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It is shown that one of the principal submatrices of an incidence matrix without zero

rows is a permutation matrix.
whether a non-negative matrix is nilpotent.

We begin with a necessary flock of definitions.
All matrices in this paper are square matrices. The
principal submatrices of a matrix are the matrix itself
and those submatrices obtained from it by repeatedly
striking out a row and the column of the same index.
The leading principal submatrices are those obtained
by striking out exactly one row and its corresponding
column. The principal minors are the determinants
of the principal submatrices.

A zero vector is one with every element equal to 0.
A full-rowed matriz is one with no zero rows. A non-
negative matriz 18 one whose elements are all non-
negative real numbers. An incidence matriz is one
whose elements are either 0 or 1. A permutation
matriz 18 an incidence matrix with exactly one 1 in
each row and each column. If some power of a
matrix vanishes the matrix is called nilpotent. We
shall prove:

TurorEM. At least one of the principal submatrices
of a full-rowed incidence matriz is a permutation matriz,

CoroLLARY 1. If N is a non-negative matrix with
a full-rowed principal submatriz of order m, then for
some positive r<m the trace of N” is at least ", where
n 18 the least positive element of N.

CoROLLARY 2. Hach principal submatriz of a nilpo-
tent non-negative matriz is nilpotent and has both zero
rows and zero columns.

Both the theorem and its first corollary hold with
“row” replaced by “column’”. The theorem relates
to similar results on systems of distinet representa-
tives.”?

The main effect of corollary 2 is to provide a simple
algorithm for deciding whether or not a non-negative
matrix 1s nilpotent. If it has no zero rows it is not.

I The preparation of this paper was supported (in part) by the Office of Naval
Research.

2 . B. Mann and H. J. Ryser, System of distinet representatives, Am. Math.
Monthly 60, 397 (1953).
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From this an inspection method is described for determining

pplication is made to graph theory.

Otherwise the zero rows and the columns of the same
index are crossed out and the process repeated on the
smaller matrix. If none of the matrices examined in
this process are full-rowed, then all the principal
minors of the matrix are 0. The characteristic
equation is thus of the form z”=0,* and the matrix is
nilpotent. R.Marimont* first described this process
for incidence matrices.

That the principal submatrices of a nilpotent non-
negative matrix are also nilpotent is known. We
have included this statement in corollary 2 because
a new proof follows immediately from the remaining
result in this corollary.

We prove the theorem by induction. It is cer-
tainly true for a matrix of order 1.  Assume that it is
true for matrices of order n—1.

Let A= (a;;) be a full-rowed incidence matrix of
order n. If any of its leading principal submatrices
is full-rowed then we are finished because “principal
submatrix” is a hereditary property. Therefore,
we assume that each of the leading principal sub-
matrices of A has at least one zero row. We shall
prove that then A is a permutation matrix.

Let A, denote the leading principal submatrix
of A obtained by striking out the row and column of
index s. We may assume that there is an index 7,
such that

(Livj:() for .’i:],Z, . . e V\'—],-\“Fl, B (8 (2.])
Since no row of A is a zero row this implies that
(I'i‘\.,v:l- (2.2)

If another leading principal submatrix A, also
had as one of its zero rows a row corresponding to
the index i, we would have a; ;=1 with #5s. This

3 C. C. MacDuffee, The theory of matrices, p. 19 (Chelsea Pub. Co., New York,
N.Y., 1946).

4 R. Marimont, A new method of checking the consistency of precedence
matrices, J. Assoc. Computing Machinery 6, 164 (1959).



would contradict (2.1). Therefore, to each s there
corresponds a unique i, which satisfies (2.1) and
(2.2). It follows that A is a permutation matrix,
and the theorem is proved.

For any non-negative matrix N let NV denote the
incidence matrix of the same order as N, with 1 in
every position that N has a positive element and 0
in every position that N has 0. If 5 is the least
positive element in N then N—yN is a non-negative
matrix. Thus, if tr X denotes the trace of X,

tr N*>qo" tr N7

for every non-negative integer 7.

Furthermore, let N=(n;;) be of order =, let
S={12, ... n}, and let S, be any subset of S.
Let M be the principal submatrix of N with row
and column indices in S;. Then for any positive
integer » we have

Vi /
tr N'= ;(S}' Mg, Migsy =« Mg g,
o
Z'ES: Ny 1) Wiy iy + » - Mg, =hT M.
1;€S0

Now suppose M is a full-rowed principal submatrix
of N of order m. Then M is a full-rowed incidence
matrix, and so has a principal submatrix P of order
s < m which is a permutation matrix. Let r < S
be any of the cycle lengths of the permutation
corresponding to . Then

P /27 2207,
Since P is a principal submatrix of M, the incidence

matrix corresponding to M, and M is a principal
submatrix of N, we have
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tr N> tr M7 > o' tr Mr > o tr PT > oy’

with » < s < m. This proves corollary 1.

Corollary 2 follows directly from corollary 1 and
the fact that a matrix is nilpotent (if and) only if the
traces of its positive powers are all 0.

Our theorem can also be stated as a result on
directed graphs. A directed graph G is a set of
points P= {p,q, } and a subset P*={(p,p), . . .}
of the Cartesian product PX/P. The ordered pair
(p,q) may be thought of as a directed line from p,
called the starting point, to ¢

We say that G contains a simple loop if there is a
subset P’ ={p{,ps, ,pn} of P such that

P*n(P'XP")={(pnp2),P2p3), - - -
(])7,1—1’1)7,1)) (pr,lu]);}

That is to say, the points of P’ have these lines
between them, and no others.

Our theorem is equivalent to the following state-
ment: If every point of « directed graph is a starting
point then the graph contains a simple loop.

As so stated, this theorem is essentially one proved
by David Rosenblatt.?

5D. Rosenblatt, On the graphs and asymptotic forms of finite Boolean rela-
tion matrices and stochastic matrices, Naval Res. Log. Quart. 4, 151 (1957).
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