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Studies of transient wave propagation in 
plates were carried out to establish a ba­
sis for the impact-echo technique as a 
nondestructive test for flaw detection in 
concrete. The surface displacements 
caused by stress waves generated by 
point impact on a plate were calculated 
using both the Green's function solution 
and the finite element method; displace­
ment waveforms obtained by the two 
approaches showed good agreement. 
Displacement and stress fields in a plate 
were studied using finite element analy­
sis. It was shown that transient point 

load applied normal to a stress-free 
boundary gives rise to P- and S­
"wakes" -disturbances trailing the P­
and S-waves. The displacement and 
stress fields in each wake resemble those 
in the preceding wave. 
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Introduction 

For more than 30 years, efforts have been made 
to apply stress wave propagation to nondestructive 
testing of concrete. These efforts have met with 
limited success, although some progress has been 
made in measuring the thickness of plate elements 
and for integrity testing of rod-like structures, such 
as piles [If Progress has been limited because of 
the heterogeneous nature of concrete, which 
strongly attenuates high frequency waves; thus tra­
ditional wave propagation methods developed for 
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flaw detection in metals cannot be used for evalua­
tion of concrete. 

The National Bureau of Standards has been 
working to develop a nondestructive test method 
for concrete using transient stress waves [2-4]. This 
method is referred to as the impact-echo method. 
The technique involves introducing a transient 
stress pulse into a test object by mechanical impact 
at a point and monitoring reflections of the pulse 
from internal defects and external boundaries. 
Stress pulses with sufficient energy have been gen­
erated by dropping small diameter (4-16 mm) steel 
spheres (ball bearings) onto concrete. 

The impact-echo test is a simple procedure; 
however, successful interpretation of displacement 
waveforms requires an understanding of the inter­
action of transient stress waves with internal de­
fects. The current state of knowledge about the 
propagation of transient stress waves in bounded 
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solids containing defects is very limited. Thus the 
NBS program has focused on understanding the 
nature of transient stress wave propagation in 
solids containing defects as well as on the imple­
mentation of the impact-echo method. In a current 
phase of the program, the finite element method is 
being used to study displacement and stress fields 
generated by point impact on an elastic solid and 
the interaction of transient waves with internal dis­
continuities and stress-free boundaries. 

This paper presents results of finite element anal­
ysis of transient stress wave propagation in plates. 
To verify the analyses, surface displacement time 
histories obtained from the finite element method 
are compared to exact Green's function solutions 
for impact on an infinite plate. A second paper, also 
appearing in this issue of the Journal of Research, 
presents a finite element study of the diffraction of 
transient waves by planar flaws in a plate. 

Background 
Transient Wave Propagation 

Point impact on the surface of a solid gives rise 
to three types of transient disturbances: dilata­
tional and distortional waves which propagate into 
the solid along spherical fronts, and a Rayleigh (R) 
wave which propagates along a circular front over 
the surface of the solid. The dilatational and distor­
tional waves are commonly referred to as P- and 
S-waves. In addition, there is a low amplitude 
wave known as a head wave. The front of the head 
wave extends from the intersection of the P-wave­
front with the surface of the solid to a point that is 
tangent to the S-wavefront. Figure 1 is a schematic 
representation of the P-, S-, R- and head wave­
fronts generated by a point impact on an elastic 
solid. 

P- and S-waves are characterized by the direc­
tion of particle motion with respect to the direction 
the wavefront is propagating. In the P-wave, dis­
placement is parallel to the direction of propaga­
tion; in the S-wave, the motion is perpendicular to 
the direction of propagation. These waves travel at 
different speeds; their relative speeds depend on 
the Poisson's ratio of the material being tested. For 
a Poisson's ratio of 0.2, which is a typical value for 
concrete, the S- and R-waves travel at approxi­
mately 61 % and 56% of the P-wave speed, respec­
tively [1]. 

