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1. Introduction 

In a previous paper [1] ,1 he nceforth referred to as 
I , a gene ral expression for th e the rm al ave rage, e q 
(1-47), was de rived us in g classical pa th me thod s. In 
thi s pa pe r we will show how thi s express ion may be 
used to de ri ve the fa mili ar result s of the impac t 
theories [2 , 3, 4] and t he one·e lec tron theori es [3, 5]. 
P oss ible impro ve ment s to th ese th eo ries b y means of 
a more gene ral treatme nt of the the rmal average, will 
al so be di scussed, 

The perturbe r coo rdinates, x (e igenvectors of the 
perturbe r pos ition operator) are integrated out of the 
expression fo r the thermal ave rage whe n ~I ass i c al 
path me thods a re used (see eq (1-36)). The only pe r· 
turbe r variables whi ch need to be considered in th e 
ex pression for the th ermal ave rage, eq (1- 47) a re th e 
coordinates x li), v ii) of the pe rturbe r wave packe ts 
(which a re vi e wed as cl ass ica l parti c les), The s upe r· 
sc ript (i) notati on, whi c h was used in I to di s tin gui s h 
be tween these variables, is no longe r needed a nd , fo r 
convenie nce in nota tion, thi s supe rsc ript will not be 
used in thi s pape r. 

The the rma l ave rao-e will be evaluated by mea ns of 
s ta ti s ti ca l technique;. In o rd e r to clearl y illus tra te 
these techniqu es a nd a void unnecessary math e mati ca l 
co mplications, we will co ns ide r the case of the L yma n 
lines e mitt ed b y hydrogen a toms in a plasma. 
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2. Preliminary Mathematics and 

Approximations 

2 .1. The Line Shape in the Static Ion Approximation 

We will ma ke the us ua l qu as i-s tati c a pproxim a tion 
[2, 3] fo r th e ions in the pl as ma. The e lec tri c fi e ld , W, 
produ ced by th ese ions is regarded as be in g s ta ti c 
during the time of inte rest, and thi s s ta ti c fi e ld is used 
to defin e the Z axis for the a to m. H" is the Ha miltoni an 
for an isolat e d hydroge n a tom a nd , fo r con ve nie nce, 
the pe rturbati on is take n to be a dipole int e rac tion 
with the atomi c dipole - eR , 

V(t)= eZW+ V,,(R, x, v, t ) (1 ) 

V,,(R, x , v, l)=eR · W,.(x, v, t ), (2) 

wh e re Z de no tes th e Z co mpone nt of R , and W,,(t ) is 
th e Al,.l c tu ating e lec tri c fi e ld produced by the e1ec· 
t ron s . Th e c lass ica l va riables x and v a re 3N·vec tors 
desc ri bin g the N e lec tron pe rturbe rs (th ese were 
de noted by x U) and v ii) in I ). The ave rage ove r ion 
fi e ld s is performed by means of the us ual mic rofi e ld 
ave rage [2, 3, 6] , In thi s case, the complete line profi le 
IS gtve n by 

Jl(w) = f 9 (W)J(w , W)d~, (3) 

wh e re ,gP(~) is the probability of findin ~ a n Ion fi e ld 
. of magnitude ~. The fun c tion I (w , W) is th e sa me as 
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the function trw) di sc usseo in 1, e xce pt that we now 
exp li c itly indicate a de pe nde nce on the ion fi e ld it. 
That is, we may regard th e radiator as being an atom 
which is s ubj ec ted to a s tatic fi e ld it: th e pe rturbe rs 
are e lec tron s and th e res ulting lin e s hape, for a give n 
fi e ld /if, is t (w,it): the total line profi le is then obtaine d 
by ave raging t rw, it) over a ll poss ible ion fi e lds as 
s hown in eq (3). 

2.2. The Time Development Operator in the No­

Quenching Approximation 

The time development operator T,,(t) (see eq (1-39)) 
is th e so lution of the diffe renti a l eq ua tion 

i h ~ T" ( t) = [H" + eiif Z + V,. ( t ) ]T" ( I ) 
fit 

T,,(O) = 1. 

In an interaction represe ntation defined by 

(4) 

s tate neglec ting s pin) which we shall de note by II >; 
the frequency OIl' tht" lin e of int e res t may the n be de­
not ed b y W"I = (EN- EI) /h . 

A radiationless trans iti o n which de populates th e 
initial leve l E" may be sa id to que nc h th e radiation 
near W" I. The proba bilit y for s uc h a n int"las ti c tran s i­
tioll from an initi al s ta te Ini> to some other s tat e 
1,,',.( ' > (where n =;I'- n') is give n by the square of 
CjIT" I,, ',.{'). Th e nn-quenching approx imation states 
th at these " off-diagonal " (i.e .. It =;I'- ,/) te rms ma y be 
neglec ted (see eq (12) of re f. 1(1). The justification I'm 
thi s app roxim at inn will be ~ven in sec tion 7; in thi s 
sec t inn we will s impl y use < /lJ- IT" I,,'l' > = 0 to 
s implify the for m of T"U). 

S in ce th e "off-d iagona l" matrix e le ments of T,,(t ) 
a re assum ed to be negli gib le, it is clear from eq (5) , 
that th e " off-diagonal" e le me nt s of T;,(t) mu s t also 
be neglig ible. Noting that the H" e igenva lues depe nd 
only on n, the differential eq uation for T:,(t ), e q (6). 
become s 

iii : t ( rj IT;, (t) I r"i ') 

T,,(t) = exp (-i tH,, /h)T:,(t) , (5) = L) .. (,,,l l e/if Z + VI' ( t ) I n;{; ") ("j "I T;, ( t ) I "i' ) (10) 

we have 

ih :J T:,(t) = [e~Z'(t) + V;(t)]T:,(t) 
ot 

(6) 

Z' (t) = exp (it H,, /Ii )Z exp (- itH,, / Ii ) (7) 

V;( t )=exp (itH,, /Ii)Ve(t) exp(-itH,, / Ii). (8) 

The formal solution of eq (6) may be given by 

T:,(I) =l'7exP { -( i /li ) L[eitZ '( t ')+V;( t ') ]dt'} (9) 

wh ere 1'7 is the time ordering operator [71 which is 
required s ince [e/ifZ'(t)+V;(t)] does not com mute 
with [eitZ'(t') +V;( t')] unless t = t ' (ef. eq (6) of 
ref. [8]). Equation (9) is a very complicated expression 
and approximation s must be employed to si mplify the 
form of this operator. In thi s section we wi ll conside r 
the no-quenching approximat ion [9 1 which is frequently 
used for hydroge n lines. 

To make an exp li c it stateme nt of the no-quenching 
approximation, we must firs t introduce a complete 
set of H" eigens tates . The H" eigenvalues, E", depend 
onl y on the principal quantum number r", hence we 
denote the H" e ige nstat es by I "i> whereh is some se t 
of quantum numbers which index the degenerate states 
of the level E,,, We are inte rested in the radiation pro­
d uced when the atom makes a radiative trans ition 
from a group of i'nitial states (degenerate s tat es of 
some particular level E,,) to a group of fina l s tates 
which have a lower energy. For the Lyman series in 
hydrogen , there is only one final state (i.e. , the grou nd 

with the aid of eqs (7) and (8). If we define a projection 
operator IJ whi ch picks out the part of any operator 
which is diagonal in n 

then eq (10) may be written 

(11) 

The appearance of th e projection operator P in 
the gene rator [e/ifPZ + PVe( t)] indicates that T;,( t) 
will be diagonal in rv as required. It is interes tin g 
to note that, while Ve(t) commutes with Z (they 
a re functions of atomic pos ition coordina tes), the 
operators P Z and P V,,(t) will 110t com mute in ge neral. 
The formal so lution of eq (11) will therefore be a 
time-ordered exponential s imilar to eq (9). W e will 
define an operator :!l' (it) by 

(12) 

and T;,(t) will be written in an interaction representa­
tion defined by 

T;,(t) =exp(-it :!l') U,,(t) 
where 

(13) 

and 

a -
ih7Jt U,,(t) = V(t) U,,(t) (14) 

V(t) = exp (it:!l')PV('(t) exp (-it:!l'). (15) 

With these new definitions, T" ( t ) may be written 

T,,(t) =exp (-it H ,,/Ii) exp (-it:!l')U,,(t), (16) 
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wh e re V" (t) is the (time ordered) solution of eq (14): 

V,,( t) =OexP{-( i/ fi ) j'V(t ') dt '} . (17) 
o 

2.3. The Line Shape for the Lyman Series 

The lin e s hape fu nc tion de fi ne d by eqs (1-7) a nd 
(1- 11 ) i nvolves a t race over a tomi c s tates he nce thi s 
function will describe a ll s pec tral radiati on e niille d 
by the atom. S ince we wi s h to study only one line 
(or a gro up of ove rl app in g line s) a t a time, we may 
pick ou t the re levant terms in thi s trace as discussed 
in section 7.2 of I (see e q (I-51)). Thi s selec ti o n 
may be accompli shed b y res tricting the a tomi c dipol e 
ope rator d to have mat rix e le ment s only be twee n 
the initi a l and final s tates which contri bute to the 
lin e, or lines, of inte rest (cf. eq (1 2) of re f. [91). 

For the Lyman lines in hyd rogen the re is onl y one 
fin al state (neglec tin g s pin), which we have denote d 
by II>; the initial s tates for a ny give n lin e a re th e 
H" e ige nstates l'l'b";:') whi c h correspond to the give n 
initi al e ne rgy level En. All matrix e leme nts of R 
vanish in the ground s ta te, OI R Il) = 0, hen ce we 
have OIUu l1)=1 (thi s is why we have c hosen the 
Lyman series as an example). 

For co nven ience we wi ll now specify the s tates 
II,k) to be the paraboli c s tates whic h diagonali ze 
both [lO, III H" and PZ. The diagonal elements of Z 
will be denoted by ZnJ a nd t he diagonal ele me nts 
of HII (the e ne rgy eigenvalues) have a lready bee n 
denoted by En. There is no loss in generality in c hoosing 
parabolic states because the line s hape is de fin e d 
in te rms of a trace over a tom ic state s and we are 
free to c hoose allY co mpl e te se t of basis s tates when 
evaluating a trace (i. e., a t race is invariant under 
a unitary tran sfo rmation of the basis s tat es) . The 
atomic density matrix , p"( HII ) , is a lso diagonal in 
l;u.() and its matrix c lements are denoted by p~'/). 

