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Van der Poel’s method (Rheol. Acta 1, 198 (1958)) for calculating the shear modulus of a par-
ticulate composite agrees well with experimental data, but its validity has been questioned, and it
was applicable only to composites in which the matrix material is incompressible. These limitations
are removed in this paper in which an error in the original derivation is corrected, and the method
generalized to apply to any matrix material. Calculations using the corrected theory show that despite
the error, a table of shear modulus values published with the original theory is sufficiently correct for
most practical purposes. Applicability of the generalized method to the large class of composites
having compressible matrices is discussed. Shear moduli calculated by the corrected and extended
method are compared with corresponding values calculated by other methods currently used.
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1. Introduction

Consider an idealized composite material consisting
of small spheres imbedded in a matrix. The spheres
are of approximately the same size, are firmly attached
to the matrix, and are uniformly distributed so that the
composite material is macroscopically homogeneous
and isotropic. An important question then arises — that
of calculating the two mechanical moduli characterizing
this material in terms of the moduli characterizing
the filler spheres and the matrix.

Several solutions have been given to this problem.
The best known ones are those of Hashin and Shtrik-
man [1],! Kerner [2], and Budiansky [3]. Hashin and
Shtrikman’s formulae, which provide upper and lower
bounds for the shear and bulk moduli of the composite
as a function of filler content, are: for the highest

lower bound (HLB),
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! Figures in brackets indicate the literature references at the end of this paper.
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In these formulae G represents the shear modulus,
K bulk modulus, and ¢ volume fraction, the subscripts
f and m refer to the filler and matrix respectively.

Kerner’s formulae, although derived by a different
method, can be shown by algebraic manipulation to
be the same as those for Hashin and Shtrikman’s
highest lower bound (1, 2).

Budiansky provides the pair of coupled implicit
equations:
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Young’s modulus E and Poisson’s ratio v can be
calculated from the well known expressions:

_ 9KG

T3K+G ©)
3K—26

V= 6K+ 26 (10)

In van der Poel’s solution [4], for which excellent
agreement with experimental data is claimed [4, 5],
the formula for K can be shown to be the same as eq
(2), but the calculation for G is too complicated to be
expressed conveniently in closed form. Van der Poel
has treated the special case in which the matrix of
the composite has a Poisson’s ratio v=0.5. The value
of G is obtained by interpolation from a table of values
he has provided. It would be useful to have a formula
applicable when the matrix has any value for Poisson’s
ratio. This was the purpose of the present work.
During its progress an error was discovered in van
der Poel’s solution. The corrected form is given along
with details of the derivation.

2. Derivation

The derivation is based on a method developed by
Frohlich and Sack [6].

To simplify calculations consider a unit length
chosen such that on the average there is one sphere
of filler in each spherical volume 477/3 of unit radius.
If a is the radius of the filler sphere, then by defini-
tion of the unit radius, a3 is equal to the volume frac-
tion % of the filler.

Consider a large cube of homogeneous material
with edges parallel to the axes of a cartesian coordinate
system having its origin at the center. Consider also
a second cube in which the region at the center has
the following structure: A filler sphere of radius a is
located at the origin. Surrounding this out to a radius
unity is a sphere of matrix material which in turn is
imbedded in the homogeneous material. The mechan-
ical properties of this homogeneous material are
assumed to be the same as the average macroscopic
properties that are sought for the composite material
considered here.

If the same boundary stresses are applied to each
of the cubes, it is assumed that the displacements in
the two cubes are the same at a distance r=R > 1
except for terms of a high order in 1/r. In the second
cube the influence of the structure within the radius
r=1 on the displacement at r=R is expected to be of
the same order as the ratio of the two volumes, i.e.,
~ 1/R3. Thus it will be required that

Displacement at r=R in second cube

Displacement at r=R in first cube

const

(11)

=1+3 %

n>3

Let the cube of homogeneous material (first cube)
be subjected to the deviatoric stress system
Or=0 T a,=2T, Tay= Tyz 2= Tex =0 (12)
where the os represent tensile and the 7s shear
stresses. Assuming Hooke’s law, it is easily seen that
this stress system gives rise to the following displace-

ments U, Uy, U, within the material;

_ TIQ+wv)x  Tx Ty Tz
w=T T F ag™wTp%Tg 1
In spherical polar coordinates the components of
stress and displacement are obtained by transforma-
tion as

0,=2TP>(Cos0), 1,4=TP;(Cos 0), 7+=0 (14)
Tr T
=EP2(C050),U9=iPQ(COSO), u,=0 (15

where P,(Cos 0) is the second Legendre polynomial
and P; (Cos 0) is its derivative with respect to 6.
P;(Cos 0) =%(3Cos26—1),
(16)
P;(Cos 8) =—3 Cos 6 Sin 6.