The P- and S-waves are reflected by stress-free 
boundaries and by internal defects of sufficient size. 
For example, in a plate, multiple reflections occur 
as the waves travel back and forth between the two 
free surfaces. This type of reflection is referred to 
as specular reflection. When a P-wave strikes a 
boundary at an oblique angle, an S-wave can also 
be produced by the process of mode-conversion. 
Likewise, an incident S-wave produces a P-wave. 
The angles of specularly reflected and mode-con­
verted waves are determined by Snell's Law [5]. A 
receiving transducer located on the top surface of 
the plate, near the point of impact, responds to the 
surface displacements caused by the successive ar­
rivals of each reflection from the bottom of the 
plate. 

Due to the complexity of the problem, explicit 
equations for the radiation pattern produced by a 
transient point source on a semi-infinite solid have 
not yet been derived. Ideas about the nature of this 
radiation pattern come from knowledge about a 

F 

Figure I-Schematic representation 
of the wavefronts produced by 
point impact on a semi-infinite 
solid. Ray 
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harmonic point source on a semi-infinite solid 
[6-8]. Figure 2 shows the angular variation of the 
amplitude of displacements within the P- and S­
waves for a material with Poisson's ratio equal to 
0.2. In the P-wave, the amplitude of the displace­
ments is maximum at the centerline of the plate and 
decreases to zero at the surface. In the S-wave, the 
amplitude of displacements is zero at the centerline 
of the plate and at the surface and is maximum 
along a ray located approximately 40 degrees from 
the centerline. There is a discontinuity in the S­
wave displacements at an angle, Oe, given by the 
following equation: 

where Cs=S-wave speed, m/s; and 
Cp=P-wave speed, m/s. 

(1) 

In this paper, the finite element method is used to 
study the nature of the internal displacement and 
stress fields produced by a transient point load on a 
plate. 

Green's Function Solutions 

Theoretical solutions for transient wave propa­
gation in solids are available for a limited number 
of problems; these solutions can be used to obtain 
the displacement response at points in a solid. The 
displacement, u(r,t), at a point due to an impact at 
some other point on an elastic body can be repre­
sented by a convolution integral: 

Figure 2-Amplitude of particle 
displacements in the radiation 
pattern produced by a harmonic 
point source. 
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u(r,t)= f~ G(r,t -r)F(r)dr (2) 

where F(t) is the impact force as a function of time 
and G (r,t) is the dynamic Green's function of the 
elastic body. The Green's function is defined as the 
impulse (dirac delta function) response of the body 
for a particular impact configuration (impact at one 
location and the receiver at a different location). 

The Green's function solution is the exact solu­
tion to the partial differential equations and associ­
ated boundary conditions governing elastic wave 
propagation. Green's function solutions can be ob­
tained using Generalized Ray Theory2. The solu­
tion is in the form of an infinite series expansion. 
Stress waves can be visualized as propagating 
along ray paths. Each term in the series corre­
sponds to the arrival of successive stress waves 
which propagate along the various ray paths that 
connect the impact source to the receiver. For a 
given time duration, a finite number of rays (terms 
in the series expansion) contribute to the total dis­
placement response at the receiver. 

Explicit formulae for Green's function solutions 
which are amenable to numerical computations 
have been derived only for simple geometries, such 

2 Generalized Ray Theory was originalIy developed in the 
1960's for geophysical applications, but is readily applicable to 
the study of transient waves in bounded solids. For an introduc­
tion to the ideas and formulation of ray theory, see ref. [9]. 
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as a semi-infinite space or an infinite plate. (For 
computation of the Green's function, see refs. 
[10,11]. To obtain displacement and stress fields in 
bounded solids, the finite element method was 
used. 

Finite Element Method 

The finite element method is a general numerical 
technique for obtaining approximate solutions to 
the partial differential equations that arise from 
boundary value problems. The method involves di­
viding a continuum into a finite number of discrete 
parts-the finite elements. The discretized repre­
sentation of the continuum is referred to as the 
finite element model. For stress analysis, the behav­
ior of each element is described by a set of assumed 
functions which represent the variation of displace­
ments or stresses within that element. Variational 
(or energy) principles are used to formulate force­
displacement element equations. These element 
equations are then used to construct the global 
equations which describe the behavior of the entire 
continuum. Solution of these global equations gives 
the displacements or stresses at points in the ele­
ment [12]. 