Using eqs (1-7), (I-ll), (1-47) and defining a fre· 
quency variab le . ~w = (w - wnd for the particular line 
of interest, the lin e shape function I(w , It) may be 
written in the form 

where 

F(I)=Q - I J J exp[ -E,Ax, v)//,TIU,,(R , x. v, t)dxdv. (19) 

V.\), and V,,(x) is t he pote nt ial of int e rac t io n be t ween 
e lec tron s. 

The th ermal ave rage is contain ed en tire ly in F (t) 
a nd th e re ma inin g sec tiDn s are d evoted tD the eva lu a­
tion Df thi s fun c tiDn. Wh en F(t) is known , th e lin !:' 
s hape is readily Dbtain ed (' rom e qs (3) a nd (18). 

3. Further Simplification of the Time 
Development Operator 

3.1. General Purpose 

Althou gh the time de ve lopm e nt Dperator was con­
s ide rabl y s implifi ed by the no-quenchi ng a pproxima­
tion , the resu lting expression , e q (16), is s till quit e 
compli ca ted and furth e r s implifica t iDn s a re necessary 
in ord e r to e valuat e F(I ). To faci lit at!:' th ese s impli ­
fi ca tions we note that whe n we use th e class ica l 
tra ject ories di sc ussed in section 8.4 of I. th !:' int e r­
ac ti on poten ti a l V,,(t) in eq (2) may be writ te n in the 
fo rm 

V,,( R , x, v , t) = eR . 2,j/!"(xj, Vj, t) = 2, jVj ( t ) (22) 

g,.( x j, Vj, t) = e(Xj+ vjI)/lxj+ vjtI 3 , (23) 

whe re g',,(Xj, Vj, t) represents the e lectri c field at the 
a tom prod uced by the jth perturber: Vj(i) is s impl y a 
s horthand not a tion for eR ·g'e(Xj, Vj, I), the interaction 
be t wee n the atom and t he .it h pert urbe r. The form of 
the potential, 2, j Vp), suggests that it may be possib le 
to express UI/(I) in te rms of a product of time develop­
ment operators UP) for the individual e lec tron-atom 
co lli s ions. In sec tion 3.4 it will be s hown that such a 
product form is obtain!:'d without approx im a tion if 
the time of interest is very short. For most ca es how­
ever, the interaction V(O con tains terms like 

which do not in general comm ute with one anoth er, 
and this prevent.s us [rom obtaining the product form 
for UI/(t). Neve rtheless, if the Vj(t)do not overlap in 
time (or if thi s overlap is negligible) the ordered 
exponential in eq (17) ma y be expressed as an ordered 
product: 

(20) where Vj (t) is defined by 

0 = J J ex p[-E,,(x,v)/kTldxdv; (21) 

E" represen ts th e e ne rgy of the N e lec tron s which are 
described by x = (X I. X2, .... xx) and V=(V I, V2 , ... . 

Vj(t) = exp (it~) PVj(t) exp (-it~). (25) 

(Equation (24) may be verified by com paring terms in 
the series expansions.) This result will be the basis 
of the following approximations. 
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3.2. The Impact Approximation 

The purpose of the impact approximation is to dis­
entangle the ove rlapping colli sio ns [12, 13] in Va (t) 
and permit the use of the product form stated in eq (24). 

To do this, the impact approximation assumes that, 
for colli sions which overlap in time , the average colli­
sion is weak e nough that it may be described by a 
perturbation se ri es in powers of Vj(t). Collisions for 
which (VT/Ii) < 1 may be treated this way (cL sec. 7 
of I). Strong collisions, (VT/h) > 1, for which such an 
expans io!l is not practical , are assumed to be well 
separated in time so that two s trong colli sions never 
occur simultaneously. If a weak collision overlaps 
with a strong one, the weak collision is neglected and 
strong collisions are thus disentangled. The entangle­
ment between overlapping weak collisions first 
appears in the second order terms in the series ex­
pansion of eq (24). In footnote 7 of ref. [13] it is stated 
the e ntanglement in the second order terms vanishes 
because the term s involving differe nt electrons will 
average to zero (recall that V,,(t) appears only under 
an average as stated in eq (19)). This result was ob­
tained in ref. [13] by treating the electrons as statisti­
cally independent particles (using Debye shielded 
fields to approximate their correlations). Although 
we have not made such an assumption, we note from 
eq (22) that the second order terms involve an electric 
field autocorrelation fun ction (~e( t )g'" (t') ); and the 
use of stati stically independe nt quasi-particles is 
known to be a good approximation in evaluating such 
functions. W e may thus regard the impact approxi­
mation as being valid to second order for weak 
collisions. 

Using eqs (17) and (24), we see that, in the impact 
approximation, Va(t) may be writte n in the form (cf. 
p. 497 of ref. [12]) 

(26) 

(27) 

where (10 is a time ordering operator which kee ps 
the colli sions in chronological order; that is, the 
Vj(t) which describes the first collision must be the 
first operator from the right in the product IljVj (t) , 
and the second colli sion must be the second from the 
right, etc. To s tate the action of (10 more explicitly , 
we note th at the variables Xj and Vj in Vj(t) may be 
transformed into the colli sion variables po, Vo, to , etc., 
(see appendix) where to is a reference time for the 
collision (to is the time of closest approach if the 
collision is completed). The operator (10 simply re­
quires that to for the first colli sion always be less than 
to for the second c2llision , etc. (thi s ordering is neces­
sary because the Vj(t) for different colli sions do not 
in general commute). It is important to note that , whe n 
the impact approximation is valid , Vj(t) refers to a 
single collision whic h may be either weak or strong. 

3.3. The Line Wings 

In the win~s of a lin e, th e time of inte res t l /D..w (cL 
eq (I -52)) is re lative ly shurt and it may be poss ible 
tu n e~l ec t the ex ponentials, ex p (itfZ' ), in V(t). To show 
thi s. we writ e eq (14) in the form 

(reca ll that Vf/(t) is diagonal in .mj. If th e time of interes t , 
(l/D..w), is small e nou gh that 

(29) 

for all.k whi ch pe rtain to th e initial leve l, th en the 
expon e ntial in eq (28) may be neglec ted for'it' S'it',IV' 
where,w,,\ denutes the average ion fi e ld strength. For 
'it> 'it'"" the e lec tron broadening is negligible (as we 
will discuss in sec. 7), thu s , if eq (29) is sa ti sfi ed , we 
may neglec t th e exponen ti a ls invulving Z. In thi s case, 
th e so luti un of eq (28) is 

Vf/(t) = (j ex p { - (i/Ii) f PV,.( t')dt ' } (30) 

and the time ordering is still necessary because PV,.(t) 
will not in gene ral commute with PV,,(t ') . 

Usi ng the impac t approximation, Uf/(t) is again given 
by the product form sta ted in eq (26) an d VJ(t) is aiven 
by ~ 

Vj(t) = (1 e xp {- (i/Ii.) L PVj( t')dt'}' (31) 

Again the time ordering appears be cause PVj(t) does 
not commut e with PV) t') . 

For wea k co lli sions the exponential is valid only to 
secu nd order in PVN) (becau se uf th e impact approxi­
mation) and it can be shown th at , to thi s order, the 
operator (1 is unnecessary. T o show thi s we not e from 
eq (22) that PVj(t) may be written in the form 

It is the orthogonal compon ent s of PR which do not 
commut e ; that is, PX'it'.A t) com mutes with PX'i! ,.(t') 
but not with PY,w,,(t' ) or PZltzt t'). To second order the 
term s which do not commute will con tain factors like 
('it'.r( t )'it'I/(t' ) (recall that Vf/(t) appears on ly under an 
average). For a spherica ll y symmetric (abou t the atom) 
di stribution of e lectron s these te rm s will averaae to 
zero. We may therefore drop the time orderin; and 
write 

wh ic h is va lid to second order in PVj\t) for th e lin e 
win gs (as spec ified by eq (29)). 
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Th e a bove a rg ume nt is not valid fur s tron~ colli s ioll s 
beca use th e se ri es e xpan s ion of Uj is not applicable. 
We will non e th e less ass ume that eq (33) pro v id e~ a 
~()od description of the influ e nce of s t ronf! colli s ion s: 
thi s appruximation will be di s(' ussf'd in sec tion 7. 

3.4. The Quasi-Static Region 

In the far line wings where th e time of interes t , 
]/~w , is mu ch less than th e duration tim e T for a 
collision, 

T~W ~ 1, (34) 

an int e rac tion whic h would normally be rega rded 
as dynamic (e .g., an electron-atom int e rac tion ) will 
take on a quas i-s tatic aspect because the pe rturbe r 
motion durin g th e time of inte res t is negli gibl e. 
Th e tran s iti on from d ynami c be havio r in the lin e 
ce nt er to quas i- st ati c behavior in th e fa r wings is 
not prope rl y desc ribed b y c urre nt lin e s hape th eori es 
because these th eo ri es approximat e U,,(t) by th e 
firs t fe w te rms in it s se ri es expan s ion and , as will 
be s hown in sec tion 7 , thi s a pproxim a tion brea ks 
dow n in the qu as i-s ta ti c wings. Neve rthe less, it can 
be s hown that U,,( t ) ta kes a re lative ly s imple form 
in th e quas i-s ta ti c wings. In fac t, th e produ ct form 
lljUj( t) ma y be obtained without approximation 
and no time orde rin g is necessary in th e ope ra tors 
Viet). Tu s how thi s, we nut e that the tim e orde re d 
expone nti a l in e q (30) (whi c h is valid in th e wings) 
may be e xpressed as an expon e ntial involvin g a se ri es 
of co mmutators [14]: 

U,,(t)=exP{-(i/ li) ( ' PV,.( t ') dt' 3 Jo ( 5) 

+Hi/IiF ( ' ("[P V,,( t '), PV,.( t") ]dt ' dt" + . .. }. Jo Jo 
If the commutator is negli gibl e, PV,.(t) may be 
rega rd ed as an operator whic h commutes with it se lf 
a t differe nt times ; s imilarly we may regard PVi( t) 
an d PVj(t') as commuting operators fur all i, j, t , 
and t'. In thi s case, U,,(t) may be e xpressed in the 
product form njUj(t) whe re Uj(t) is give n by eq (33). 