In order to find the displacements in the cube con-
taining the special spherical structure at the center
(second cube), it is necessary to find appropriate
solutions to LLamé’s equations expressed in spherical
polar coordinates. These equations are tabulated by
Love [7]. Because of symmetry of the stress system
about the z axis, the displacements u, and us are
independent of the azimuthal angle ¢, and the dis-
placement uy=0. Lamé’s equations thus simplify to

(A4 2G) Sin 0 —A— + ZG - (rw‘p Sin )=
17)

(A +2G)r Sin 9—A—2C ((U(p Sin 6) =0

where according to Love [8] the dilatation A is given by

1
m{ (ru, Sin 6) + — (ruo Sin 0)}
(18)
and the rotation we by
ST

@e 2r dr T 00 tr L)

Lamé’s constant A is given by

2Gv
N= .

1—2 @0)
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The most general solution having the same P,
symmetry as the displacement system (15) is obtained
by setting u, = rfP, (Cos 6), ug = arfP,’ (Cos 0) in eqs
(17) to (19), and substituting for \ using eq (20) to obtain
the set of linear homogeneous equations in a:

[A=2v)(B+1)B—12(1 —v)]a+ [B+4(1—v)]=0
(21)
[-38+9—12v]a+ [(1—v)(B+1)B—5+8r]=0.

In order that these equations be compatible, it is
necessary that

B+4(1 —v)
Q=2v)(B+1)B—12(1 —v)

_(1—=»)(B+1)B—5+8v
B —38+9—12v

(22)

or, after simplification

(B=1)(B+2)(B—3)(B+4)=0 (22)

The value of a corresponding to each root of eq (22)
is found by substituting into eq (21). The solutions for
u, and uy thus become.?

ur=[Ar+Br*+Cr*+Dr2]P,(Cos 6) (23)

u9=[ %Ar—%Br‘4+ bCr3+cDr—2 ] P; (Cos ) (24)

where

1—2v

= 25
5—4v &)

and 4, B, C, D are constants.
The strains e,, and e,s are found from the relations

(26)

and the stresses necessary for the solution are then
calculated using

Z(IV
0'r=1 % +2Gerr, Tro= Gerg 27)
to obtain 2
or=2G[A—A4Br=5+ k,Cr>+ k3Dr=3]P»(Cos 6) (28)

Twzc[A+§Brﬁ+m0ﬂ+k¢»4]ch%o)(W)

2 For an incompressible material (v=0.5) van der Poel’s solution agrees with the solution
obtained here, but when v # 0.5 the exponents in the terms having coefficients C and D in
van der Poel’s solution are erroneously given as functions of ». This error has previously
been noted by Hashin [9].

where

1 7+ 2v

1 . 2(5—v)
r“_ 6v

5—4v °’

sk3:_

2(1+v)

= 5=y

(30)

Within the filler sphere r < a the requirement that
the displacement be zero at the origin necessitates that
B;=D;=0, where the subscript f refers to the filler
medium. The solution applicable in the regiona<r<1
involves the constants 4,,, By, Cy, D,y where the sub-
script m refers to the matrix medium. Within the
region 1<r<R requirement (11) necessitates that
A=T|G,C=D=0. A must be regarded as an unknown
constant as it involves the shear modulus G, the quan-
tity which is to be calculated.

At the boundaries r=a and r=1 the radial and
tangential components of the displacement and the
stress must be continuous. This gives rise to the
following set of linear homogeneous equations in the
unknowns Ay, Cy, Ay, By, Coiy Dy A, B.