An explicit, two-dimensional (axisymmetric or 
plane strain), finite element code (DYNA2D), de­
veloped at Lawrence Livermore Laboratory for 
solving finite-deformation, dynamic contact-impact 
problems [13-15], was used to perform the studies 
discussed in this paper. An input generator 
(MAZE) [16] was used to create the finite element 
model. A mini-computer with a virtual operating 
system, 8 MBytes of memory, and a floating point 
processor were used to carry out the analyses. 

IN DYNA2D, a continuum is divided into ele­
ments using constant strain (linear displacement) 
triangles and quadrilaterals [13]. Higher order ele­
ments (e.g., linear strain, quadratic strain) are not 
available in DYNA2D because they are computa­
tionally expensive in wave propagation applica­
tions relative to the constant strain elements. For a 
particular element type, the accuracy of the finite 
element solution is partly determined by element 
size. In wave propagation problems, the optimum 
element size depends on the geometry of the con­
tinuum and on the time-history of the dynamic 
loading. For the constant strain quadrilaterals and 
the dynamic loading functions used in the linear 
elastic, plate analyses presented in this paper, con­
vergence studies were carried out to determine the 
optimum element size. The criteria for conver­
gence were comparisons made between finite ele­
ment displacement time-histories obtained at points 
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on the top and bottom surfaces of a plate and the 
waveforms obtained at the same points by the 
Green's function solution for an infinite plate. For 
0.25 m to 0.5 m thick plates subjected to a force­
time function which simulated impact by a steel 
sphere (contact time of impact was 25 to 31 /-Ls), 
rectangular elements with dimensions on the order 
of 0.02 times the plate thickness were found to give 
sufficiently accurate results. The elastic material 
properties used in these analyses were representa­
tive of concrete. 

In dynamic finite element analyses, numerical in­
tegration of the equations of motion must be car­
ried out; DYNA2D uses the central difference 
method [13] to perform this integration. The cen­
tral difference method requires a small time step 
for numerical stability. This is not a drawback be­
cause wave propagation applications require the 
use of very small time steps to obtain an accurate 
solution. Numerical stability requires that the time 
step, h, meet the following criterion: 

where L = shortest dimension of the 
element, m; and 

(3) 

Cp = P-wave speed in the material, m/s. 

In DYNA2D, the time step is taken as 0.67hmax un­
less the user specifies some other value. During an 
analysis, data are stored in data files at intervals 
specified by the user. In the analyses discussed in 
this paper, data were stored every 2 J.1s. An interac­
tive graphic post-processor (ORION) [17] was 
used to process the results of the analyses. 

Before the finite element code could be used 
with confidence to study transient wave propaga­
tion in bounded solids containing internal flaws, so­
lutions obtained from the finite element analyses 
were verified using the Green's function solutions 
for infinite plates. 

Plate Response 

The successful implementation of the impact­
echo technique as a method for flaw detection in 
heterogeneous materials, such as concrete, requires 
an understanding of the reflection of transient 
stress waves by the free boundaries of a solid and 
the interaction of waves with internal defects. A 
first step is understanding the response of an in­
finite, homogeneous plate to impact. In the follow­
ing discussion of the elastic response of a plate to 
point impact on the top surface, the following ana-
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lytical results are presented: 1) the displacement 
time-history obtained at the bottom surface of the 
plate directly under the impact point; 2) displace­
ment fields recorded at successive times to show 
transient stress waves propagating within the plate; 
and 3) the displacement time-history of a point on 
the top surface of the plate near the point of im­
pact. 