T o show when the co mmutator is negligible we 
expand V,.(t) about t=O (in th e fa r wings t is a s mall 
para me te r). To lowes t orde r th e int egral ove r PI/,.(t') 
is give n by e PV,.(O) / Ii and tll f' int egra l ove r [PV,,( t' ), 
PV,.(t")] becomes ( I [P V,.(O), P V;, (0 ) ] /61i\ wh e re 
V;.(O) de not es (av,.(t) /a t) a t t = O. S in ce th e magni­
tude of [PV,.(O) , PV;.(O) ] is les!' than or equ a l to 
PV,.(O)PV;.(O), we need only co mpa re the mag nitude 
of (t'"PV;.(0)/6h) with unity. To es timate thi s quantit y 
we use eqs (22) and (23) and we obtain 

(av,./ at)= (ax/at) (aV,,/iJx) = vo(av,./ ax) = (voV,o/po ), 

For quasi- s tati c interac tions we have V = Ii~w (c L p. 
23 of re f. [41) and t2PV,; (0) /61i = l /T~w q 1. Thu s, if 
eq (34) is sati s fi ed , the commutator in eq (35) is neg­
li gible a nd Vo( e) may be expressed in the produ c t 
form as s ta ted. 

4. Series Expansions of F(t) 

In thi sec tion we will obtain series expansions for 
the fun c tion F(t) defin ed by eq. (19). The various 
methods of h andling these expansions give rise to 
different types of theories (e.g., the one-electron 
theory, impac t theor y, e tc .). 

The class ical H a miltoni a n £p(x , v) appearing m 
F(t) was given, in eq (20), by 

where Xj and Vj refer to the jth elec tron and Vp (x) 
represents the electron-elec tron interac tion. W e may 
defin e position and velocity di s tribution fun c tions 
P(x) a nd W(v) by 

P (x) = exp {- Vp(x)/kT}/ J dx exp {- Vp(x)/k1} (37) 

W(Vj) = ex p {- mvf/2kT}/ J dVj exp {- mvj/2kT} (38) 

W(v) = OjW(Vj) , (39) 

a nd th ese have the property that 

W(V)P(x) = Q- I exp {-£,,(x, v) /kT} (40) 

wh er e Q was defin ed by eq (21). Us ing th e produc t 
form for U,,(t) give n in eq (26), we obtain 

F(t) = (Jo J dxP (x) J OjdvjW(vj)Uj(e). (41) 

Following the technique used by Barange r and Moze r 
[IS], we define a fun c tion <peR, X j, t ) (w hi ch s hould 
not be confused with the wave fun c tions <p used in I) by 

1 + <peR , Xj, t) = J dvjW( Vj) Uj(R , X j, Vj, t ) . (42) 

Using <pU) as a shortha nd notation for <peR, Xj, t) we 
have 

OJI + <pU)] = 1 + ~ <pU) + ~ <pU)<p(k) + 
j <k 

(43) 

S ubs tituting e qs (42) and (43) into (41) we obtain th e 
series 

(44) 

where 

wh e re po and Vo de not e th e pos ition and ve loc ity at 
the tim e of c loses t approach (when PV;. is lar~es t ) . 
UsingT = (pO/VII) and t = (l /~w) . we obtain 

FM(t) :~, j, <j,< ... <jJ <pUI) . . . <pUM)P (x)dx. (45) 
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Since P(X" . . . , xx) is invariant under an interchange 
of particle coordinates we have 

FM(t) = [N!/M! (N -M)!] 

r ... f 4'(1) . 4'(M)P(XI, ... , X N )dxl ... dx\' 

= [N! /M! (N- M)!] 

f . . . f 4' (l) . . . 4' ( M ) PAl ( X" . . ., XM) dx I . . . dXM , 

where the reduced distribution function PM(x " 
XM) is defined by 

PM(x" ... , x .~'I) = f ... f P(x" . 

XM, X,II +" ... , X.V) dXM+1 dx x. 

(46) 

(47) 

PA/(X" . .. , xM)dx, ... dXA/ re presents the proba­
bility of finding the M particles labeled 1 through M 
in the volumes dXI , ... dXM at the points x" ... , X.II 
(for a further di scussion see ref. [16J) . The co m­
binatorial factor in eq (46) re presents the number of 
ways for choosing M electrons from the perturbing gas 
of N identical electrons. 

The reduced di stribution functions P.II (X" ... , X.II) 
may be expanded in an Ursell expansion [17] , the first 
three terms of which are given by 

where r is the volume of the system; the general term 
in the Ursell expansion is given by eq (9) of ref. [17]. 
The function g,/ r is the one-body probability function; 
gl(xl)g,(Xt)/ r 2 would be the two-body probaDility 
function if there were no correlation between particles. 
Since there is a correlation betwee n the particles at 
x, and X2, this correlation is represented by the two­
body correlation function g? (XI, X2). Similarly P;l is 
expressed by a group of terms which contain no more 
than two-bod y correlations plus g3(XI, X2 , x~), the 
three-body correlation function. The general term in 
the Urse)] expan sion expresses PM(x" ... , XM) as 
a sum of terms which contain no more than (M-l)-body 
correlations plus gM(X" ... , XM) , the M-body correla­
tion function. Following Baranger and Mozer [15] we 
define a function 

h'\'I(t) = f 4'(1) . 

dx,\/ , (49) 

and , after considerable algebra, it is found that F (t) , 
as given by eqs (41) and (43) , can be expanded in terms 
of the g,\'1 and then resummed to yield 

F(t) = 0'0 exp t~l (nll/M!) hll (t)} . (50) 

In the derivation of eq (50) it was necessary to let N 
and r become infinite in s uch a way that the density 
n = N/'r re mained co ns tant. In this ne w series for 
F(t), each successive term represents a higher order 
correlation effect. 

We now have two entirely differe nt expressions 
(eqs (44) and (50» for F(t). To determine the utility of 
these expressions, we will brie fl y outline the physical 
significance of the terms in the series expansions in­
volved. T o unders tand the physical significance of 
F(t) itself, we note that, except for multiplicative 
constants (e.g., d matrix elements), F(t) is the s ame as 
the autocorrelation fun ction C(t) di scussed in sec tion 
7 of I. 

The FI (t) term in eq (44) describes the electron­
atom interactions (collisions) as though they are com­
pletely independent of one another. From eqs. (42) 
and (46) we see that FJ(t) is given by a sum of terms, 
each of which contains only one Uj operator, thus, to 
this order the effects of the interactions are simply 
additive. The terms F2 , ••• , FA' account for the fact 
that the effect on F(t) of one interaction may be in­
fluenced by other interactions. When this influence is 
taken into account, the effects of the collisions are no 
longer simply additive. This influe nce of one inter­
action on another comes about in basically two ways. 
The most obvious influence is due to the correlation 
between the perturbing electrons which are de­
scribed by the correlation functions gM for M~2. How­
ever, even when these correlations are ignored (by 
setting gM = 0 for M ~ 2), the F 2, ... , FM terms do 
not vanish and it is still possible for the outcome of 
one collision to be influenced by other collisions. This 
remaining influence comes about whe n a collision, or 
a series of collisions , produces a large change in the 
state of the radiator thereby reducing the autocorrela­
tion function F(t). If the state of the radiator is 
thus materially altered from its original value, the 
effect of subsequent collisions will be correspondingly 
modified. For example, there is a high probability that 
a strong collision will cause an inelastic transition 
between states having different principal quantum 
numbers and it is obvious that such a transition cannot 
be neglected when calculating the effect of the next 
collision. Since it takes several weak collisions to 
build up such an influence, we expect that FI(t) will 
provide a good approximation to F (t) for times which 
are shorter than the mean free time betwee n strong 
collisions (for those cases where a strong collision 
does occur during this time, the effects of subsequent 
weak collisions are negligible in comparison). For 
longer times of interest it is necessary to consider all 
of the terms F " ... , F N , and in this case eq (50) is 
more appropriate than eq (44). 
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In eq (50), the hI (t) term describes the electron­
atom interactions as though the position of a n electron 
is not inAuenced by the presence of the other elec­
trons. That is , the electron-electron correlations are 
neglected in this term (although the re maining inAu ­
ence of one collision on the effects of s ubseq ue nt col­
li s ions is properly included). The h2 term accounts 
for pair correlations between electrons , a nd s ubse­
que nt terms describe higher order correlati ons. Sin ce 
it is usually not necessary to consider more tha n pair 
correlations , it would seem that eq (50) is much more 
useful than eq (44). This would indeed be the case if 
we could always make calculations based on eq (50); 
as we will show in the followin g sections, the calcula­
tions based on eq (50) become quite diffic ult for s hort 
tim es of interes t and in this case eq (44) is of more 
practical value. 

As a further comparison of eq (44) a nd (50) , it is 
inte res ting to note that , in th e mi cro fi e ld theory 
[15] , the approximation F = exp (nh ,) gives ri se to the 
Holts mark distribution fun c tion (no correlation ap­
proximation) whereas the approximation F = 1 + F, 
gives the asymptotic Holtsmark fun c tion (or nearest 
neighbor approximation). This indicates that the 
approximation F(t) =O'o[l+F,(t)J is just the small 
t limit of - F(t ) = 0'0 exp {nh, "(t)}. To verify that 
this is the case, we note from eqs (42) and (49) that as 
t ~ 0, hi (t) ~ 0 and exp {nh , (t)} ~ 1 + nh , (t); sub­
stituting the functions [16] PI (XI) = nlN andg, (XI) = 1 
into eqs (45) and (49) we see that F, (t) = nh, (t), thus 
I+F, (t) is indeed the s mall t limit of exp {nh,(t)}. 

5. The One-Electron Theory 

The one-electron theory is des igned to provide 
a description of the win gs of a line profil e. The version 
of this theory presented in thi s secti on will be shown 
(in sec. 7) to provide a consis tent descri ption of 
a line profile from the half width to the qu asi-s tatic 
wings. This theory is based on the approximation 
F(t) =O'o[l+F,(t)] whic h is valid for small times 
of interest or large ilw. Since F, (t) is given b y a sum 
of term s each of which contains a single Vj (t) operator 
(rather than products of the Vj ), the chronological 
ordering operator 0'0 will have no effect on Fl. Using 
[16J PI (XI) = nlN in eq (45), we obtain 

F(t )=I+nJ<p (R , x" t )dx,. (51) 

Notice that thi s expression involves the average 
of the time developm e nt operator for a single colli­
sion; this is the origi n of th e name "one-electron" 
theory. 