MA_[—% Ma*Cy— Am+4a>By + —l a’Cp— kana=3Dp=0

MA;+ Mbksra*Cr— Am =8 a By

3
- A‘2m(l2cm - A'uim(list =()
ad;+ a3Cr— aAm— a*Bn—a*Cpn— a D=0
1 o 1
5 aAys+ bpa*Cy— aA i + 4B
—bma?Cp— cna™2Dm = 0.
31)
m 4‘Bm Cm A A':;mDm +4NB—NA=0
8 8
An+ g Bn+ k:szm + ksmDm —g NB—NA=0
Am S Bm ah Cm +Dm —B—A4=0
; m— Bm+b111(rn+frllbrll+ B__A 0
where
M=G/Gm, N=G/Gn. (32)

In order that the solution be nontrivial the deter-
minant of the coefficients must be set equal to zero.
Solving the resulting equation will evaluate the shear
modulus of the material G, which is the quantity
desired.
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After simplifications the determinantal equation
becomes 3

2M — 2Muyy =% 8 2vm 4(5 — vm) 0 0

0 2M (7 + 5vy) 0 — 40 —2(7 4+ 5vm) — 72 0 0

0 —(7—10vy) 0 -5 7 — 10vn -9 0 0

3 7 — 4, =3 2 — (7 — 4vm) —6(1 —2vn) 0 0
=0 (33)

0 0 0 0 —14(1 — vm)a2 48(1 — vm)a? 8X 0

0 0 0 0 0 —30(1 —vn)a? 0 X

0 0 1 a’ 2uma? (5 —4dvpm)a? -1 0

0 0 5 0 Uar= 4(4 — 5vp)a® 0 1

B e

where X =N — 1= C. I (34) When the volume fraction ¢ = a? of the filler spheres
" is small, terms of higher order than a® can be neglected.
. . The expressions for A, B, and C become much shorter,
Equation (33) can be expanded into the form and a further simplification results because the term
N _ [M (74 5v;) +4(7—10vf) | can be factored from each
AX*+BX+C=0 (35)  of these quantities. The solution of eq (35) for this case

where

A=2(M—1)[M(7+5v)
+4(7—10v7) ] [4(7—10vm) (4—5vm) (1 —a?) (1—a”)
—63a*(1—a?)?]
+280(M—1) (7—10vp) (1 —vw) (4—>5vm) (1 —a3)a’
+60[M(7+ 5v)
+4(7—1007) 1 (1 —vm) (7—10vy) (1 —a7)

+2100(7—10vy) (1 —vm)2a” (36)

B=70(M—1)[M(7+ 5vy)
+4(7—=10vp) J(1 —vm) [ (4 —5vm) (1 —a?d)
—6a®(1 —a?)]
+525[M (74 5v5) +4(7—10v;) ] (1 — vy)?
+60(M—1)[M(7+ 5vp)
+4(7—10vp) ] (1 —vw) [10vma3(1 —a?)
—7a°(1—ad)]
—2100(M —1) (7—10vy) (1 —wvp)?a 37)
C=—525(M—1)[M(7+5v)
+4(7—10vf) J(1 —vm)2a®. (38)

One of the roots of eq (35) is negative and is extra-
neous. The positive root when substituted into eq
(34) provides the value of the shear modulus G.

" The determinant given by van der Poel agrees with the determinant, eq (33), when
vm = 0.5 except for elements in the second column. These elements in van der Poel’s
solution are more complicated functions of v;.

yields the following approximate formula for G:

2#1_‘_ 15(1_V171)((;f_cm)§0
Gn = (8=10vm)Gr+ (71— 50m)Gm

(39)

3. Discussion

It can be shown by algebraic manipulation that the
formulas (39), (1), (5) and (3) for G can be displayed in
the form

GC=Gn+ (Cf_cm)q): (1_®)G7rt+q)cf (4‘0)

which, when @ = ¢, is the well-known rule of mixtures.
For the approximate van der Poel equation (39)

(8 - lOVm)Gm O (7 — SVm)Gm

e (8 = 10vw) G+ (7 —5vm)Gn ¢ el
For Kerner, or Hashin and Shtrikman HLB, (1)
_ (8=10v)G+ (71— 5vn)Gn
(I)— (8 - IOVm)Gf+ (7 —SVm)Gm 4 (42)
For Budiansky (5)
_ (8=100)G+ (7T—5v)G
= 82100 G+ (T=50)C ¥ 5
For Hashin and Shtrikman LUB (3)

" (8—100))G,+ (T—50)G, ¢
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This display shows that these formulas are all of the
same type, and can be interchanged into each other
in a certain predictable way.