For the case of a sphere impacting on a plate, eq 
(2) can be used to predict the surface displacement 
that will be detected by a receiving transducer lo­
cated on either the top or bottom surface of the 
plate. Two test configurations are considered in 
this study; these are shown in figure 3. Figure 3(a) 
shows the receiver located at the epicenter, that is, 
on the bottom surface of the plate directly under 
the point of impact. Figure 3(b) shows the impact­
echo configuration-the receiver is located on the 
top surface of the plate near the point of impact. 
For this configuration, the separation between im­
pact point and receiver is denoted by an H. 

The time-history of the contact force generated 
by the elastic impact of a sphere dropped on the 
surface of a plate can be approximated by a half­
cycle sine curve (see fig. 1). The contact time of 
the impact and the maximum contact force can be 
computed if the size and elastic properties of the 
sphere, the velocity of the sphere at impact, and 
the elastic properties of the plate are known [18]. If 
the appropriate Green's function, G(r, t), is also 
known, then the displacement, u(r,t), can be com­
puted by numerical solution of the convolution in­
tegral given by eq (2) [19]. 

T 
(a) T 

L-----r-----Jl 

Receiver 

T 
(b) T 

L----__ ----.ll 
Figure 3-Test configurations for a plate: (a) epicenter; and 

(b) impact-echo. 
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In this study, the Green's function for an infinite 
plate was obtained using a computer code recently 
developed at NBS [20,21]. This program computes 
the response for a unit step force-time function in­
put. To obtain the Green's function (impulse re­
sponse), the derivative with respect to time of the 
step function solution is calculated. The step func­
tion response is calculated using nondimensional­
ized variables so that the solutions are applicable to 
a plate of any thickness. Values of the step function 
response are calculated at prescribed time steps so 
that the computer solution is a discretized repre­
sentation of the true solution. The only input 
parameters required are the source-receiver ge­
ometry and the ratio of S- to P-wave speeds. In the 
analyses presented in this paper, the ratio was 0.61 
(Poisson'S ratio equal to 0.2). 

Epicenter Response 

Green's Function Solution: Before considering 
the response of a plate to impact by a sphere, the 
impulse response is shown. In the impulse response, 
wave arrivals correspond to abrupt discontinuities 
in the waveform. It is therefore easier to determine 
the displacements caused by each individual wave 
arrival. 

Since the numerical solution used in this study 
results in a discrete representation of the step func­
tion response, the derivative of this solution (the 
impulse response) also has a discrete representa­
tion. 

The impulse response for a 0.25 m thick plate is 
shown in figure 4. The P- and S-wave speeds are 
4000 and 2440 mis, respectively. A time step of 1 
J-ts was used in the calculations. This response con­
sists of normal surface displacements caused by the 
arrival of direct P- and S-waves, multiply reflected 
waves (3P, 3S, SP, etc.) and mode-converted 
waves (2PS, P2S, etc.). The arrival times of these 
waves are indicated on the waveform. 

The P-wave generated by impact on the top sur­
face of the plate is the first wave to arrive at the 
epicenter; it is a compression wave (a wave causing 
compressive stress at the wavefront) and it causes a 
large downward displacement of the surface. This 
compression wave will be reflected at the bottom 
surface of the plate as a tension wave. The tension 
wave will propagate back up through the plate to 
be reflected at the top surface as a compression 
wave. (The multiply-reflected P-wave is now 
called the 3P-wave because when it arrives at the 
bottom of the plate it will have traveled through 
the thickness of the plate three times.) When the 
3P-wave arrives at the bottom surface it pushes the 



Journal of Research of the National Bureau of Standards 

EPICENTER SOLUTION 
DELTA FUNCTION INPUT (0.25 M) 

0.05 

0 
P 3P 

-0.05 S 

a: -0.1 
Vl 
i5 
0 -0.15 
w 
N 
:J 

-0.2 < 
~ 
Il: 
0 
z -0.25 

-0.3 

-0.35 

-0.4 

0 0.0002 

TIME (s) 

surface downward. This cycle is repeated so that 
every multiply-reflected P-wave arriving at the 
bottom surface of the plate (5P, 7P, etc.) is a com­
pression wave that causes a downward displace­
ment of the plate surface. 

