.0	0.7	4s ² 4p ⁵ (² P _{3/2})6d	² [7/2] ²	1
107876.8964(7)	.9038(2)	7.4	0.7		-[//2]3	2
107796.8674(5)	.8747(2)	7.3	0.7	4s ² 4p ⁵ (² P _{3/2})6d	² [3/2] ² 2(2) ²	4
108258.7437(10)	.7507(2)	7.0	0.7		-[3/2]1	1
107992.7751(5)	.7823(1)	7.2	0.7	4s ² 4p ⁵ (² P _{3/2})6d	² [5/2] ² ² [5/2] ²	4
108046.2986(6)	.3060(1)	7.4	0.7		[_,1/2]]3	5
108324.9706(5)	.9779(1)	7.3	0.7	4s ² 4p ³ (² P _{3/2})8s	² [3/2] ² ² [3/2] ²	4
108373.0307(6)	.0375(1)	6.8	0.7		262.03	2
108438.2487(7)	.2555(2)	6.8	1.4	$4s^2 4p^3 (^2 P_{1/2}^{\circ}) 6p$	$\frac{2[3/2]_{1}}{2[3/2]_{2}}$	2
108567.7573(10)	.7650(4)	1.1	1.4		2010]	-
108514.1708(7)	.1776(2)	6.8	1.4	4s ² 4p ³ (² P ³ _{1/2})6p	² [1/2] ₁ ² [1/2] ₀	2
108821.5574(10)	.5639(3)	6.5	1.4	· 2 · 5/200) 66	2(20)	-
108471.1161(16)	.1225(5)	6.4	0.6	$4s^2 4p^3 (^2 P_{3/2}^2) 5j$	-[3/2]2	1
109296.1801(17)	.1863(5)	6.2	0.5	4s ² 4p ⁵ (² P _{3/2})8p	² [1/2] ₀	1
100330 0706/0)	.9773(7)	6.7	0.5	4s ² 4p ⁵ (² P ^o _{3/2})7d	² [1/2] ⁶	2
109342.9252(6)	.9328(2)	7.6	0.5		²[1/2];	3
100375 2759(6)	.2833(2)	7.4	0.5	4s ² 4p ⁵ (² P _{3/2})7d	² [3/2] ²	4
109688.7442(7)	.7511(2)	6.9	0.5		'[3/2]ĭ	2

Energy leve Kr ⁸⁴	el value Kr ⁸⁶	$\Delta \nu_{\rm lev}$	$\Delta \nu_{nm}$	Configuration	Level	Nb
109433.8963(10)	.9038(2)	7.5	0.5	4s ² 4p ⁵ (² P _{3/2})7d	2[7/2]å	1
109471.4098(7)	.4165(3)	6.7	0.5		2[7/2]ŝ	2
109527.5152(7)	.5227(2)	7.5	0.5	4s ² 4p ⁵ (² P _{3/2})7d	²[5/2]²	2
109578.9874(8)	.9940(5)	6.6	0.5		²[5/2]₃	2
109751.9523(7)	.9593(3)	7.0	0.4	4s ² 4p ⁵ (² P _{3/2})9s	²[3/2]²	3
109779.3024(8)	.3081(3)	5.7	0.4		²[3/2]î	2
110103.2223(8)	.2299(5)	7.6	1.2	4s ² 4p ⁵ (² P ^o _{1/2})5d	²[3/2]²	2
110121.9845(10)	.9917(9)	7.2	1.2	4s ² 4p ⁵ (² P _{1/2})5d	² [5/2] ²	1
110290.3049(10)	.3120(2)	7.1	0.4	4s ² 4p ⁵ (² P _{3/2})8d	²[1/2]ĵ	1
110335.61 <i>5</i> 3(12)	.6214(7)	6.1	0.4		²[1/2]ĵ	1
110403.6269(10)	.6333(2)	6.4	0.3	4s ² 4p ⁵ (² P _{3/2})8d	²[7/2]²	1
110470.9073(10)	.9140(7)	6.7	0.3		²[7/2]³	2
110496.7006(10)	.7083(12)	7.7	0.3	4s ² 4p ⁵ (² P _{3/2})8d	² [5/2] ²	1
111018.8656(10) 111047.1577(11)	.8713(6) .1626(13)	5.7 4.9	0.3 0.2	4s ² 4p ⁵ (² P _{3/2})9d	² [7/2] ² ² [7/2] ³	1

Table 2. Energy level of Kr⁸⁴1 in units of cm⁻¹ - Continued

* The difference between the level values of the two isotopes is given in units of 10^{-3} cm⁻¹.

