
THE COEFFICIENT OF REFLECTION OF ELECTRICAL
WAVES AT A TRANSITION POINT.

By Louis Cohen.

The subject of the propagation of electrical waves along con-

ductors is becoming of great practical importance, problems of

this nature presenting themselves in nearly all branches of elec-

trical engineering. A discussion, therefore, of any phase of the

many problems in electrical wave propagation which may arise

in practice will, I trust, be of some interest.

The discussion of the problems as they are usually treated in

text-books assumes a uniform conductor; this, however, is rarely

the case. In practice we always have to deal with a complex net-

work of conductors, and an interesting question arises as to what

happens at a transition point when an electric wave passes over

from one conductor to another of different electrical constants.

We know, of course, that the velocity of propagation depends on

the constants of the electrical circuits, and so for different circuits

the velocity will be different ; hence we may expect that, at a transi-

tion point, the wave will be partly reflected and partly transmitted.

It is not always clear, however, as to what are likely to be the

relative magnitudes of .the reflected and transmitted waves as

compared with the incoming wave.

In this brief communication I wish to develop an expression

for the ratios of the reflected and transmitted waves to the incom-

ing wave at a transition point.

Dr. O. Heaviside, who has contributed so much to our knowledge

of electricity, has also indicated briefly a method for the solution

of the problems under discussion. Heaviside makes use of the dif-

ferential operator, the theory of which he has extensively devel-

oped and which has proven to be a powerful tool for the solution

of this class of problems. In this particular problem, however, we
can obtain our result in a very simple way without the aid of the

differential operator.

549



550 Bulletin of the Bureau of Standards. [Vol. 5, No.

Let us denote by V\ the potential on a line of the incoming wave,

by V2 and V\ the reflected and transmitted waves respectively.

We assume that the potential on the line consists of a single wave,

which is not usually the case, as the potential will generally be the

resultant of the superposition of several waves, but as far as the

transition point is concerned what is true of one wave will be true

of any number of waves ; hence we may limit our discussion to the

case of a single wave.

The general expression for a single potential wave developed on

a line of uniform inductance and capacity is as follows:

F = ^g-«" cos ipt-^s)

where a is the damping factor, /3 the velocity constant, and A is

the amplitude. In this particular problem, however, we are

mainly concerned with the potentials and currents at points close

to the transition point, the amount of damping therefore in passing

from a point on one side of the transition point to a point on the

other side will be very small; hence we may neglect the damping

factor. If we denote by 13^ and /S^ the velocity constants of the

two sections of the line on the different sides of the transition point

we have the following expressions for the potentials:

V^=-A,cos (pt-fi,s)

1^2-^2 cos (pt-/3,s)

V, = A,cos (pt-,S,s)

(i)

The currents corresponding to these potentials can be derived

of course by the aid of the well-known relation:

C
dV
dt

dl
ds

hence we get.

I, = -^^A, cos {pt-M

h^^^A, cos {pt-l3,s)

1, =^/A, cos (pt-M

(2)
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At the transition point, the potential will be the sum of the

incoming and reflected waves, while the current will be represented

by the difference of two waves, since they travel in opposite

directions. Since there is no discontinuity of any sort at the

transition point we must have the following relations satisfied

:

{A^+A^ cos {pt~l3^s)=A^Qos (pt-/3,s)
|

^(A,-A,) cos (pt ~i3,s)^^,f. A, cos ipt~M ^^^

Pi P2
J

If we take the origin at the transition point, s will be zero in the

above equations, and we have by dividing the first equation by
the second.

and

A,

A,
+A,_CA
~A, CA

A
A
,+A,

I— A,
+ 1

2A, C,/3,+CA
A,-A, CA

A,-A,
2A, -

I -4, CA
2 2A, CA +CA

A,
A,

c^0,-CA
CA+CA

(4)

(5)

A .

-p is the ratio of the amplitudes of the reflected to the incoming

wave. In case of very high frequencies we may neglect the resist-

ance as compared with the reactance and the expressions for ^^ and

/S^ will be p-y/L^Ci and p^L^C^; replacing ySj and 0^ in equation

(5) by their corresponding values we get:

A, '\C,_\C,
Ar^ ^ w

Vc'^Vc!



552 Bulletin of the Bureau of Standards. {Voi.5,no.4^

The ratio of the transmitted wave to the incoming wave can

be obtained in the following way

:

We have by equation (3)

,

Replacing A^ by its value in terms of A-^ from equation (5) we get,

Therefore,

L

We see by equation (7) that if we pass from a line of low induc-

tance and high capacity into a line of high inductance and low

capacity the voltage will be increased. As an example, we may
consider the following case: Suppose we connect an underground

cable, whose constants are L= 0.4.x io~^ henry and C = o.6x lo"^

farads, with that of an overhead line whose constants are

L = 1.95X10"^ henry and C = 0.0162 x lo"^ farads, in passing

from the underground cable to the overhead line we shall have,

_3_2Vo.
95 xio^

Ao 2 V 0.0162
T-- /

= ^==1.9
/~^^-Xio^+ /-
Y 0.0162 Yo.

^x 10"
o

The potential will rise to nearly double its value.

The results as given by equations (6) and (7) are in agree-

ment with some of the results obtained by Professor Steinmetz ^ in

his discussion of the "General Equation of the Electric Circuit."

The relations between the reflected and transmitted waves to

the incoming wave as given by equations (6) and (7) are only

applicable to the case where the wave in passing the transition

point continues its travel in the form of a wave; that is, we have

^ C. P. Steinmetz: Proc. Am. Inst, of Elect. Eng., 27, p. 1190.
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distributed inductance and capacity on both sides of the transition

point. In the case, however, where at the transition point we have

a lumped inductance and capacity the conditions are different.

lyCt us denote the impedance of the apparatus at the transition

point by Z, and as before we will denote the potential of the incom-

ing wave by V^^A^ cos (pt — ^s); that of the reflected wave by
V2=A2 cos (pt — ^s). The currents corresponding to these two

waves will be

^ A, cos (pt - ^s) and ^ ^2 cos {pt - /3s)

.

Now, at the transition point, the potential is the sum of the in-

coming and reflected waves, and this must be equal to the drop

of potential at the terminal apparatus.

We have, therefore.

But the current at the transition point is the difference of the

currents of the incoming and reflected waves, since they travel in

opposite directions; hence we have,

Introducing the values of V^, V2, /i and /o, we get,

(A,+A,) cos (pt-/3s) ^^Z{A,-A,) cos {pt-/3s)

From which we obtain,

A,+A, _pCZ
A, -A, ^"y8

Proceeding in the same way as in deriving equation (5), we

obtain,

A, pCZ-P ..

A,~pCZ + fi
^^

If we denote the inductance and capacity of the terminal

apparatus by L^, Q and neglect the resistance, we haveZ ^pL^ — —--.
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Replacing also /3 by its corresponding value p^jLC, equation (8)

will become

A,

A, (9)

In the case of a free oscillation, we have p =--^y= and therefore,

The rise of potential at the terminal, or the ratio of the potential

at the transition point to that of line will be,

/L^_4LC\
\^LC C, )

A, {J^_^_LC\ IL
^'"

If the inductance of the terminal apparatus is very high, we
may write approximately equation (ii) in the following form:

A, ~L,+L

The voltage may therefore rise to nearly twice the voltage of

the line

Washington, February 27, 1909.