Notice that the amplitude of the surface displace­
ments caused by successive P-wave arrivals de­
creases. This is due to divergence (spherical beam 
spreading) which causes the amplitude of the dis­
placement to decrease as the inverse of the distance 
the wave has traveled [22]. 

Theoretically, an S-wave arriving at the epicen­
ter has no vertical displacement component (see 
fig. 2). However, the arrival of the S-wavefront is 
still easy to identify because the arrival of the 
wavefront corresponds to a discontinuity in the 
vertical displacement at the epicenter. 

The waveform obtained from the Green's func­
tion solution for a point located a distance r from 
an impulse point source in an infinite solid shows 
displacements corresponding to the arrival of the 
P- and S-wavefronts. No other displacements oc­
cur. However, in the impulse response of the in­
finite plate (fig. 4), notice that in addition to the 
displacements caused by P-, S-, and mode-con­
verted waves, there are displacements that occur 
between the arrivals of each of these waves. These 
intermediate displacements are referred to in this 
paper as "wakes"; they result from the transient 
point source being applied normal to a stress-free 
boundary and from the interaction of propagating 
waves with the lower stress-free boundary of the 
plate. In the frequency domain these wakes are 
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Figure 4-Epicenter response to a 
delta function impact. 

0.0004 

commonly thought of as geometric dispersion phe­
nomena. 

To obtain the epicenter response caused by a 
sphere impacting the top surface of the plate, the 
waveform shown in figure 4 must be convolved 
with the force-time function shown in figure 1. Us­
ing the identity for the derivative of convolution, a 
mathematically equivalent approach, which is nu­
merically more accurate in this case, is to convolve 
the response function, H(r,t), computed for a unit 
step function with the derivative of the force-time 
function, dF(t)/ dt [19]. Thus, eq (2) can be written 
in the following form: 

(4) 

In this case, the derivative of the force-time func­
tion is a half-cycle cosine curve. The waveform 
obtained by this convolution is shown in figure 
5(a). The time step used in these calculations was 2 
J-Ls. 

In this analysis, the contact time of the impact 
was 31 J-Ls, which is equal to one-half the time re­
quired for a P-wave to travel from the impact point 
to the epicenter. The waveform generated by a 31 
J-Ls point impact is much smoother than the impulse 
response that was shown in figure 4. As the contact 
time increases, wave arrival times can become diffi­
cult to determine as displacements caused by indi­
vidual waves become smeared together. As a 

result, sudden changes in the waveform will not 
necessarily correspond to the arrival times of the 
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waves. (See refs. [3,4] for a more detailed discus­
sion of the effect of contact time on surface dis­
placement waveforms.) 

The arrivals of P-, S-, and mode-converted 
wavefronts are indicated on the calculated wave­
form. The displacements caused by the large ampli­
tude P-wave arrivals dominate the waveform. 
Notice that there is a second dip in the waveform 
after the end of the direct P-wave and before the 
arrival of the S-wavefront. The steady change in 
displacement (wake) between these two waves in 
the impulse response (see fig. 4) gives rise to this 
second dip. 

Comparison With Finite Element Solution: The 
impact response of the same plate was also calcu­
lated using an axisymmetric finite element model. 
In both the Green's function solution and the finite 
element analysis the plate was unsupported. Impact 
on the top surface of the plate was simulated by 
applying a uniform stress over an element at the 
center of the plate. The time history of the applied 
stress was a half-cycle sine curve with a duration of 
31 J.Ls. The values of the material properties used in 
the analysis were: a modulus of elasticity of 33100 
MPa, a Poisson's ratio of 0.2, and a density of 2300 
kg/m3. These values result in P-, S-, and R-wave 
speeds of 4000, 2440, and 2240 mis, respectively. 
Figure 5(b) shows the normal displacement at the 
epicenter of the plate. The computed arrival times 
of P-, S-, and the mode-converted PS-wave are in­
dicated on the waveform. 