^b The number in this column indicates the number of interferometrically measured lines with transitions to or from that level.

Table 3. Energy level values of Kr⁸², Kr⁸⁰, and Kr⁷⁸ in units of cm⁻¹ and their differences and normal mass shifts with respect to those of Kr⁸⁶ in units of 10⁻³ cm⁻¹

Config.	Level	En	Energy level value			Kr ⁸⁶ -Kr ⁸² Kr ⁸⁶ -Kr ⁸⁰				Kr86_Kr78		
		Kr ⁸²	Kr ⁸⁰	Kr ⁷⁸	$\Delta \nu_{\rm lev}$	$\Delta \nu_{\rm nm}$	$\Delta v_{\rm lev}$	$\Delta \nu_{nm}$	$\Delta v_{\rm lev}$	Δv_{nm}		
4p ⁶	1S _o	0.0000	.0000	.0000	0.0	34.9	0.0	53.6	0.0	73.3		
(² P _{3/2})5s	²[3/2]²	79971.7275	.7252	.7232	4.6	10.2	6.9	15.6	8.9	21.4		
(² P _{3/2})5s	²[3/2]î	80916.7549	.7535	.7528	2.6	9.9	4.0	15.2	4.7	20.8		
(² P _{1/2})5s	² [1/2] ₀	85191.6019	.5991	.5964	5.6	10.2	8.4	15.7	11.1	21.5		
$(^{2}P_{1/2}^{\circ})5s$	²[1/2]î	85846.6910	.6892	.6876	3.5	10.0	5.3	15.4	6.9	21.1		
(² P _{3/2})5p	² [1/2] ₀	94092.8460	.8408	.8361	9.7	5.8	14.9	8.9	19.6	12.2		
(² P ^o _{3/2})5p	² [5/2] ₃	92294.3849	.3801	.3756	8.9	6.4	13.7	9.8	18.2	13.4		
(² P _{3/2})5p	² [5/2] ₂	92307.3623	.3573	.3527	9.1	6.4	14.1	9.8	18.7	13.4		
(² P _{3/2})5p	² [3/2] ₁	92964.3778	.3728	.3680	9.3	6.2	14.3	9.5	19.1	13.0		
(² P _{3/2})5p	² [3/2] ₂	93123.3244	.3195	.3147	9.3	6.1	14.2	9.4	19.0	12.9		
(² P _{1/2})5p	²[3/2]1	97595.8985	.8931	.8877	10.1	6.4	15.5	9.8	20.9	13.4		
(²P° _{1/2})5p	²[3/2] ₂	97945.1495	.1440	.1388	10.2	6.3	15.7	9.7	20.9	13.2		
$({}^{2}P_{1/2}^{\circ})5p$	²[1/2]ı	97919.1298	.1244	.1189	10.2	6.3	15.6	9.7	21.1	13.2		
(² P _{1/2})5p	²[1/2] ₀	98855.0528	.0471	.0416	10.4	6.0	16.1	9.2	21.6	12.6		
(² P _{3/2})6p	² [1/2] ₁	102887.1757	.1693	.1629	12.1	3.1	18.5	4.8	24.9	6.5		
(² P _{3/2})6p	²[1/2] ₀	103761.6158	.6088	.6025	12.2	2.8	19.2	4.3	25.5	5.9		
(² P _{3/2})6p	² [5/2] ₃	103115.6164	.6099	.6033	12.2	3.0	18.7	4.7	25.3	6.4		
(² P _{3/2})6p	² [5/2] ₂	103121.1243	.1174	.1112	11.9	3.0	18. 8	4.6	25.0	6.4		
(² P _{3/2})6p	² [3/2] ₁	103313.4548	.4479	.4416	12.1	3.0	19.0	4.6	25.3	6.2		
(² P _{3/2})6p	²[3/2] ₂	103362.5944	.5877	.5811	12.3	3.0	19.0	4.5	25.6	6.2		
(² P _{3/2})6d	²[7/2]ů	107778.8771	.8693	.8616	14.5	1.6	22.3	2.4	30.0	3.3		

