
r Computational

Mathematics

Division

NISTIR 4834

Computing and Applied Mathematics Laboratory

User’s Reference Guide

for

ODRPACK Version 2.01

Software for Weighted Orthogonal

Distance Regression

Paul T. Boggs, Richard H. Byrd,

Janet E. Rogers and Robert B. Schnabel

June 1992

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Gaithersburg, MD 20899

“QC—
100

.U56

4834

1992

C.2

User’s Reference Guide for

ODRPACK Version 2.01
Software for Weighted
Orthogonai Distance
Regression

Paul T. Boggs
Richard H. Byrd
Janet E. Rogers
Robert B. Schnabel

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computing and Applied Mathematics Laboratory

Applied and Computational Mathematics Division

Gaithersburg. MD 20899

June 1992

U.S. DEPARTMENT OF COMMERCE
Baibara Hackman Franklin, Secretary

TECHNOLOGY ADMINISTRATION
Robert M. White, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

User’s Reference Guide

for

ODRPACK Version 2.01

Software for Weighted Orthogonal Distance Regression ^

Paul T. Boggs ^ Richard H. Byrd ^ Janet E. Rogers *

Robert B. Schnabel ®

^Contribution of the National Institute of Standards and Technology (formerly the National

Bureau of Standards), and not subject to copyright in the United States.

^Applied and Computational Mathematics Division, National Institute of Standards and

Technology, Gaithersburg, MD 20899

^Department of Computer Science, University of Colorado, Boulder, CO 80309 (Research

supported in part under National Science Foundation Grants DCR-8403483 and CCR-870143,

and Army Research Office Contracts DAAG 29-84-K-0 140 and DAAL 03-88-0086
)

^Applied and Computational Mathematics Division, National Institute of Standards and

Technology, Boulder, CO 80303-3328

^Department of Computer Science, University of Colorado, Boulder, CO 80309 and Applied

and Computational Mathematics Division, National Institute of Standards and Technology,

Boulder, CO 80303-3328 (Research supported in part under National Science Foundation Grants

DCR-8403483 and CCR-870143, and Army Research Office Contracts DAAG 29-84-K-0140 and

DAAL 03-88-0086
)

ii

Abstract

ODRPACK is a software package for weighted orthogonal distance regression, i.e., for

finding the parameters that minimize the sum of the squared weighted orthogonal dis-

tances from a set of observations to the curve or surface determined by the parameters.

It can also be used to solve the nonlinear ordinary least squares problem. The proce-

dure has application to curve and surface fitting, and to measurement error models in

statistics. ODRPACK can handle both explicit and implicit models, and wiU easily ac-

commodate complex and other types of multiresponse data. The algorithm implemented

is an efficient and stable trust region Levenberg-Marquaxdt procedure that exploits the

structure of the problem so that the computational cost per iteration is equal to that

for the same type of algorithm applied to the nonlinear ordinary least squares problem.

The package allows a general weighting scheme, provides for finite difference derivatives,

and contains extensive error checking and report generating facilities.

Keywords: orthogonal distance regression; measurement error models; errors in vari-

ables; nonlinear least squares.

Categories: G2E, IlBl

m

IV Abstract

Revision History

2.01 (06-19-92) ODRPACK 2.01 corrects two minor errors. The first affected the deriva-

tive checking procedure, and the second affected the values specified by

NDIGIT. The solutions found by ODRPACK 2.00 were not affected in

any way by the first of these errors, and were not seriously affected by

the second.

Version 2.01 also encorporates several other minor modifications that

further improve the code. The most significant of these modifications

changes how the scale values are used within the solution procedure.

This change should increase the robustness of the procedure for poorly

scaled problems, and will result in slightly different computed results

for all problems. Another of these changes is to the report generated by

the derivative checking procedure. This report now includes the user

supplied derivative value, as weU as the relative difference between the

user supplied value and the finite difference value it was checked against.

This should help users assess the validity of the checking procedure

results.

The “ODRPACK 2.01 User’s Reference Guide” is essentially the same

as the version 2.00 Guide (NISTIR 89-4103, Revised). The major dif-

ferences are that

• the minimum length of array WORK has been increased by (p -|- m)q

locations, and

• the sample programs and output shown in Chapter 2, and the discus-

sion of the derivative checking results in Chapter 5 have been modified

to reflect the above mentioned changes.