The first term in F(t) (i. e., the cons tant 1) will 
give rise to a delta function, 8 (ilw - e~Z",d h), whe n 
it is subs tituted into eq (18). Performing the ion mi cro· 
field average, as required by eq (3), it is clear that 
the contribution to § (w) resulting from thi s term 
will be proportional to !!J (hilw/eZ"A). This represents 
the lin e shape which would be produced by the ions 
alone. 

The inAue nce of the electrons (as well as some 
e lectron·ion couplin g) is contained in the second 
term in eq (51): 

F I(t) = nJ<p(R , xt,l)dxI. (52) 

Using eqs (33) (w hic h is valid onl y in the line wings) 

a nd (42), and noting th at J W(v,)dv, = 1, we obtain 

F I ( t) = n J dv I W (V I) J dx I 

[exp{-(ilh) fpV,(R,x, + V,I ')dt'}- I] . (53) 

As di scussed in the appendix, we may tra nsform 
to the more familiar collision variables (po, Vo, to) 
where po and Vo denote the impact parameter and 
electron velocity while to is some refere nce time 
in the collision (the time of closest approach in a 
completed collision). In terms of these variables 
we have 

F, (t) = n J do' Jo "': vilW( vo) dvoJo "'podpo J _+"x dto 

[exp{- (ilh ) LpV,(R , po , vo, tl + to)dtl}- I] (54) 

where 

VI (R, po, Vo, t ' + to) = e2 R 

. [po + Vo (t ' + to) ] I [pij + vi) (t ' + to)2] 3/2. (55) 

The Euler angles n de note the orie ntation of the 
"collision axes" relative to th e direction of R, the 
atomic dipole . We may therefore interpret the integral 
over n as a n ave rage over all possible orientations 
of th e electron traj ectory [5] relative to the direction 
of R. 

To make full use of the collision axes, we take the 
matrix elements of F, (t) as required by eq (18). 
These matrix elements are given by 

( .• .-tl[ exp {- (i lh) L PVI (R, po, Vo , t ' + ttl )dt l} - 1] I /~} (56) 
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We may now perform a rotation of the "atomic axes," 
through the E ule r angles D , so th a t R will point in the 
sa me direct ion as po , a nd Vo defi nes the x direction. 
The rot ated wave fun c ti ons will be given by [18] 
.,0) (D )I.n.J.), whe re ,P (D ) is a rota tion ope rato r. Th e 
int e rac ti on po te nti a l refe rred to co lli s ion axes is 

Vc(X , Z , po , Vo, t' + tn ) 

= e2 [Zpo + XVn(t' + tn ) ] / [p fi + vil (t' + tn )2 ] ;l / ~, (57) 

where X and Z d e note the x and z co mpone nt s of R , 
a nd we have the ide ntit y 

(";;" 1 [ ex p { - (i/h ) 1.: PV I(R , po , Vn, t' + t,, )dt ' }-I] Inl£'} 

= (.n--4-I .,0)- 1 (D ) [ ex p {- ( i /h ) f: PV·( X , Z , po , Vo, t ' + to)dt' } -1] .,0) (D) InIC) , (58) 

S ubstitutin g thi s ide ntit y int o eq (56), we obt a in 

\ lb.l IF I (t ) I;un = J \nl-l .,0)- 1 (D) F\'Ct ).,0) (D ) 1/~1i'-' )dD , 

(59) 
wh e re 

F\' (t ) == n 1.'" vJW(vo)dv" 1. '" p"dp" JX dt" 
(I () - x 

[ ex p {- ( i /h ) J.: P V,. (X, Z , p", vn, t ' + to ) dt' } -1 J. 
(60) 

The ave rage uver Din eq (59) m ay be readi ly pe rformed 
b y transfurming to s phe rical wa ve fun cti uns [1 9] 
a nd us in g th e p rope rti es of .0J (D ) as give n by Ed­
mond s [18]. Th e fun c ti un F\'{ t) may be ev alua ted by 
nume ri ca l me thod s, a nd the line shape is th en ob tained 
by substitutin g the result int o eq (18) and pe rfurmin g 
the trans fo rm. Furthe r de tail s of s uc h a ca lc ulati un 
toge the r with nume ri c al res ult s will be re ported in a 
future pape r. 

6. The Impact Theory 

To obtain th e res ult s of the impac t theo ri es we use 
th e Uj( t ) whi ch were obt a in e d by the im pac t ap proxi­
ma tion, eq (27), and the ap proximate calc ulation of 
F (t ) is based on its expa nsion in te rms of correla tion 
fun c ti uns, eq (50). For most pl as ma b roadening prob­
le ms one is int e res ted in a te mperature-dens ity range 
whe re three-body corre la tions are negligible, he nce 
it is necessary to co ns ide r onl y hI (t) (no correlations) 
and h2 (t ) (two- bod y co rre la tions). In the im pact 

) heories, e lec tron corre la ti ons a re not treated with 
correlation fun ctions (s uc h as g2 (XI , X2) which ap­
pears in h2(t)). Instead , in these theo ries the 
e lectron corre lations a re ap proximated b y im pac t 
para mete r c utoffs. Shie lded fi e ld argume nts a re 
used to derive a cutoff of approximate ly AI! , the 
Deb ye le ngtll. in th e range of th e e lec tron -a tom int e r­
a(,tion [201 . a nd th e frequ e ncy C:epe ll den t Lew is 
cutoff [21] (v;I\'/D.w) i.s used in pl ace of AI! whe n 

(V",.j D.W ) < AI! (thi s will be di sc ussed in sec. 7). A 
s imil a r c ut off be hav ior has a lso bee n obt a in ed , by 
mea ns of corre la t ion fun c t ion s, wit hi n t he fr a mework 
of a quantum mec ha ni ca l theory [22 ] . Howeve r a 
more acc urat e trea t me nt of t he e lec t ron corre la t ion s 
[23 ] has s hown that . while th e cut off a t (v",/D.w ) is 
valid for D.w > W,,, th e c utoffs in the line ce nt e r are in 
e rror. Th e c utoff at the Dt' oye le ngth (or at 1.1 AI! in 
some th eori es) s hould be multipli ed o y (2. 7l 8 ) - 1 / ~ = 0.6 
resu lt in g ina c hange on t he ord e r of 20 pe rcent in th e 
broade ning func tion $"" used o y Cri e m e t a l. 
[2, 9 , 13, 20]. For D.w = W,,, th e re is a poss ibilit y of 
furt he r correc t ion s du e to dynami c corre lat ion e ffec ts. 

T o de ri ve the res ults obtained by the impac t theory, 
we will assume tha t the e ffect of elec tro n correlations 
may be re prese nted b y som e correctl y chose n impact 
pa ra mete r c utoffs. W e thu s need to conside r only the 
fun c tion hI (t) as given by eq (49): 

(61 ) 

For a fluid [16] s uc h as a plas ma, g l (XI ) = 1 and hI is 
give n by 

W e note in pass ing that if the expone ntial in e q (61 ) 
is expanded , the fir s t two te rms in the series are ide n­
ti cal with the approxima te e xpression for F (t), e q (51), 
whi ch is used in the one-e lectron theory. A furthe r 
discussion of thi s corres pondence is give n in the 
foll owing sections. 

Us ing eqs (25) and (27), hI (t ) is give n by 

Tra nsforming to colli sion vari ables (see appendi x) 
and denotin g the ave rage over pn , VII , and D by a s ub­
sc ript av, thi s becomes 
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hi (t ) = JX dto[O ex p {- (i/h ) I f eil 'f!l: p V I (t ' + to )e- il'!Z dt'} -1] , 
- 'X: (I av 

(64) 

C ha nging va ri a bles from t ' to s = t' + tn a nd us in g the 
id e ntity exp [e- AB; ] = e - AeBeA, we obtain 

Jx . [ { J fO+f } ] hi ( t) = -x cito e xp (- ito!!' ) 0 ex p -urn. ) eisf!l:PV 1 (s)e - isS"ds -1 e xp (ito2' ). 
'0 av 

(65) 

We ass ume that a co lli s ion time T ex is ts s uch tha t 
;> VI(s) = 0 unless 0 ,,;;; s ,,;;; T. The comple ted colli s ion 

ass umption, whic h is an important pa rt of mos t 
impac t theori es, s tates that if a co lli s ion occ urs, 
it can be co mple ted . Th a t is, if some value of s in 

~ the inte rval [to , to + t] sati sfi es O";;;S ";;; T, the n th e 
compl e ted co lli sion assumption s tates th a t the co l­
li s ion s ho uld be comple te d in tha t inte rv al, i.e. , 

:> t o ";;; 0 ,,;;; s_,,;;; T ";;; (to + t ), Us ing thi s res tri c ti on on to 

and ex te nding the limits ( tn, t + to) on the s integral to 
(- x, + ::xl) (sin ce VI (s) = () outs ide the range 0 ,,;;; s ,,;;; T 
a nyway), e q (65) beco mes 

Jo 
hi (t ) = - (1 - ,) dto ex p (- ito!!' ) [5 - 1 L, exp (i to!!') 

IU - T) 

= dto exp (ito!!' )[5- 1],.v ex p (-i to!!' ), 
o 

(66 ) 

whe re 5 is an 5-matri x fo r a s in gle co lli s ion (weak or 
s trong) de fin ed by 

The co mpl e te d co lli s ion ass umpti on will prov id e a 
good ap prox im a tion to hi (t ) s ince T is usua ll y ve ry 

" s ma ll (i.e., t Y T), however , if t < T, the co ll is ion cannot 
;' be co mpl e ted a nd thi s approximation breaks down, 

Us ing the time of inte rest l /tlw fro m eq (I-52), we may 
s ta te tha t the comple ted co lli s ion assumption will be 

:; valid wh e n 
TtlW ~ 1, (68) 

whe re T is some " re presentative" colli s ion time [3] . 
Thi s in equ a lit y is some times used as the va lidit y c ri­
te ri o n for the impac t a pprox im a tion [3 ] ; th is po int 
will be disc ussed furth e r in sec tion 7. 