Discussions of the two effects, the finite mass of the nucleus and the non-zero nuclear volume, which lead to the observation of isotope shifts are discussed in some detail in Refs. [3, 6 and 13]. In all of those instances, the authors point out that the difference between the experimentally observed isotope shift of a line, Δv_{diff} , and the normal mass shift, Δv_{nm} , is accounted for by the sum of the specific mass shift, Δv_{sm} , and the shift due to the volume effect, Δv_{vol} . We now have the opportunity to discuss the difference in the term values of the *levels* of isotopes. The term value T is defined as the binding energy of the electron, i.e., T = IE - (Level value). Here IE is the energy of the appropriate Kr 11 $4p^{52}P^{\circ}_{3/2}$ or $^{2}P^{\circ}_{1/2}$ level with respect to the Kr I $4p^{61}S_0$ ground level, which has been taken as zero for each isotope. The normal mass shifts of the term values of levels near the ionization limit approach zero and increase with increasing term value of a level. The values of Δv_{nm} for the corresponding term-value differences are given for Kr⁸⁶-Kr⁸⁴ in column 4 of Table 2 and for Kr⁸⁶-Kr⁸², Kr⁸⁶-Kr⁸⁰, and Kr⁸⁶-Kr⁷⁸ in Table 3. They show that the differences in binding energies of the $4p^{6}$ S₀ ground states due only to the normal mass effect are 17.0×10^{-3} , 34.9×10^{-3} , 53.6×10^{-3} , and 73.3×10^{-3} cm⁻¹, respectively for Kr⁸⁴, Kr⁸², Kr⁸⁰, and Kr⁷⁸ with respect to Kr⁸⁶.

For any two isotopes

$$\Delta T_{\rm exp} = \Delta (IE) - \Delta \nu_{\rm lev} = \Delta \nu_{\rm nm} + \Delta \nu_{\rm sm} + \Delta \nu_{\rm vol} \quad (1)$$

where ΔT_{exp} is the observed shift in the term value. Thus by adding the experimentally observed isotope shift Δv_{lev} and the calculated normal mass shift Δv_{am} for term values of levels relatively close to the ionization limit, where the specific mass and volume effects must be negligible, we can find values of the differences in the $4p^{6}-4p^{5}^{2}P^{\circ}$ ionization energies of these isotopes. The addition of columns 3 and 4 of Table 2 for Kr⁸⁶-Kr⁸⁴ and the equivalent columns in Table 3 for the other three krypton pairs, gives ionization energy differences with estimated uncertainties of $\pm 0.5 \times 10^{-3}$ cm⁻¹ of these four isotopes from Kr⁸⁶. They are 7.5×10^{-3} , 15.6×10^{-3} , 24.1×10^{-3} , and 32.4×10^{-3} cm⁻¹, respectively for Kr⁸⁴, Kr⁸², Kr⁸⁰, and Kr⁷⁸. By definition, these are the experimental differences between the binding energies of a 4p electron in the ground level of these respective isotopes and the same binding energy for the Kr⁸⁶ isotope.

Table 4 gives the term value shifts due to the sum of the specific mass and volume effects as obtained by applying Eq. (1) to the $4p^{6}$ $^{1}S_{0}$ and the

other twenty levels given in Table 3 and the same levels in Table 2. The estimated uncertainty of $\pm 0.6 \times 10^{-3}$ cm⁻¹ for term value shifts is due to both the estimated uncertainty of $\pm 0.5 \times 10^{-3}$ cm⁻¹ on the ionization energy differences given above and an uncertainty of about 0.2×10^{-3} cm⁻¹ on the value of the isotope shifts.

Table 4. Term-value shifts, in units of 10^{-3} cm⁻¹, due to the sum of the specific mass and volume effects