2.00 (03-04-92) ODRPACK 2.00 adds several new features to those available in version

1.8 and earlier versions.

• With version 2.00, ODRPACK can now easily accommodate complex

and other types of multiresponse data, i.e., data where each observe^

tion is multidimensional.

V

VI Revision History

• It can handle implicit as well as explicit models.

• The weighting scheme has been enhanced to allow for instances when
the components of a multidimensional observation are correlated.

• A fcLcility for computing central finite difference derivatives has been

added.

• The amount of work space required for the computations has been

reduced for most problems.

Because of these new features, the argument lists for the ODRPACK
2.00 user callable subroutines, including the user supplied subroutine

FCN that now comprises the functionality of subroutines FUN and JkC,

are not the same as for earlier versions. The interpretations of some

arguments have changed, and new arguments have been added. In

addition, the arguments have been reordered, with arguments having

similar purpose now grouped together. Those who have been using an

earlier release of ODRPACK should be especially careful to examine

the new calling sequences, and the definitions for subroutine arguments

FCN, JOB, WE and WD.

1.80 (12-18-90) ODRPACK 1.80, a test release with only limited distribution, differs

from prior releases in several respects.

• The number of function evaluations required to find the solution has

been reduced, and the “restart” facility has been modified to better

accommodate cases where the user supplied subroutines FUN and/or

JAC are very time consuming.

• The printed reports have been redesigned to identify parameters that

induce rank deficiency, and to include a 95% confidence interval for

the estimated parameters.

• Several enhancements have been added to the covariance matrix com-

putations, including the option of constructing the covariance matrix

without incurring any additional derivative evaluations.

• The finite difference approximation to the Jacobian matrix has been

improved.

1.71 (07-27-89) ODRPACK 1.71 corrects an error in the code that performs the compu-

tation of finite difference derivatives with respect to the errors A when

m > 2 and the default value of IFIXX is invoked. (The default value of

IFIXX is invoked when IFIXX (1,1) is set to a negative value or when

ODRPACK routines DODR or SODR are called.) This error could result

in incorrect “fixing” of the explanatory variables, which woixld affect

Revision History vii

the final solution. Such “fixing” could be detected by observing the

presence of estimated values for A that are identically zero. The error

could go undetected by the user, however, if the values of A were not

examined after the fit.

viii Revision History

Preface

ODRPACK is a portable collection of ANSI Fortran 77 subroutines for fitting a model

to data. It is designed primarily for instances when all of the variables have significant

errors (see, e.g., [Fuller, 1987] and [Boggs and Rogers, 1990]), implementing a highly ef-

ficient algorithm for solving the weighted orthogonal distance regression problem [Boggs

et ai, 1987 and 1989], i.e., for noinimizing the sum of the squares of the weighted orthog-

onal distajices between each data point and the curve described by the model equation.

It can also be used to solve the ordinary least squares problem where all of the errors

are attributed to the observations of the dependent variable.

ODRPACK is designed to handle many levels of user sophistication and problem diffi-

culty.

• It is easy to use, providing two levels of user control of the computations, ex-

tensive error handling facilities, optional printed reports, and no size restrictions

other than effective machine size.

• It can handle implicit as well as explicit models, and can accommodate com-

plex and other types of multiresponse data, i.e., data where each observation is

multidimensional.

• The necessary derivatives (Jacobian matrices) are approximated numerically if

they are not supplied by the user, and the correctness of user supplied derivatives

can be verified by the derivative checking procedure provided.

• Both weighted and unweighted analysis can be performed.

• Subsets of the unknowns can be treated as constants with their values held fixed

at their input values, allowing the user to examine the results obtained by esti-

mating subsets of the unknowns of a general model without rewriting the model

subroutine.

• The covariance matrix and the standard errors of the model parameter estimators

are optionally provided.

• The ODRPACK scaling algorithm automatically compensates for poorly scaled

problems, i.e., problems with model parameters, and/or unknown errors in the

explanatory variables that vary widely in magnitude.

IX

X Preface

• The trust region Levenberg-Marquardt algorithm implemented by ODRPACK
[Boggs et al., 1987 and 1989] has a computational effort per step that is of the

same order as that required for ordinary least squares, even though the number of

unknowns estimated in the orthogonal distance regression problem is the number

of unknown model parameters plus the number of explanatory variables, while the

number of unknowns estimated in the ordinary least squares problem is simply

the number of unknown model parameters.