[

S ubs tituting eq (66) in eq (61) and using the o pe ra to r 
ide ntit y 

, 0 0 exp [L exp (- toA )B ex p (tIlA)dto]= e- fl ,A I+II) , 

(69) 

> we obt a in 

F (t) = ei(t-r) f!l: exp [- i(t - T)!!' + (t-T)<P,,] 

=e il t-r )f!l: exp [+ iT!!' - T<P,,] e xp [-it!!'+ t<Pa ]' 

(70) 

whe re (cf. eq (42) of ref. [3 ] or eq (28) of re f. [12] ) 

$ "=n[5 - 1L,,, 
If we use 

(71 ) 

(72) 

whic h is s imply a s ta te me nt th a t the im pac t app rox ima­
tion is valid (as we will s how in sec, 7), th e n eq (70) 
becomes (c f. eq (39) in re f. [3 ] or eq (30) of ref. [1 2] ) 

F(t ) = eit:!l ex p [- it!!'+ t<P,,]. (73) 

S ubs titutin g thi s F(t) into eq (18), we obt a in 

I (w,ft) = (p(;: )/1T) Re L (nA:ld llJ . Oldln£) 
JJ' 

Ix ('rtAI exp [i( tlw - e3'PZ/h)t + t<P,,] In4'l") dt , 
o 

(74) 

Co mpa rin g with eqs (9) a nd (32) of re f. [1 3] , we see 
th a t thi s res ult is fo rm a ll y id e ntica l with the res ult s 
ob ta ined by th e impac t th eo ry fo r th e L yma n se ri es. 

It is importa nt to note tha t , in most calc ula ti ons of 
hydrogen line broadening, the ex pone nti a ls e xp 
(is!!' ) in the integrand of the 5- m atrix (eq 67)) are 
e ithe r ignored or approxim a ted by a c uto ff [241 . 
To s how how thi s c utoff is obta ine d , we note that whe n 
eWT (Z"j- Z"j' ) /Ii ~ 1 th e ex pone nti a ls may be re ­
placed by unit y. W he n eWT (Z"j - Z"j,)/ h Y 1, the 
expone nti a ls osc ill a te rap id ly a nd the re will be only a 
negligible contribution from thi s region of the integral. 
Definin g a freque ncy 

w(~ ,,;.: "i' = e3'(z',,( - Z"j' ) /h (75) 

a nd noting that T= po/vo, we define an impac t pa ram­
e te r c utoff Pmax = vo/w";,:,,j' lin ref. [24jw";':,,j' is ca ll ed 
tlw,,). Whe n thi s c utoff is used , the expone nti a ls ex p 
(is !!') in eq (67) are re placed by unit y; thi s c utoff 
reduces the integrand to ze ro whe n TW,,;': "i' > 1, 
thu s a pproxima tin g the e ffect of the ra pidly oscillat­
ing expone nti als, a nd whe n TW";':,,j' < 1 the expone n­
tial s are e ffectively re placed by unity. This c utoff 
is used simply as a me thod of s implifyin g the num e ri cal 
calc ulation s and it could be co rrected without a ny 
modifi cation of the theory it se lf. 
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7. Discussion of Approximations 

7.1. General 

In the preceding sections we have derived the 
familiar results of the impact and one-electron theories 
using the classical path formalism developed in L 
The advantage of these theories lies in their simple 
classical description of the perturber dynamics; their 
disadvantage with respect to more recent quantum 
theories [6,22,251, is in the large number of approxima­
tions which are necessary to achieve this classical 
description_ Since an understanding of these approxi­
mations plays an important role in the application and 
improvement of classical path theories, these approxi­
mations will be discussed in some detail in this 
section_ 

7_2_ Preliminary Approximations 

In our treatment of both the impact and the one­
electron theories we have used a dipole approximation 
to the perturbation potential , a static treatment of the 
ion field, and the no-que nching approximation_ 
It should also be mentioned that we have not con­
sidered any perturbation of the final state in the radia­
tive trans ition because there is no linear Stark effect 
in the ground s tate of hydrogen and any higher order 
ground state perturbations (e_g_, quadratic Stark effect) 
are unimportant [261_ For lines other than those in the 

. Lyman series, lower state perturbations may have to 
be considered_ 

To show that the static approximation provides a 
good description of the ions, we cons ider the change 
of? in an elec tri c field W= e/ r~ during a time 0'- Us in g 
of?= ot(af?/at) = vot (aw/ar) = (vWOt/ r ). we see that 
(o?i'/?i' ) may be est i mated by (ot /T) where T is t he dura­
tion of a colli sion_ If Ot is replaced by the time of inter­
es t (l /~w) _ we see that (oW/f?) will be negligibl e when 

T~W p I, (76) 

as mentioned earlier. If a perturber is quasi-static 
it produces a Stark splitting h~w given by h~w = V 
(see p_ 23 of ref. [4])_ Using V = Ze 2Ro/pr. for an ion 
of c harge Ze, thi s means that pfi = Ze 2Ro/h~w_ Since 
the velocity di s tribution is s harply peaked about 
Vav , we estimate T by (po/vm ) and eq (76) becomes 

(77) 

The critical frequency ~wc is sometimes referred to as 
the Weisskopf frequency_ Since ~wc for ions lies al­
most at the center of most lines, the static ion approxi­
mation is usually justified over most of the line profile 
(however see also ref. [27])_ In section 3_E of ref. [6], 
it is shown that the effect of a static ion field may be 
described by the microfield average stated in eq (3)_ 

In the no-quenching approximation it was assumed 
that the T~ (t) matrix elements between states having 
different principal quantum numbers could be ne­
glected when calculating C (t) _ These "off-diagonal" 

matrix elements represent collision induced transitions 
which transfer the excitation of the atom from one 
energy level to another. In section 7_2 of!, it was shown 
that collision induced transitions between excited 
states correspond to switching the mode of oscillation 
in a classical oscillator. It was also shown that this 
mode switching effect could be neglected if the energy 
separation of the excited states is much larger than the 
halfwidth of the lines being studied_ In hydrogen, states 
having the same .nare degenerate (or nearly degenerate 
in the presence of an ion field) and collision induced 
transitions between these states are very important; 
this is the reason for regarding all states with the same 
.n as a group of initial s tates_ Low-lying states with 
different n are well separated in energy (much more 
than the halfwidths of the lines) hence the transitions 
described by (niIT~(t) InA') may usually be ne- , "' I 

glec ted_ However , for large n the levels are closer 
together and some of the higher series members may 
overlap; in thi s case it may be necessary to include 
states with different .n in the group of initial states. 

In section (2.2) the no-quenching assumption was 
made by setting (niI T:'(t )ln'h') to zero. This neglects 
the quenching terms which would be added to eq (18) ""'1 
as discussed above, however, it also neglects the in­
fluence which (dI T:'(t) In'h') has on (,nA'IT:'ld'). 
That is, even if a line is isolated in the sense that the 
quenching terms which would be added to eq (18) are 
negligible, it may still be necessary to consider the 
influence of the inelastic transitions Ini)~ln'h') 
when calculating <nhIT~InA"). To show when this 
influence is also negligible we consider the differential 

<~ 
equation for T;{ (t), eq (6). This equation may be writ-
ten in the form 

iii :t (nAIT~(t)lni') 

= L (",th I elg'Z + Vert) ~") (nA'''IT~(t) InA") 
h" 

+ L L exp {it~n4,"}(nA'I~WZ 
"''i "#-?'t h" 

J 

I 
where W" ,,"= (E"-E,,., )/h_ From this equation we see I 
that setti ng (rtil To I n'h') to ze ro simply neglects the in­
fluen ce which the "off-diagonal" matrix elements of oi 
[el~'Z +V,,( t)] may have on (nk IT" ln/') . If eq (78) 
is solved in the usual iferative manner [7] by int e­
grating over I. the term exp (ilw",,-) will oscillate rap­
idly and contribut e essentially nothing for t >(I /wn ,")' , 
This indi cates that the (r",,,{IZIII'',,{'') terms will be 
negligible co mpared with the (rtA'IZlnh' ) terms un­
less t < (l/w",, ')' Since the time of interest, 1/ ~w, 
is much larger than (I/w"n") for isolated lines, we may 
neglect th e te rms involving "off-diagonal" Z matrix I 

elements , The same res ult s apply for the terms in- ~ 
volving "off-diagonal" e le ments of V,,(I) unless 
I> T. If 1 > T , a similar argument indicates that the 
"off-diagonal" V" (I) terms are negligible only when 
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TW",,'> 1. In thi s case we use T = p"/v,,,. (th e ve locity 
dis trib ut io n is sharpl y peaked about va\,) and we see 
that the cond it io n TW ",," > 1 is viola ted on ly when 
p,, :S (fi.uav/tlE,,,,) whe re tlE"" ,= (E" - E,, .. ). Substi­
tutin g thi s va lu e of p" int o (VT/fi) = (e~H "/ fi p,,va,') 
(recan tha t V = e2R ,, /p~ for a hydroge n p las ma) we 
fi nd (VT/fi ) = (e2R"tlE,,,,/1i2u~J. Usi ng v;',. = (3kT/ m ) 
and R " = (3n~a,,/2), where a,, = fi~/m e~, t hi s beco mes 
(h/Ii) 2: (n 2tlE",, ' /2kT) . If we use tlE",, "= E"I( l /n)~ 
- (I/n"FI, where E ,,= 13.6 ev. is the ion ization ene rgy 
of hydrogen. we fi nd th a t the off di ago na l-terms a re 
important onl y when 

(VT/Ii) 2: (K,j2kT) I 1 - (n/nT I· (79) 

Si nce E" p kT one usua ll y has (E x/2 kT) ll - (, ';,/')11 > 1 
and , in thi s case,eq (79) indi cates tha t the (,,';.t"I T:,ln •• t) 
terms in eq (78) a re importan t onl y durin g st rong 
co lli s ions (in whi ch case T:, averages to ze ro, as 
disc ussed in sec. 7 of I , so no e rror resu lts). For 
some highe r ser ies membe rs (very large n and nil) 
it can ha ppe n tha t (E ,,/2kT) 11- (n/n")~1 < Land 
eq (79) can be sa ti s fi e d even fo r weak colli s ions. I n 
thi s case, the "o ff-d iagona l" terms in eq (78) must 
be re tained whe n calcu lati ng (n.4I T:,lnJ'). To see 
when thi s occ u rs. we co ns ide r the case whe re 
,,"=//± I and .li P 1. In thi s ease the q uantit y 
(E,,/2kT) I I - ( , ,f ,,"F I will be less tha n unit y whe n 

" > (E ,,/kT) . (80) 

~ T hus, for lines invo lvi ng /.n> (E x/kT) . we may no t be 
abl e to neglec t the influ e nce of in e las ti c transi tions 
be tween sta tes hav in g diffe re nt prin cipa l q ua ntum 
num bers whe n calc ulatin g (,jI T:, lnJ. ' ). T hi s e ffec t 
is usua ll y negli gib le fo r hyd roge n lines from labo ra­
tory p las mas beca use, fo r these p lasmas, th e lin es 
ge nera ll y begi n to me rge (o verlap) wh e n eq (80) is 

) sati s fi e d. For so me as trophys ical app li ca tions [27J 
(and for lin es othe r th a n hydroge n lines) thi s effec t may 
be very import a nt. 