When the volume fraction of filler ¢ is very small so
that G ~ G,,, and v ~ vy, the values of ®/¢ computed
by eqs (41) to (43) are essentially equal. Thus plots of
O = (G—G6Gn)/(Gs—Gn) versus ¢ for these relations all
have the same initial slope. Plots of G/G, for these
relations also have the same initial slope. Thus the
initial increases of G/G, with increasing ¢, as calcu-
lated by the methods of Hashin and Shtrikman HLB,
Kerner, van der Poel, and Budiansky, are the same.

The slope G/G, computed from the approximate
van der Poel formula (39) remains constant as ¢
increases, but the slope computed by the accurate
method (35) is nonlinear because of the complicated
dependence on various powers of a the filler sphere
radius. The slopes computed using the formula of
Kerner, or Hashin and Shtrikman HLB, (1) and
Budiansky (5, 6) are also nonlinear, and increase with
increasing ¢.

When v,=0.5 and G4/G,, > 1 as in the case of a gum
rubber matrix loaded with rigid filler particles, the
shear modulus for small values of ¢ should obey the
equation

Gsz:1(1+2.5<p). (45)

This equation is analogous to an equation developed
by Einstein [10] for the viscosity of a suspension of
rigid spheres in a fluid medium, and has been used to
predict reinforcement effects in rubber [11]. Under
similar conditions the van der Poel formulae developed
here (35), (39) and the formulae of Kerner, or Hashin
and Shtrikman HLB, (1) and Budiansky (5, 6) reduce
to eq (45). In fact the approximate formula (39) may be
considered as a generalized form of eq (45) in which
Gy and vy, are specified in addition to G .

" In order to calculate G using the formula of Kerner,
or Hashin and Shtrikman HLB, (1), it is necessary to
know only one of the moduli characterizing the filler
material, i.e., G;. This is in contrast to Budiansky’s
formulae (5, 6), where elimination of K leads to a
relationship for G involving filler moduli G; and
K;. Similarly for the corrected van der Poel computa-
tion (35), two filler moduli G; and v; are required.
The corrected van der Poel computation (35) and the
formulae of Budiansky (5, 6) thus provide some indi-
cation of the relative effectiveness of the distortional
(shear modulus) and dilatational (bulk modulus)
properties of the filler in determining the shear modu-
lus of the composite. To determine this relative
effectiveness, computations were made by the two
methods and the results are presented in tables 1
and 2.

In table 1 values of G/G,, calculated from Budiansky’s
formulae (5, 6) are given, corresponding to various
values of filler Poisson’s ratio vy and the ratio G4/Gn,
for a matrix Poisson’s ratio v, = 0.5. In the calculations
the ratio of the shear or rigidity modulus of the filler
to that of the matrix G;/G, ranges in value from 10 to

TABLE 1. G/G,, for various values of v and GG, calculated
according to Budiansky’s formulae (5, 6)

G|Gn
corre-
vy sponding 100 1,000 10,000 100,000
to
Gf/cm =10
1 1
¢=0.25, v, =0.50
0.10 1.7759 2.4647 2.6428 2.6642 2.6664
.30 1.7861 2.4726 2.6440 2.6644 2.6664
.50 1.7958 2.4787 2.6449 2.6644 2.6664
¢=0.50, v, =0.50
0.10 3.4855 17.871 146.56 1426.2 14221.
.30 3.5647 19.003 158.64 1548.6 15448.
.50 3.6565 20.143 170.74 1670.8 16671.

TABLE 2. G/G,, for various values of v; and GGy, calculated
according to the corrected van der Poel equation (35)

G/Gn
corre-
vy sponding 100 1,000 10,000 100,000
to
GilGm=10
¢=0.25, vn=0.50
0.10 1.6842 2.0025 2.0490 2.0540 2.0545
.30 1.6843 2.0026 2.0491 2.0540 2.0545
.50 1.6845 2.0027 2.0491 2.0540 2.0545
©=0.50, v =0.50
0.10 3.1083 6.4334 7.8687 8.0738 8.0952
.30 3.1235 6.4888 7.8810 8.0751 8.0953
.50 3.1393 6.5356 7.8909 8.0762 8.0954

10°, and from eq (10), the range of v, from 0.1 to 0.5
corresponds to a range of the bulk modulus K; from
(11/12)Gy to . The tabulated values show that the
relative shear modulus G/G, (Budiansky) can be
strongly dependent upon the rigidity of the filler relative
to the matrix G;/G,, but is only slightly sensitive to the
value of the filler Poisson’s ratio v or the bulk modulus
K;.
Table 2 presents similar results calculated using the
corrected van der Poel formula (35). Here again the
values of the relative modulus G/G, are seen to be
insensitive to the value of the filler Poisson’s ratio.
Thus although the Budiansky and corrected van der
Poel formulas make use of the value of filler Poisson’s
ratio in the calculations of G/G, the values obtained
are insensitive to it, and in this respect these formulas
offer little advantage over the formula of Kerner, or
Hashin and Shtrikman HLB, in which the value of
filler Poisson’s ratio is not needed.