• The code is portable and is easily used with other Fortran subroutine libraries.

Computer facilities for the ODRPACK project have been provided by the National In-

stitute of Standards and Technology (NIST), Applied and Computational Mathematics

Division, and we gratefully acknowledge their support. Machine dependent constants

are supplied using subroutines based on the Bell Laboratories “Framework for a Portable

Library” [Fox et a/., 1978a]. We have also used subroutines from LINPACK [Dongarra

et ai, 1979], and from the “Basic Linear Algebra Subprograms for Fortran Usage”

[Lawson et ai, 1979]. The code that computes the t-values used in constructing the

confidence intervals is from DATAPAC [Filliben, 1977], and the code that checks user

supplied derivatives was adapted from STARPAC [Donaldson and Tryon, 1986] using

algorithms described in [Schnabel, 1982].

We appreciate the comments and suggestions we have received regarding earlier versions

of ODRPACK and its documentation. In particiilar, many of the improvements in ver-

sion 2.01 are the result of the authors’ collaboration with Paul D. Domich, NIST Applied

and Computational Mathematics Division, and with David A. Vorp, University of Pitts-

burgh Department of Surgery. We wish to especially thank Paul D. Domich for many
productive discussions. While it is not possible to list everyone else who has contributed

to ODRPACK, we would like to thank Vincent D. Arp (formerly of the NIST Chemical

Engineering Science Division), Hariharan K. Iyer (Colorado State University), Susan-

nah B. Schiller (NIST Statistical Engineering Division), Bernard Thiesse (Ecole Na-

tionale Superieure d’Electrtechnique, d’Electronique d’Informatique et d’Hydraulique,

Toulouse, France), and Eric J. Vanzura (NIST Electromagnetic Fields Division), for

providing us with data sets that were invaluable in testing the new release.

Paul T. Boggs

Richard H. Byrd

Janet E. Rogers

Robert B. Schnabel

June 1992

Contents

Abstract iii

Revision History v

Preface ix

1 Getting Started 1

l.A Notation and Problem Definition 2

l.A.i Explicit Orthogonal Distance Regression 4

l.A.ii Implicit Orthogonal Distance Regression 5

l.A.iii Orthogonal Distance Regression for Multidimensional Data ... 5

l.B Algorithm 8

l.C Specifying the Task 8

l.D ODRPACK Generated Results 9

l.D.i Error Reports 10

l.D.ii Computation Reports 10

l.D.ii.a Initial Reports 11

l.D.ii.b Iteration Reports 12

l.D.ii.c Final Reports 12

l.E Starting Values 13

l.F Weights 14

1.

G Default Values and Structured Arguments 15

l.G.i Default Values 15

1.

G.ii Structured Arguments 16

2 Using ODRPACK 17

2.

A Subroutine Declaration and Call Statements 17

2.B Subroutine Argument Descriptions 22

2.

Bi Synopsis 22

2.B.ii ODRPACK Subroutine Argument Definitions 23

2.C Examples 39

2.C.i Example Problem for an Explicit Model 39

XI

XU Contents

2.C.i.a User Supplied Code 40

2.C.i.b User Supplied Data (file datal) 45

2.C.i.c Report Generated by ODRPACK (file reportl) 46

2.C.ii Example Problem for an Implicit Model 49

2.C.ii.a User Supplied Code 49

2.C.ii.b User Supplied Data (file data2) 53

2.C.ii.c Report Generated by ODRPACK (file report2) 54

2.C.iii Example Problem for an Explicit Model with Multiresponse Data 56

2.C.iii.a User Supplied Code 57

2.C.iii.b User Supplied Data (file data3) 63

2.C.iii.c Report Generated by ODRPACK (file reports) 64

3 When the Model Is Very Time Consuming 67

4 Computational Details 71

4.A Computing the Jacobian Matrices 71

4.A.i “Hand Coded” Derivatives 71

4.A.ii Automatic Differentiation 72

4.A.iii Finite Difference Derivatives 73

4.A.iii.a Forward Finite Difference Derivatives 73

4.A.iii.b Central Finite Difference Derivatives 74

4.B Covariance Matrix 74

4.C Condition Number 77

4.

D Scaling Algorithms 78

4.D.i Scaling /5 80

4.D.ii Scaling A 81

5 Work Vectors 83

5.