Wh e n th e diffe re nti a l equa tion for the matrix e le­
ment s of T:,( t ) in th e no-qu e nc hing a pproxim ati on, 
eq 00), was writt e n as an ope rator equ a tion, eq (11). 
it was necessary to introduce a projec t ion ope rator 

> P th a t pi cks o ut the part of an operator whi ch is 
" di ago nal" in n. Altho ugh P operates on Z a nd Vp(t), 
thi s d oes not im ply th a t the "o ff-di ago na l" e le me nts 
of th ese operators are s ma ll (ind eed they are about 
th e sa me ord e r of magnitude as the " di ago na l" 
e le me nts). Th e a ppea rance of P in e q (11) me re ly 
ind icates tha t th e "off-d iago nal" parts of Z and 

y V,,(t ) h ave a negligible influ ence on r,; in the no-
qu e nc hing ap proxim a ti on. Th e influ e nce of thi s 
projec tion o perator is im pli c it in mos t lin e b road-

? ening th eo ri es s in ce matri x e le me nts of Z and V are 
us ua ll y ta ke n on ly be twee n states having the sam e 
prin cipal qua ntum numbe rs; we have introduced 
P explicitl y in ord er to avoid e rrors in ha ndling T,;(t) 

1:- and to c la rify subseq ue nt a pproximations. For ex­
~ ample, th e on ly opera tor in Vp( t ) is th e a tomic pos i­

ti on o pe ra tor R and one may th erefore commute 

Z with V,,(t); this com muta tion is not possib le with 
PZ and PVI'( t). in fac t , the ma trix elements of th e 
commutator [PZ. PVI' (t)J are abou t the same order 
of magnitud e as the ma tri x cle me nt s of PZ a nd 
PV,,( t) . If the influence of P is on ly imp li cit, it is 
possib le to make se riou e rrors by commuting Z with 
V,, (t) when these opera tors appear in T:,(t). 

Since PZ does not commu te with PVe(t), the formal 
solution , T:,(t) , of eq (11) is a complicated time­
ordered exponential. Although this operator has a 
rathe r sim ple fo rm fo r the quasi-stati c region of the 
line wings (see sec. 3.4), it was necessary to introduce 
simplifying approximations in order to evaluate the 
rest of a line profile . The first of these was the impact 
a pproximation which assumes tha t most colli sions can 
be described by a second order perturbation expans ion 
of U,,(t) . S tro ng collisions (VT/fi) > 1, for whic h thi s 
expansion breaks down, a re treated by some other 
method such as a n impact parameter cu toff. With 
this approximation, it is possible to write U,,(t) in the 
product form O'oTIjUj(t) where eac h U/t) is the time 
development operator for a sin gle electron-atom col­
lision. It is diffic ult to give a usefUl validity crite ri on for 
the impact approximation; the validity' criterion which 
is us ually give n [3J, TtlW < 1, is based on the com­
ple ted colli s ion assumption whi ch ofte n accompanies 
the impact approxim ation when it is used in the impac t 
theory (see sees. 6 and 7.3). Since the impact a pproxi­
mation is also used in the one -electron theory, we have 
drawn a di s tinc tion be tween the impac t approximation 
and the impact theory. The impact ap proximation, as 
we have state d it , will be valid whe n strong collisions 
are well separated in time. If we define a strong col­
li sion fre que ncy, V s , and a m aximum dura tio n for a 
strong colli sion, T s , thi s condition may be given by 

(81) 

If all colli s ions were s tro ng, Vs wo uld be on th e order of 
the halfwidth , tlWI!2, of the spectr al line. For hydrogen 
plasmas we have Vs < tlWI!2. The dura tion of a s tro ng 
colli sion may be es tim ated by usi ng (VT/ fi ) = (e 2R o/ 
fip ovav ) 2: lor po:S (e 2R o/ fi vav ) which gives Ts = (Po/vav ) 

~ (e2Ro/fiv~vl = 0 / tlwc), where tlwc is the Weisskopf 
freque ncy for electrons. Using v;v = (3kT/m ) a nd 
Ro = (3n2ao/2) where ao= ( fi 2/me2) , we have Ts 
:S (-n 2fi / kT) and TsVs <-n 2 ( fitlWl d kT ). Since//?-2 (fitlWI !2/ 
kT) ~ 1 for mos t hydroge n plas mas, we expect the 
impact a pp roxi mation to be valid for the e lectrons. 

7.3 . Discussion of the Impact Theory 

In th e usual de rivation of the impact the ory [2, 3 J 
one calculates the change in ( Ua(t IO) during some 
time tlt (recall that Ua(t) == U,, (tIO)). This chan ge is 
give n by 

tl(U,,(t I 0) ) = (Ua(t+ tlt I 0) - U,, (t I 0) ) 

= ( [Ua(t+ tlt I t) -lJ U,,(t I 0)) . (82) 

It is assumed that: (1) tlt is large e nough tha t th e two 
factors on the right are stati s ti cally independe nt a nd 
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may thus be averaged separately, and (2) 6.t is small 
enough that the differen ce equation, eq (82), may be 
replaced by the differential equation (see eq (4.30) 
of ref. [2], eq (38) of ref. [3] or eq (2.8) of ref. [20]) 

~ (Va(t) > = [exp (itH,,/Ii)cf>a exp (- itH,,/Ii)] (Va(t) > 

(83) 

which is then solved for (V,,(t) > (cf>a is given in eq (71)). 
In this derivation, assumption (1) requires 6.t > T and 
assumption (2) requires 6.t ~ t (as well as the average 
collision being weak; cf. pp. 508 and 529 of ref. [3]); 
together these assumptions require t P T which is a 
mathematical statement of the completed collision 
assumption (cf. eq (68)). Thus we see that the com· 
pleted collision assumption is an integral part of the 
usual derivation of the impact theory and the removal 
of this approximation would require a complete revision 
of the derivation. This is the reason one frequently 
sees the condition t P T or T6.w ~ 1 given as the validity 
criterion for the impact approximation [3]. 

In our derivation of the impact theory we first used 
the impact approximation to write Va(t) in the product 
form O'oIIjVj(t) and we obtained a consistent correla· 
tion function ex pansion, eq (50), for (Va (t) > == F (t). 
To obtain the usual results of the impact theory, we 
assumed that the electron·electron correlations could 
be approximated by impact parameter cutoffs, we used 
the completed collision assumption and we assumed 
that Tcf>a < 1. It was also noted that numerical calcula­
tions are frequently simplified by approximating the 
influence of the ion field splitting on the electron 
broadening (i.e., the factors exp (is2' ) in eq (67)) with 
an impact parameter cutoff Pmax =vo/ w\,,k, ~,h!' which 
depends on the ion field strength. While this approxi­
mation does not affect the region of validity of the 
theory, it would nonetheless be desirable to improve 
on this approximation to insure more accurate calcula­
tions. It is also interesting to note that the condition 
Tcf>a < 1 is simply a manifestation of the requirement 
that the impact approximation is satisfied (this was 
discussed in sec. 7.2). To show this, we use eq (71) and 
estimate the magnitude of cf>a by 

cf>a = n[S -lJav = n(VT/1i Lv 
where the subscript av refers to an integral over the 
(:ollision variables po, Vo, and fl (cf. eqs (64) and (A.5)). 
Since 27rnpodpovgW(vo)dvodfl = d" where" denotes the 
frequency of collisions described by Pfh Vo, and fl, w~ 
see that n(VT/Ii)av= J (VT/Ii)d,,= (V/Ii) where V 
denotes the average value of V. The statement Tcf>a < 1 
now becomes (V T/Ii) < 1, which is satisfied if the 
average collision is weak and if strong collisions 
(V T/Ii > 1) are well separated in time. This shows that 
the condition Tcf>a < 1 is always satisfied when the 
impact approximation is valid. 

One potentially useful feature of our approach is 
that it permits a consistent improveme nt of the impact 
theory within the framework of the classical path 
methods. That is, the impact parameter cutoffs, the 

completed collision assumption and the second order 
expansion of Vj(t) were needed only to simplify the 
calculation of eq (50) and it would be possible to cor­
rect these approximations without having to rewrite 
the theory. In fact, the impact parameter cutoffs have 
already been corrected to some extent by means of 
a more consistent treatment of correlation functions 
[22, 23]. 

The correction of the completed collision assump­
tion is a matter of some importance because, if we 
estimate the collision duration time by (AD/vav)=(I/wp), 
the region of validity for this approximation, eq (66), 
is given by 

6.w < Wp . (84) 

That is, an impact theory with a completed collision ~ 
assumption can be used only for values of 6.w smaller 
than the electron plasma frequency. It has been shown 
that the completed collision assumption may be cor­
rected, in the line wings, by means of the Lewis cut-
off [21]. This cutoff may be obtained from eqs (61) and 
(62) by expanding F(t) to second order in Vet) and 
performing the Fourier transform as stated in eq (18) 
(cf. eqs (6) and (17) of ref. [21]). 