Table 3 presents values of G/G,, for various filler
volume fractions ¢ and values of GG, computed
according to the corrected van der Poel equation (35).
In these calculations Poisson’s ratio of the filler spheres
was v;=0.25, and of the matrix was v,,=0.5. If these
values are divided by G;/G, the resulting values are
almost identical with the values of G/G; given in a
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TABLE 3. G/Gy, as afunction of ¢ for various values ofo/Gm, calculated according the corrected van der Poel equation (35)

vm=0.50,v,=0.25

G/Gn

7 corresponding to 10 20 100 1,000 10,000 100,000

Gf/Gm =2
.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
.05 1.0363 1.1025 1.1166 1.1296 1.1328 1.1331 1.1332
.10 1.0738 1.2177 1.2504 1.2814 1.2891 1.2899 1.2900
1S 1.1126 1.3499 1.4087 1.4665 1.4813 1.4828 1.4829
.20 1.1529 1.5038 1.6000 1.6998 1.7262 1.7289 1.7292
.25 1.1946 1.6843 1.8350 2.0026 2.0491 2.0540 2.0545
.30 1.2379 1.8962 2.1264 2.4066 2.4901 2.4991 2.5000
.35 1.2825 2.1438 2.4888 2.9606 3.1162 3.1333 3.1350
.40 1.3286 2.4301 2.9376 3.7398 4.0447 4.0798 4.0834
45 1.3761 2.7559 3.4852 4.8580 5.4924 5.5713 5.5794
.50 1.4249 3.1196 4.1376 6.4759 7.8782 8.0748 8.0953
.55 1.4750 3.5174 4.8898 8.7861 12.031 12.578 12.636
.60 1.5264 3.9448 5.7280 11.948 19.569 21.236 21.423
.65 1.5791 4.3986 6.6336 15.978 33.437 38.824 39.482
.70 1.6332 4.879%4 7.5946 20.684 58.323 76.204 78.710
15 1.6889 5.3937 8.6140 25.740 99.923 159.63 170.20
.80 1.7463 5.9570 9.7226 30.888 160.66 356.81 408.82

similar table by van der Poel [4]. The elements in the
second column of the determinantal equation evaluated
by van der Poel involved different functions of wy
than those given in eq (33) of this paper. Evidently van
der Poel’s results agree with those given in table 3
because of the insensitivity of the method of calculation
to values of vy.

The way in which results of the corrected van der
Poel calculation compare with results calculated by
the other methods considered here is illustrated in
figures 1 and 2. In the example chosen for figure 1,
Poisson’s ratio of the matrix is v, =0.4 and the ratio
of filler to matrix rigidity is G;/G,»=30. For those cases
in which it is used, the value of Poisson’s ratio of the
filler is vy=0.25. The plots of relative shear modulus
G/Gy, versus ¢ represent the expected shear properties
of a series of particulate composites consisting of
small glass spheres imbedded in a rigid epoxy matrix.

In the example depicted in figure 2, v,,=0.5 and
Gi/G,=70,000. When used, v,=0.25. The plots in
this case represent the expected shear properties of
a series of particulate composites consisting of small
glass spheres imbedded in a lightly vulcanized matrix
of natural rubber.

For the epoxy matrix composite, figure 1, the pre-
dictions of the van der Poel and Kerner, or Hashin
and Shtrikman HLB, equations are about the same,
but for the rubber matrix composite, figure 2, the
predictions of these two formulas are much different.
The Budiansky calculation predicts the highest
values of G/G,, for both examples.

From assumptions made in the derivation, one
should only expect reliable predictions from the van
der Poel calculation when the volume fraction of the
filler ¢ is small. However, agreement of the theory
with experimental results appears to be good even for
large values of the volume fraction of filler. According
to van der Poel [4], calculations for the case

G¢/Gn=100,000, v,=0.25, v,=0.5

are in good agreement for values of ¢ up to 0.60 with
Eilers’ [12] experimental values for the relative viscos-
ity of suspensions of bitumin particles in water.