A Extracting Information from Vector WORK 83

5.B Extracting Information from Vector IWORK 91

Bibliography 97

1. Getting Started

ODRPACK is a portable collection of ANSI Fortran 77 subroutines for fitting a model

to data. It is designed primarily for instances when all of the variables have significant

errors (see, e.g., [Fuller, 1987] and [Boggs and Rogers, 1990]), implementing a highly ef-

ficient algorithm for solving the weighted orthogonal distance regression problem [Boggs

et al.f 1987 and 1989]. It can also be used to solve the ordinary least squares problem,

however, where all of the errors are attributed to the observations of only one of the

variables.

We suggest that first time users of ODRPACK begin by at least skimming this chapter,

and then proceed to the sample programs given in §2.C, modifying them as necessary

to solve their particular problem. The sample programs are distributed in machine

readable form with the ODRPACK release, and thus should be available for use as

templates without requiring that the user enter the code. The subroutine arguments

used in these examples are defined in detail in §2.B.ii.

Chapter 1 presents information that is especially important to first time users of ODR-
PACK. Users are directed to §1.A for a brief description of the orthogonal distance

regression problem. This section introduces notation and provides background material

for understanding the remainder of the documentation. The algorithm itself is described

briefly in §1.B, and in greater detail in [Boggs et ai, 1987 and 1989]. Options avail-

able for specifying the problem are briefly discussed in §1.C, and ODRPACK’s report

generation facility is discussed in §1.D. The need for good starting values for the un-

known parameters of the model is explained in §1.E, and the use of weights in §1.F.

Finally, §1.G describes two features of ODRPACK that simplify the user interface with

the package.

Chapter 2 describes the use of ODRPACK in detail. Most experienced users of ODR-
PACK will only need the information in this chapter. The declaration and call state-

ments for each user callable ODRPACK subroutine are given in §2.A, the subroutine

cirguments are defined in §2.B, and sample programs are shown in §2.C.

The last three chapters provide auxiliary information. Chapter 3 is generally only needed

by users with very time consuming functions; it explains how ODRPACK’s features can

be exploited in order to minimize cost, and to reduce the possibility of losing results

1

2 Getting Started

because limits imposed by their computer system were reached. Chapter 4 describes

the details of certain ODRPACK computations, and Chapter 5 describes how the user

can extract computed results from the work vectors.

l.A. Notation and Problem Definition

The method of least squares is often used to find the parameters G 3?** of a mathe-

matical model that defines a relationship between variables that are subject to errors.

When errors occur in more them one of the variables, then the relationship between

the variables is frequently referred to as a measurement error model or an errors in

variables problem. The computational problem associated with finding the maximum
likelihood estimators of the parameters of such models is known as orthogonal distance

regression. These models are discussed in [Fuller, 1987], and [Seber and Wild, 1989].

The orthogonal distance regression procedure implemented in ODRPACK is reviewed

in [Boggs and Rogers, 1990]. That publication also summarizes the results of several

simulation studies that compare orthogonal distcmce regression results to those obtained

using ordinary least squares, where the errors are assumed to occur in only one of the

variables. (See also [Boggs et al, 1988].)

The model / that defines the relationship between the variables can be either linear or

nonlinear in its parameters p. Sometimes one of the observed variables is distinguished

as being a response that is dependent upon the remaining variables, which are commonly
called the explanatory, regressor ot independent variables. In these cases, the explana-

tory variables are often used to predict the behavior of the response variable. In other

cases, however, there is no such distinction among the variables.

We say that there is an explicit relationship / between the variables {x,y) if

y«/(z;y9), (1.1)

where y denotes the response variable, x denotes the explanatory variables, and y is

assumed to be only approximately equal to f{x\P) because of the measurement errors

in y and possibly x. When both x and y are observed with error, then the parameters

P can be found by orthogonal distance regression. If only y is subject to measurement

error, and x is observed without error, then the parameters of such an explicit model

can be obtained using ordinary least squares procedures.

Example: The model shown in §2.C.i,

Vi « fi{xi\P) = /5i + /32[e^3*‘ - 1]^

for i = l,...,n, which is example 3.2.2 on pages 230-238 of [Fuller, 1987], is

an explicit orthogonal distance regression model. In this case, x is the percent

Getting Started 3

saturation of nitrogen gas in a brine solution forced into the pores of sandstone,

and y is the observed compressional wave velocity of ultrasonic signals propagated

through the sandstone. Here, as in most explicit models, the explanatory variable

X is used primarily to predict the behavior of the response variable y.