The response obtained by the finite element anal­
ysis can be compared with the Green's function 
solution for an infinite plate for the period of time 
before wave reflections return from the sides of the 
bounded plate used in the finite element analysis. If 
the shape and magnitude of the perturbations in the 
waveform obtained from the Green's function 
solution [fig. 5(a)] are compared with those ob­
tained from the finite element analysis [fig. 5(b)], it 
is seen that there is good agreement between the 
two waveforms. 

In the waveform obtained from the finite ele­
ment analysis, there is a series of low amplitude, 
extraneous oscillations (ringing) between 128 J.Ls 
and the arrival of the 3P-wavefront. This ringing is 
due to the excitation of spurious modes of vibration 
in the constant strain finite elements used in 
DYNA2D. These modes are referred to as "zero 
energy" or "hourglass modes" [14] and they are 
due to distortions of the elements. A decrease in 
the contact time of the impact causes more rapid 
changes in displacement; this causes distortion of 
elements and tends to increase ringing. Artificial 
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Figure 5-Epicenter response to impact: (a) Green's function so­
lution; and (b) waveform obtained from finite element analy­
sis. 

viSCOSItIes are introduced in DYNA2D to damp 
out the ringing [23], but it generally cannot be 
completely suppressed. The ringing is particularly 
evident in this case because there is a relatively 
quiescent period between the rapid change in dis­
placements which occurs prior to 128 J.Ls and the 
arrival of the 3P-wave. 

Displacement Fields Within a Plate 

A single finite element analysis solves for dis­
placements and stresses over the entire domain (the 
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collection of finite elements) at each time step dur­
ing the specified time of analysis. These results can 
be used to study the dynamic displacement and 
stress fields that are produced within a solid. 

An axisymmetric, finite element analysis was 
performed for a 25 p.s duration impact on a 0.5 m 
thick, 1.5 m diameter, unsupported, plate. Material 
properties were identical to those used in the previ­
ous analysis. A 0.5 m thick plate was used in this 
analysis so that the P- and S-waves generated by 
the 25 p.s contact time became separated as they 
propagated through the plate; this makes the dis­
placement fields created by the waves easier to 
study. 

The righthand side of figure 6 shows the dis­
placement field in the plate 125 J.ts after the start of 
the impact. (Since the displacement field is axisym­
metric, only half of the plate is shown.) At 125 p.s 
the P-wavefront arrives at the epicenter of the 
plate. The position of the P- and S-wavefronts are 
indicated on the lefthand side of the figure. The 
magnitude and direction of the average nodal dis-

(a) 

Figure 6-Displacement and stress 
fields within a 0.5 m thick plate 
125 Jls after the start of the im­
pact: (a) vector plot of displace­
ments and the location of the 
waves; and (b) minimum princi­
pal stress contour plot. 

R 

(b) 

placement of each element is indicated by a vector. 
The relative lengths of the vectors depend on the 
magnitude of the largest displacement that occurs 
within the plate at a particular time. The vector 
lengths are also adjusted by a scale factor which is 
not under the user's control. Therefore, the 
vector plots shown in figures 6(a) and 7 are not 
drawn to the same scale; this must be remembered 
when comparing the figures. 

As mentioned, motion in a P-wave is parallel to 
the direction of wave propagation. In figure 6, the 
vectors within the P-wave are oriented along rays 
emanating from the impact point. This orientation 
is consistent with the direction of motion. The 
magnitude of the displacements in the P-wave are 
not uniform along the spherical wave. Displace­
ments are maximum near the centerline of the plate 
(the ray connecting the impact point to the epi­
center) and they diminish to almost zero at the top 
surface of the plate. This pattern of displacements 
is in agreement with that shown in figure 2. 

F(t) 

~ 
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Figure 7-Vector plots of displace­
ments at varIous .times after the 
start of the impact: (a) 148 p,s; 
(b) 203 p,s; and (c) 250 p,s. 