Config.	Term	Kr ⁸⁶ -Kr ⁸⁴	Kr ⁸⁶ –Kr ⁸²	Kr 86-Kr 80	Kr ⁸⁶ -Kr ⁷⁸
4p ⁶	¹ S ₀	- 9.5	- 19.3	-29.5	- 40.9
(² P _{3/2})5s	²[3/2]²	0.5	0.8	1.6	1.9
(² P _{3/2})5s	²[3/2]î	1.6	3.1	4.9	6.9
(² P _{1/2})5s	²[1/2]ô	0.0	-0.2	0.0	-0.2
(² P _{1/2})5s	²[1/2]î	1.1	2.1	3.4	4.4
(² P _{3/2})5p	² [1/2] ₀	0.0	0.1	0.3	0.6
(² P _{3/2})5p	² [5/2] ₃	0.2	0.3	0.6	0.8
(² P _{3/2})5p	² [5/2] ₂	0.0	0.1	0.2	0.3
(² P _{3/2})5p	² [3/2] ₁	0.1	0.1	0.3	0.3
(² P _{3/2})5p	² [3/2] ₂	0.1	0.2	0.5	0.5
(² P _{1/2})5 <i>p</i>	² [3/2] ₁	-0.5	- 0.9	- 1.2	- 1.9
(² P _{1/2})5 <i>p</i>	² [3/2] ₂	-0.6	- 0.9	- 1.3	- 1.7
(² P _{1/2})5p	² [1/2] ₁	-0.3	-0.9	- 1.2	- 1.9
(² P _{1/2})5p	² [1/2] ₀	-0.4	-0.8	- 1.2	- 1.8
(² P _{3/2})6p	² [1/2] ₁	0.2	0.4	0.8	1.0
(² P _{3/2})6p	² [1/2] ₀	0.1	0.6	0.6	1.0
(² P _{3/2})6p	² [5/2] ₃	0.2	0.4	0.7	0.7
(² P _{3/2})6p	² [5/2] ₂	0.2	0.7	0.7	1.0
(² P _{3/2})6p	² [3/2] ₁	0.2	0.5	0.5	0.9
(² P _{3/2})6p	² [3/2] ₂	0.2	0.3	0.6	0.6
(² P _{3/2})6d	²[7/2]å	-0.2	-0.6	~0.6	- 0.9

4. References

- V. Kaufman and C. J. Humphreys, Accurate energy levels and calculated wavelengths of ⁸⁶Kr I, J. Opt. Soc. Am. 59, 1614 (1969).
- [2] B. Petersson, Remeasured Ne 1, Ar 1, Kr 1, and Xe 1 lines in the vacuum ultraviolet, Ark. Fys. 27, 317 (1964).
- [3] T. Trickl, M. J. J. Vrakking, E. Cromwell, Y. T. Lec, and A. H. Kung, Ultrahigh-resolution (1+1) photoionization spectroscopy of Kr 1: Hyperfine structures, isotope shifts, and lifetimes for the n = 5,6,7 4p⁵ns Rydberg levels, Phys. Rev. A 39, 2948 (1989).
- [4] J. Sugar and A. Musgrove, Energy levels of Kr I through Kr XXXVI, J. Phys. Chem. Ref. Data 20, 859 (1991).
- [5] Procès Verbaux du C.I.P.M., October 1960. See also Trans. Intern. Astron. Union 11A, 97 (1961).
- [6] D. A. Jackson, Isotope shifts in visible lines of the arc spectrum of krypton, J. Opt. Soc. Am. 70, 1139 (1980).

- [7] H. Gerhardt, F. Jeschonnek, W. Makat, E. Matthias, H. Rinneberg, F. Schneider, A. Timmermann, R. Wenz, and P. J. West, Nuclear charge radii and nuclear moments of Kr and Xe isotopes by high resolution laser spectroscopy, Hyperfine Interact. 9, 175 (1981).
- [8] R.-J. Champeau and J.-C. Keller, Spectroscopic laser a très haute résolution sur un jet atomique de krypton, J. Phys. B 11, 391 (1978).
- [9] C. Brechignac, Measurements of isotope shift in visible lines of Kr I by saturated-absorption techniques, J. Phys. B 10, 2105 (1977).
- [10] H. Gerhardt and E. Matthias, High-resolution spectrometer with a dyc laser for the measurement of isotopic and isomeric shifts and hyperfine structure of radioactive isotopes, Sov. J. Quantum Electron. 7, 1500 (1977).
- [11] H. Gerhardt, R. Wenz, and E. Matthias, Isotope shifts of the 557 nm transition in even krypton isotopes, Phys. Lett. 61A, 377 (1977).
- [12] R.-J. Champeau and J.-C. Keller, Investigation of the line $\lambda = 587$ nm $(1s^4-2p^2)$ of Kr I using stimulated emission in an atomic beam, J. Phys. (Paris), Lett. 38, L463 (1977).
- [13] D. A. Jackson, Isotope shifts in the near infrared lines of the arc spectrum of krypton, J. Opt. Soc. Am. 69, 503 (1979).

About the author: Victor Kaufman retired in 1988 from the Spectroscopy Group of the Atomic Physics Division at NIST. He had been with NIST since 1960. The National Institute of Standards and Technology is an agency of the Technology Administration, U.S. Department of Commerce.