If the values in table 3 corresponding to these van
der Poel calculations are compared with Eilers’ data,
the same degree of agreement is found. In table 3
there is only slight difference between the values for
Gi/Gn=10* and G;/G,=10°. Therefore the curve in
figure 2 of G/Gn versus ¢, calculated using G;/Gn
=70,000 in the corrected van der Poel formula (35),
lies very close to a similar curve that could be plotted
from Eilers’ data. The curves plotted using Budiansky’s
formulae and the Kerner, or Hashin and Shtrikman
HLB, equation are quite different. It seems then that
either eq (35) or van der Poel’s original calculation
provides the best agreement with Eilers’ data.

Schwarzl [5] has studied the mechanical character-
istics of composites consisting of NaCl crystals in a
rubbery polyurethane matrix. He reports agreement for
volume fractions of filler up to ¢=0.50 between his
results and van der Poel’s theory using the parameter
values G4/G,=10%, v,=0.25, and v,,=0.50. The curve
in figure 2 calculated from the corrected van der Poel
equation provides a good fit to Schwarzl’s data, and
the other two curves do not fit.

When measurements were made at low temperature
so that the polyurethane matrix was in the glassy
state, Schwarzl obtained data that could be fit by
van der Poel’s theory using the parameter values
Gi/Gn=8.4, v,=0.25, and v,=0.5. The value of
vm=0.5 was used because van der Poel’s table had
been calculated for this value only. The value of
v that should have been used was probably close to
vm=0.4. This suggests that values of G/G,, calculated
by the van der Poel method are not sensitive to the
value of the matrix Poisson’s ratio v,, so calculations
were made to check this.

In table 4 values of G/G, calculated from the cor-
rected van der Poel equation (35) are given, corre-
sponding to various values of matrix Poisson’s ratio v,
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RATI10,G/Gm

VOLUME FRACTION

FIGURE 1. Plot of relative shear modulus G|G, versus volume fraction
of filler for the case GG, = 30, vi=0.25, vy,= 0.40.

Curve 1, Approximate van der Poel equation (39); 2, equation of Kerner, or Hashin and
Shtrikman H{B, (1); 3, corrected van der Poel equation (35); 4, Budiansky’s formulae
(5,6).

TABLE 4. G/G,, for various values of vy and GG, calculated
according to the corrected van der Poel equation (35)

GlGm
Vi comrer 10 30 100 | 1,000 | 10,000
sponding to
Cf/ ,,,,:3
¢=0.25, y;=0.25
0.30 1.2955 | 1.5556 | 1.6747 | 1.7245 | 1.7451 | 1.7472
40 1.3058 | 1.5992 | 1.7445 |1.8077 | 1.8343 |1.8371
50 1.3224 | 1.6843 | 1.8982 |2.0026 | 2.0491 |2.0540
0=0.50, 1;=0.25
0.30 1.6928 | 2.5562 | 3.0870 |3.3470 | 3.4626 |3.4747
40 1.7156 | 2.7189 | 3.4400 |3.8359 | 4.0231 |4.0432
50 1.7542 | 3.1197 | 4.7709 |6.4759 | 7.8782 |8.0748

and the ratio G;/Gy, for a filler Poisson’s ratio v;=0.25.
These calculations show that when GG, ~ 10,
changing v, from 0.5 to 0.4 changes the value of
G/Gy, obtained only by a small amount, which approxi-
mates the experimental error expected in a measure-
ment. When G;/G,, = 30, the change in the calculated
value of G/G,, is significant, so that values of G/Gy,
taken from a table calculated assuming v, = 0.5 would
not provide a good fit to experimental data. Thus
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FIGURE 2. Plot of relative shear modulus G/G,, versus volume fraction
of filler for the case G¢/ G, = 70,000, v = 0.25, v,=0.50.

_Curve 1, /éﬁ)pmximate van der Poel equation (39); 2, equation of Kerner, or Hashin and
Shtrikman .B, (1); 3, corrected van der Poel equation (35); 4, Budiansky’s formulae
(5, 6).

although Schwarzl was able to fit his low temperature
data using van der Poel’s table, the corrected and
extended van der Poel equation (35) would be needed
to fit data for a system in which G;/G,, ~ 30, v, =0.4
such as glass spheres imbedded in a rigid epoxy
matrix.
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