(a) 

(b) 

(c) 

R 

The motion in an S-wave is perpendicular to the 
direction of wave propagation. In figure 6, the S­
wave is easy to identify because of the orientation 
and large amplitude of the vectors within the 
wave. As expected, vectors are perpendicular to 
rays emanating from the impact point. Displace­
ments along a spherical surface within the plate 
were studied to determine the effects caused by the 
S-wave. The displacements in the S-wave are ap­
proximately zero at the center of the plate and be­
come larger along rays located at increasing angles 
from the centerline. A study of displacement time­
histories obtained for various elements along a 
spherical front inside the plate showed that, near 
the critical angle (approximately 37 degrees from 
the centerline of the plate), there is a discontinuity 
in the displacements caused by the arrival of the 
S-wave; this discontinuity agrees with that pre­
dicted by the radiation pattern shown in figure 2. 
Near the surface, it is difficult to determine the am­
plitude of the displacements in the S-wave because 

R 
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R 110 

150 

of interference due to the displacements caused by 
the R-wave. Note that in the vector displacement 
field all effects are superimposed; each vector rep­
resents the total displacement and direction of any 
given element. 

Figure 6(b) shows a contour plot of minimum 
principal (compression) stress. The stresses in the 
P-wave are greatest at the centerline of the plate 
and decrease toward the surface. Since a state of 
pure shear stress is equivalent to a state of equal 
biaxial tension and compression, the plot of mini­
mum principal stress also shows the stress variation 
in the S-wave. The stresses in the S-wave are low­
est at the centerline and increase toward the sur­
face. In the region near the surface of the plate, the 
stresses caused by the R-wave interfere with those 
produced by the S-wave making it difficult to sepa­
rate the stresses caused by each wave. 

The observed patterns of displacements and 
stresses in the P- and the S-waves are similar to 
those expected based on the displacement fields 
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produced by a harmonic point source (fig. 2). 
However, in addition to these P- and S-wave radia­
tion patterns, figure 6(b) shows that in the region 
between the P- and S-waves there are stresses that 
resemble those that occur in a P-wave; this is the 
"P-wake." In addition, there is a region of nonzero 
displacements and stresses trailing the S-wave (the 
"S-wake") that resembles the patterns in the S­
wave. Thus, the disturbances generated by impact 
on a plate are not confined in the P- and S-waves. 

Figures 7(a) through 7(c) show displacement 
fields obtained from the finite element analysis, 
along with corresponding schematic representa­
tions of the position of the po, So, and the mode­
converted PS- and SP-waves, at 148, 203, and 250 
Jls after the start of the impact. 

The displacement field at 148 Jls [fig. 7(a)], 
shows reflection of the P-wave at the bottom sur­
face of the plate. The S-wave created by mode­
conversion of the incident P-wave (referred to as 
the PS-wave) is not yet discernible as it is masked 
by the displacements caused by the reflected P­
wave. 

At 203 Jls [fig. 7(b )], the S-wavefront arrives at 
the epicenter. The bottom surface of the plate is 
displaced downward at this time because of the ef­
fect of the preceding P-wave and P-wake. The S­
wake is clearly visible. 

At 250 Jls [fig. 7(c)], the front of the reflected 
P-wave arrives at the top surface of the plate. The 
P,S-wave is now easily discernible. Reflection of 
the S-wave is occurring and the mode-converted 
P-wave (referred to as SP) that was generated by 
the reflection of the incident S-wave is seen emerg­
ing from the front of the reflected S-wave. The 
SP-wave causes much larger displacements than 
the reflected S-wave. 

Once multiple reflections of the po, S-, and 
mode-converted waves begin to occur, the distur­
bances created by individual waves become more 
difficult to distinguish in the displacement fields. 

Impact-Echo Response 

The use of the impact-echo method for nonde­
structive testing involves interpretation of displace­
ment waveforms obtained near the point of impact. 
In this section, a surface displacement waveform 
obtained from the Green's function solution for the 
impact response of an infinite plate is compared 
with results obtained by the finite element method. 