Since the derivation of the Lewis cutoff is based on 
an expansion of F(t) which is valid only in the line 
wings, the use of this cutoff in the impact theory raises 
some doubts as to the validity of such a "modified" 
impact theory in the line center. These doubts may be 
dispelled to some extent by means of a comparison 
with the results of the quantum mechanical relaxation 
theory which does not make a completed collision as­
sumption. In reference [22] it is shown that the 
results of the relaxation theory essentially reproduce 
the behavior of a Lewis cutoff, and these results are 
not restricted to the line wings. In spite of this useful 
comparison, it would nonetheless be desirable to con­
firm this behavior within the framework of a classical 
path theory. In this regard, it is important to note that 
the completed collision assumption is not an inherent 
part of our derivation of the impact theory. This ap­
proximation was introduce d simply to compare with 
the results of the usual de rivation. It would thus be 
possible, in principle, to calculate F(t) from eqs (61) 
and (62) without making a completed collision assump­
tion. This has in fact been done, to second order, 
[28], and it is found that the results are identical with 
the results of the relaxation theory. It thus appears 
that a "modified" impact theory which does not make 
a completed collision assumption (such as ref. [28]), 
or a theory which corrects this assumption by means of 
a Lewis cutoff, will have a wider range of applicability 
than that stated in eq (84). 

If the completed collision assumption is not made 
(or if it can be corrected by some approximation such 
as the Lewis cutoff), the only serious limitation on 
the applicability of such a "modified" impact theory 
comes from the second order expansion of Vj(t). This 
expansion should be valid whenever the quantity 
(i/Ii)JV(t')dt' is small compared with unity. For com­
pleted collisions this quantity was estimated (cf. 
eq (1-68)) by (VT/Ii) and the expansion was justified 
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except for trong colli sions. For collisions which 
c annot be comple ted durin g the time of interest 
(i. e . , colli s ion s for whic h T!:lW > 1), we have (l / fi) 
JV(t')dt = (V/ fi!:lw) and it re mains to be seen whether 
thi s is s mall or not. This situation may arise in the far 
wings of a line where the elec tron·atom collisions take 
on a quasi· s tatic as pect (cf. sec . 3.4). In this region , 
the intensity at a point !:lw is primarily determined by 
those interac tions which produce a Stark splitting 
fi!:lw; that is , by those interactions for which V = fi!:lw 
(see p. 23 of ref. [4]). For these quasi-static interac· 
tions we have (l/fi) J V(t')dt' = (V/fi!:lw) = 1 and 
the series expansion of Vj(t) breaks down [29]. 
To determine where this breakdown occurs, we use 
T = (po/vav ) (vo = Vav for neutral radiators) and T!:lW ?:: 1 
to obtain Po?:: (vav/!:lw); substituting this result in 
fi!:lw = V= e2Ro/P6, we obtain !:lw = (fiv~Je~RII) = !:lwc 
where !:lwc is the Weisskopf frequen cy for elec tron s. 
Using Vav = (3kT/m) 1/ 2 and ao= (fit /me2), we have 
!:lwc= (3kT/fi) (ao/Ro); thus we see that the second 
orde r expansion of Vj(t) limits the appli cation of th e 
impact theory to the region 

0 :::; !:lw ~ !:lwc = (3kT/fi) (aolRo). (85) 

In principle thi s range of applicability could be ex· 
tended by using the full exponential for Vj(t) rather 
than its series expansion. In thi s regard it should be 
noted that the derivation of the Le wis cutoff is based 
on the second orde r expansion and , if this expansion 
is to be improved, it may be necessary to improve the 
Lewis c utoff as well. 

7.4. Discussion of the One-Electron Theory 

In the previ o us section it was shown that the im· 
pac t th eory is limited to th e center region of a line 
profile because of the second order expansion of 
Vj (t) . The on e ·electron theory is des igned to be 
valid in the line wings and it is expec ted that its region 
of validity will overlap with that of the impac t theory 
so that the comple te lin e profile may be de sc ribe d 
without ambiguity. To insure that the one-electron 
theory will be valid in the line wings, we used the 
expon ential form of Vj(t) which is valid in the wings . 
In the de rivation of this exponential form it was 
assumed that both the ion field splitting and the time 
orde ring operator could be neglected. 

In sec tion 3.3 it was s hown that th e time orde ring 
ope rator is not necessary if the second orde r expan s ion 
of Vj(t) is justified , and in sec tion 3.4 it was shown 
that time orde ring is not necess ary for quas i-s tati c 
int e ractions. It thu s appe ars that the only e rrors 
res ulting from th e neglec t of time orde ring will come 
from the stron g colli s ion s. S in ce the average e ffec t 
of s trong colli s ions is to redu ce Vj(t) to zero (see 
sec. 7 of I), th e e rrors mad e in these colli sion s should 
have a negligibl e e ffec t on ( Vj(t) J. 

To find out whe n we may neglec t the exponential 
e xp [ite1t(Z"J- Z"J ' ) /fi] whi c h appears in the operator 
V" (t) used by t he one -e lec t ron theory , eq (28), we 
conside r a c utoff that is s imilar to thecutoffv/w"J " J ' 
whi ch approximates thi s e xponential in the impact 

theory (see eq (75)). Using t= 1/!:lw and w"J, ,,1., (It) 
= e'it(Z"J- Z ,,j' ) ifi , we note that this expone ntial is 
esse ntially unity when (w"J, "J-/!:lw) < 1: whe n 
(w " J, ,J /!:lw) ;;> 1 the exponential oscillates rapidl y 
and th e re is only a negligible contribution frum 
V,,(t) . S in ce V ,, (t) appears under a microfield average , 
we wi II cun s id e r a cutoff 'it" = fi!:lw/e (Z" I.- Z,, } ) in 
th e ' ran ge of thi s mic rofield average. W e replace th e 
e xpon enti a l b y unity and average over ion field 
s tre ngth s 'it < g,.; this c utoff replaces the integrand 
by ze ro whe n (w " J, ,j-/!:lw) > 1, thus approximating 
th e e ffec t of the rapidly osc illating exponentials, 
and whe n (w ",( "J-j!:lw ) < 1, the expon ential s are 
e ffec tive ly re placed by unity. Thi s c utoff has no 
e ffec t on the s tati c ion broade ning becau se, in th e 
on e·e lec tron theory, th e lin e shape is a sum of two 
te rm s (c f. eq (51)) and th e te rm whi c h desc ribes the ion 
broad e nin g (th e !!IVt!:lw /Z ,j) te rm) is not affect ed by 
th e mi c rofi e ld ave rage of th e e lec tron broad ening 
te rm (th e FI ( t) te rm) whe re th e c utoff is appli ed. 
If it s hould happen that 'it. , ;;> 'ita ,", we may as we ll 
ignore the c utoff and average ove r 0 ~ 'it ~ 00 becau se 
.9'('it) will be negligibly small for 'it > g". That is, th e 
e xpon e ntial may be replaced by unity for all 'itwh en­
e ver 'it"=fi!:lw/e(Z,,J-Z,, /..' ) > 'ita,' or, as it was s tat ed 
in eq (29) , whenever 

(86) 

It should be noted that, as a prac ti cal es timat e of 
the region of validity for negl ec ting th e e ffec t of th e 
ion fi e ld on e lectron broad e ning , e q (86) . is us ually 
too res tri c tive. ror high e r lines (large n ) which have 
a large number of Stark compon e nt s (allowed 
Iru{oJ ~ 11) transitions) a more reali s ti c e stimate 
is obtaine d by conside ring the ave rage Stark s plitting 

(87) 

whi c h is us uall y on th e orde r of th e halfwidth [30] . 
The use of Z ,,,. rathe r than th e ma ximum value of 
(Z"I. - Z ,, /.' ) is more appropriat e for t he high e r Ii nes 
because , for th e large r valu es of Z "" the quantit y 
e'it" ,Z ,,/./fi corres ponds to a ve ry large frequenc y and 
th e elec tron broade ning is negligibl e for some values 
of!:lw less than e'it,,,Z,.;. /fi(for large Z ,,/., .9' (fi!:lw/eZ,, /. ) 
is much large r than t he e lect ron broadeni ng term for 
a wide range of !:lw which are Ipss than e'it,,,Z,.;. /fi). 

Since we wish to use a classical potential in Uj(t) 
to desc ribe the quas i-stati c interactions, it is necessary 
to ju stify the use of the classical wave packets whi c h 
give ri se tl) a classical potential (in sec. 8.3 of I, we 
jus tified the use of classical wavepacke ts only for 
dynami c pe rturbers). In section 8.3 of I, it was s hown 
that we may represent the perturbe rs by nono ve r' 
lappin g classical wave packets of width !:lx and mome n­
tum uncertainly!:lfJ ~ fJ if 

(88) 

Since we have *av ~ 11 - 1 / ~l fo r mos t probl e ms of int e r­
est, this criterion is ea sily me t. W e t h us need onl y 
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show that the radiator and perturber wave functions 
do not overlap during the time of interest. Us ing: the 
notation of section 8.3 in 1, thi s c rit e rion may be written 

(89) 

where RII = ,,21/1I= n 2h2/me2 denotes the effective 
extent of the radiator wave function. Using !111 ~ II 
and 1 < T=( plI/Vn), we see that (t!1ll/m ) ~ PII he nce 
the (t!1ll /m) te rm in eq (89) may be dropped. Using 
V = h!1w (for quasi-static interactions) and V= e" NII /pf, 
we obtain pr, = (e 2 Ro/li!1w) = R1) (e"///21111 ) (l /h!1w) 
= Rf, (2E xln"fi!1w) where Ex = e2 /2all is the ionization 
e ne rgy . Since li!1w ~ Ex/n2, we see that RII ~ PII 
hence the RII term in eq (89) may also be dropped 
and we need only show that 

!1x < PII . (90) 

Again usi n g: the value pr, = (e"R ,lr~!1w) given above, 
as well as~~?(h2/3mkT) and (/n = Ii" /me2, we find 
t hat pr,=~~v (kT/Ii!1w) (R%o). Since Ro > I/o and 
li!1w ~ kT, we see that po ~-i.a\' he nce it is possible to 
fin d a !1x whic h will satisfy both eq (90) and eq (88). 
The use of a classical pote ntial func t ion is thus j us ti­
fi ed for quasi-static e lectron-atom interacti ons. 