Green's Function Solution: The normal displace­
ment calculated at a point on the top surface of a 
infinite plate due to impact at another point on the 
same surface is shown in figure 8(a). This thickness, 
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Figure 8-Impact-echo response: (a) Green's function solution; 
and (b) waveform obtained for finite element analysis. 

T, of the plate was 0.25 m. The spacing, H, be­
tween the impact point and the point where the 
displacement was calculated (the point where a re­
ceiving transducer would be located) was 0.05 m 
[see fig. 3(b)]. The ratio of the S- to the P-wave 
speed was 0.61 and the contact time of the impact 
was 31 Jls as in the epicenter analysis. 

The waveform shown in figure 8(a) consists of 
displacements caused by the arrival of multiply re­
flected P- and S-waves and mode-converted 
waves. In addition, there is an initial large displace­
ment caused by the R-wave propagating along the 
top surface of the plate. In the figure, the R-wave 
arrival is denoted by an R, and multiple P- and 
S-wave arrivals and mode-converted wave arrivals 
are indicated. For this particular configuration 
(H/T=0.2), the normal displacements caused by 
the S-wave are very small. 
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As discussed previously, the P-waves which ar­
rive at the top surface are tension waves; the ar­
rival of each tension wave pulls the surface 
downward. Thus the perturbations in the impact­
echo response have a pattern similar to the epicen­
ter response. 

Comparison With Finite Element Solution: Figure 
8(b) shows the displacement waveform obtained 
from the finite element analysis of the 0.25 m thick 
plate subjected to a 31 J-Ls duration impact. The 
spacing between the impact and the point where 
the displacement waveform was recorded is 0.05 m 
as in the Green's function solution. Material prop­
erties are the same as those used in the previous 
analyses. 

If the shape and relative magnitudes of the per­
turbations in the waveform obtained from the finite 
element analysis [fig. 8(a)] are compared with those 
in the Green's function solution [fig. 8(b)], it is seen 
that there is good agreement between the two 
waveforms. 

As in the epicenter response obtained from the 
finite element analysis, low amplitude oscillations 
due to excitation of the zero energy modes of the 
finite elements occur in figure 8(b). After the R­
wave has passed the receiver, the surface displace­
ment should go to zero, as shown in figure 8(a), 
until reflections arrive from the bottom of the 
plate. However, the oscillations due to excitation 
of the zero energy modes cause the computed sur­
face displacement to oscillate about zero for a short 
time. In this case, the zero energy modes are 
excited by the element distortion caused by the 
rapid, large changes in displacement that occur in 
the R-wave. This numerical ringing does not affect 
the echo pattern due to the multiply reflected 
waves. 

Summary 

The internal displacement and stress fields pro­
duced by a transient point load on the top surface 
of an elastic plate were studied using the finite ele­
ment method. It was shown that in addition to P­
and S-waves, intermediate displacement and stress 
fields (wakes) are produced by a transient point 
load applied normal to a stress-free boundary. Sur­
face displacement waveforms computed by the 
finite element method showed good agreement 
with those obtained from the Green's function so­
lution. 

The study presented in this paper has demon­
strated the potential of the finite element method 
for becoming a powerful tool for understanding the 
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interaction of stress waves with defects within 
solids. Such knowledge is essential for successful 
implementation of nondestructive testing tech­
niques based on stress wave propagation, such as 
the impact-echo method under development at 
NBS. The power of the finite element method lies 
in its ability to analyze solids having arbitrary 
shapes, boundary conditions, and applied loads, 
and to generate complete pictures of displacement 
and stress fields in a computationally efficient man­
ner. A subsequent paper will present finite element 
studies of the diffraction of transient stress waves 
by flat-bottom holes and circular disks within 
plates-problems for which no Green's function 
solutions currently exist. 

The authors thank Dr. John O. Hallquist of 
Lawrence Livermore Laboratory- for providing the 
finite element code, DYNA2D, the input generator, 
MAZE, and the post-processor, ORION, and for 
assisting in implementing the codes on our system. 
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