T he res ults of th e one-e lec t ron theory are based on 
the approximation F(l) = I + F1(1) whi ch treats the 
electron-atom int eraction s as though they are inde­
pendent of one another. In sect ion 4 it was aq.m ed 
tha t t his is probab ly a good approxi mat ion . if the 
times of in terest are sho rter t han th e mean free ti me 
betwee n st rong colli sions. To obtain a vali di ty crit e rion 
for th is ap proxi ma tion one sometim es id e ntifi es the 
colli sion freq uency with the halfw idth !1WI/" for th e 
line und e r cons ide ra tion ; th e re quire ment th at th e 
tim e of int eres t. 1/!1w, be less th a n th e mean free tim e 
he twee n colli sion s is the n writt e n [31 

!1w > D.W I/2 (91) 

Although thi s a rgum ent is so mewh at loose, it will be 
s hown tha t eq (91) ac tua ll y does provide a use ful 
s tat e me nt of th e region of va lidit y for the one ·e lec tron 
t1w o ry. 

T I) derive a validity c rit erion for the one-electron 
th e ro y, we no te that the app roxim ate F (t ) use d in 
thi s theory, eq (51), is formally the sam e as an e xpa n­
sion to lowest order in hi ( t) of the approximate 
F (I ) used in the impac t theory, eq (61 ). Th at is, the 
s ingle part ic le approxim atio n is simpl y a s mall h, (t ) 
approximation whi ch is valid wh en nlhl(t) l< l. 
F rom the de fi nit ion of h , (I) (see e q (62)) it is clear 
that II I hi ( I ) 1< 1 for sma ll t_ For large t the impact 
theory is va lid and we use eq s (66) a nd (71) to obtain 
17 1 hi (I) I ~ 1<1>". Re placin g t by th e tim e of inte res t , 
1/!1w , the val idity crite rion nlh, ( I) 1< 1 beco mes 

!1w > <1>" . (92) 

Thus the one-e lectron theory should be va li d wh e n 
both eqs (86) and (92) are sati s fi e d (or , for hi ghe r 
lines, when eqs (87) and (92) are satisfied). 

If the average ion fie ld sp li tting is small. (eg'avL,/ l fi) 
< <1>", or if the linear S tark effect due to the ion fie ld 
does influen ce th e line shape (e.g .. isolated lines) . 
the halfwidth is determined [30J by the matrix e le­
ments of <1>" (see sec. 4.7 of ref. [2J). In this case, the 
region of validity is give n by eq (91 ) as D.w > !1W I/2. 

For lines whe re th e average ion field sp litting is 
large. (eg',,,Z,,Jh) > <1)" (e .g . . h igher hydfligen li nes ) 
the ha lfwidth is determined primarily by ion broaden­
ing [301 and !1WI /2 = (eg'avZ"v / fi ). In this case eq (87) 
is more res tri c tive than eq (92) and the region of 
validity is again given by D.w > !1WI /2. 

The low lying hydroge n lin es are determined by a 
small numbe r of Stark components and , for many of 
these lines, a d iscussion of the halfwidth is of li tt le 
va lue; lines such as Ly-,B and H-,B do not even have a 
well-defined ha lfwidth. Lines s uch as Ly-O' a nd H -a 
have a very intense S ta rk component wh ich is not 
shifted by li nea r Stark effec t and the halfwidt hs of 
these lin es are de termi ned primar ily by the electron 
broadening of thi s uns hi fted component. In s uc h a 
case, eq (92) gives LlW> D.Wl/2 . However, t he remain­
ing Stark compone nts a re very importa nt in d e te rmin­
ing the line profi le ou tside of the relati ve ly na rrow cen­
tral co mpone nt and, fo r these shifted co mpo nents, eq 
(86) becomes more res tri ct ive th a n the condition 
D.w > !1WI /2 obta ined from eq (92). It shoul d be not ed 
that eq (86) is probabl y not very muc h more res tr icti ve 
than the cond ition !1w > !1Wl /2; for exampl e, in the 
cases where Ly-a has been stud ied experime nta ll y 
[3] , 32], eq (86) gives a ppro xim ate ly D.w > wl,/ I O and 
w/,/lO d iffers ve ry little from t:.WI /2. 

F rom the above di scuss ion we con cl ude that the 
on e-electro n theory will be vali d in th e regi on 
D.w > !1WI /2 for isol a te d lines a nd fo r ov e rl a pping lin es 
which have a la rge numbe r of S ta rk component s. 
For overl ap pin g lin es with onl y a fe w S tark com­
pone nts, the condition D.w > D.WI /"2 may no lon ge r be 
a pplicable a nd on e should con s ide r eq s (86) and (92 ) 
for each Sta rk compone nt. 

8. Comparison of the Impact and 
One-Electron Theories 

The calcula tion s in both the impact and one -electron 
theories are based on binary colli sions . The one­
electron theory treats the e lectron-atom interactions 
a s though their e ffects are a dditive and for thi s reason 
the one-elec tron theory is limite d to the line wings 
(short times of interest) whereas the impac t theory 
is not. In principle , the impac t theory (with a Lewis 
cutoff) should be valid ove r most of the line profile; 
however , in practice it is us ually necessary to expand 
the time de velopment ope rator , Vj (t) , in order to 
make prac ti cal calculation s, and it is this e xpansion 
whic h limits the impac t the ory to the cente r region of 
a line profil e . 

It was s hown that the series expans ion of Vi t) 
could not ad equately describe either the stron g col­
li sions, (V TI h) ?': 1, or the quasi·stati c inte ractions, 
(i/h)f V(t)dt = 1, which are important in the line 
wings. In our version of the one-electron theory this 
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diffic ulty is avoided through the use of an exponential 
expression for Uj(t) (previous versions of the one-

J elec tron theory have used either a completed collision 
assumption [5] or a series expansion [3] of Uj(t) 
hence they cannot be valid in the quasi-static wings)_ 
While this exponential form is not rigorously correct 
for strong collisions it does have the following useful 
properties: 

(1) It is correct for weak collisions, (Vrlh) < 1, 
? since it reproduces the series expansion for such inter­

actions. 
(2) It is correct for quasi-stati c interactions whereas 

the series expansion is not. 
(3) For strong collisions , (VTlh) 2: 1, the exponen­

ti al would give a much more reaLstic approximation 
t ". to the exact Uj (t) than the series expansion because 

the exponential retains unitarity (i .e. , no transition 
probability can exceed unity). Thus, if one c hose to 
use classical path methods for calculating Ui l) , the 
strong collision c utoff disc ussed in section 7 of I, 
would be essentially reproduced (i.e., the exponential 
would oscillate rapidly and contribute essentially 

\. nothing for strong collisions). The errors resulting 
I from this treatment of strong collisions should be 

negligible because the averaged Uj(t) for strong col­
lisions is essentially zero. 

It is interesting to note that if we use a second order 
expansion of Uj(t) in the one-electron theory, we ob­
tain the asymptotic wing expansion which is used in 
deriving the Lewis cutoff [21]. That is, the Lewis 

I cutoff, which is applied to the impact theory in an ad 
>- hoc manner , is an integral part of the one-electron 

theory. 
Since the Weisskopf frequency, ~wc, for electrons 

is generally much greater than the halfwidth, there 
should be a broad range of overlap between the re­
gions of validity O~~w<~wc and ~WJ/2<~W for the 
impact and one-electron theories. Nevertheless, in 
our derivation of the impact and one-electron theories 
we have tried to stress the formal connection between 
the two in order to provide a better understanding of 
their similarities as well as their differences. We feel 
that thi s is particularly important since it would be 
desirable to formulate a classical path theory which is 
valid in the lin e center as the impact theory is, and 

;. , which makes a smooth transition to the line wings as 
the one-electron theory does. It is hoped that the 
present approach will make it possible to remove some 
of the approximations which c urrently limit these 
classical path theories. 

'. 9. Appendix. Collision Variables 

We wish to use the natural collision coordinates in 
evaluating the integral 

FI (t) = n f dvlW(vd f dXI 

[ exp {-(i lh) f PVI(R,xI +vltl)dtl} -l ] (A.l) 

where 

For fixed values of XI and VI, we note that the head of 
the vector (XI + Vlt') traces out a straight line if t ' is 
varied from - 00 to + 00. We shall call this line L(XI, VI)' 
The integral over t ' , in eq (A. 1), will cover a segment of 
thi s line. For fixed XI and VI, we can define a vector 
po from the origin of coordinates to the closest point 
on L; this vector will be perpendicular to VI. We can 
also define a scalar to by 

(A.3) 

For a fixed VI, we see that, as XI varies over all space , 
I VI I to varies on the range (- 00, + (0) and po = I po I 
varies on the range (0, (0). We may thus change vari­
ables from XI to the cylindri cal coordinates (Po, to , a) 
where VI de fin es the polar direction and a is an angle 
which ranges from 0 to 27T. The Jacobian for this trans­
formation is such that dXI ~ I VI I podpodtoda. In these 
coordinates the potential function becomes 

VI (R, po, VI, t ' + to) = e2R 

. [po + VI (t ' + to) ] /[p~ + Vi (t ' + toF)3/2. (A.4) 

We may express dVI in spherical coordinates, v~dvo 
sin f3 df3 dy, where the angles f3 and y denote the ori­
entation of VI relative to the direction of R. Since po 
is defined to be orthogonal to VI, the integrals over the 
Euler angles a, f3, and y average over all possible 
orientations of the (po, VI) frame of reference (collision 
axes) relative to the direction of R. Equation (A.l) may 
now be written 

FI(t) = n f dO fo'" vW(vo)dvo f o"" podpo f _"""" dto 

[exp{- (ilh) t PVI(R, po, Vo, t' + to)dt'} -1], (A.5) 

where dO = si n f3 dadf3 dy. 
It is clear thin the line L represents the trajectory 

of a perturbing electron, Vo is the speed of the electron, 
po is the impact parameter, and to is some starting time 
for , the collision (or, if the t ' limits of integration are 
(- 00, + (0) in a co mpleted collision, to may be regarded 
as the time of closest approach). The orthogonal 
"collision axes" to which this collision is referenced 
are po and VI. The Euler angles 0 denote the orienta­
tion of the collision plane relative to the direction of 
R; the integral over 0 may therefore be interpreted as 
an average over all possible orientations of the electron 
trajectory. 
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