If the relationship between the variables is expressed implicitly, then

/(x;/3) w 0 ,

where here we denote all of the variables by x. Although one of these variables may
still be dependent on the others, when the model is implicit we do not assume that such

a dependent variable can be expressed as an explicit function of the other explanatory

variables as in (1.1). Thus, in the implicit case the distinction between response and

regressor variables is unnecessary. When the relationship is implicit, then the parameters

ft cannot be estimated by most ordinary leeist squares procedures, but can be estimated

by orthogonal distance regression procedures such as ODRPACK.
Example: One of the simplist examples of an implicit model is that of fitting

a circle or ellipse in a plane, as is done in example 3.2.4 on page 244 of [Fuller,

1987]. In this example, shown in §2.C.ii, the data are observations digitized from

the x-ray image of a hip prosthesis, where the variables x j = (vj, hi), i = 1, . .
. ,
n,

are the vertical and horizontal distances from the origin, respectively, and the

implicit model is that of the ellipse

fi{xi]/3) = Psivi - + 2p4{vi - Pi){hi - P2) + - Pi)^ w 0

for i = 1, . .
.
,n.

Finally, sometimes the observations are multiresponse and thus must satisfy more

than one relationship /. This most commonly arises when the observations are complex

variables, although it can occur in other Ceises as well.

Example: The problem shown in §2.C.iii is an example of multiresponse data

that originates because the underlying data are complex. The problem is de-

scribed in Chapter 4, and on pages 280-281, of [Bates and Watts, 1988]. In this

case, the response variable is the pair of values representing the real and imag-

inary parts of complex-valued impedance measurements, Zi, i = l,...,n, of a

polymer, and the explanatory variable, x*, i = 1, . .
.
,n, is the (real-valued) fre-

quency. The function is explicit, representing the dielectric constant by a general

model proposed in [Havriliak and Negami, 1967],

Pi - P2

(1 +
2i ~ +

4 (Jetting Started

for i = where j = v^— 1. For ODRPACK, this must be encoded as

a two-term multiresponse problem with yi € 3?^ representing the pair of values

The explicit, implicit and multiresponse problem types are described in greater detail

in the following sections. They are each easily solved using ODRPACK. The solution

procedures required for single and multiresponse data are essentially the same, although,

as noted below, ODRPACK does need to know that the data cire multiresponse rather

than single response in order to find the correct solution. The solution procedures

required for explicit and implicit functions, however, are different, with the implicit

relationships generally costing more to solve. (See §1.B.) Thus, it is important that

users be aware of the differences between explicit and implicit models, and between

single and multiresponse data, and invoke ODRPACK appropriately for their particular

model and data type.

l.A.i. Explicit Orthogonal Distance Regression

We define the explicit orthogonal distance regression problem as follows. Let (x^, y^), i =
1, . .

. ,
n, be an observed set of data, where, for simplicity, we assume that x j G 3?^ and

yi G 31?^. (For a discussion of the orthogonal distance regression problem for higher

dimensional data, see §l.A.iii.) Suppose that the values of yi are a possibly nonlinear

function of Xi and a set of unknown parameters /3 G 3fJ^, but that both the Xi and the y,

contain actual but unknown errors 6* G 3?^ and c* G 3?^, respectively, where here, and

in the remainder of this document, we use a superscript to denote such actual but

unknown quantities. Then the observed value of yi satisfies

yi = ^i\P*)- ^i i = l,...,n,

for some actual but again unknown value /?*.

The explicit orthogonal distance regression problem is to approximate (5* hy finding the

P for which the sum of the squares of the n orthogonal distances from the curve /(x; /3)

to the n data points is minimized. This is accomplished by the minimization problem

+ (1 .2
)

subject to the constraints

2/i = /i(®* + - Ci i = l,...,n. (1.3)

Since the constraints (1.3) are linear in e^, we can eliminate them and thus the €i from

Getting Started 5

(1.2), thereby obtaining

p,6 V

We then generalize (1.4) to the weighted orthogonal distance regression (ODR) problem

n

min - yi\^ + (1-5)

t=l

by introducing the weights G 3?^ and G 3?^, t = 1, . .
.
,n, which are sets of non-

negative numbers. The weights and can thus be used to compensate for instances

when the yi and Xi have unequal precision, or when there are observations that should

be eliminated from the analysis. (See §1.F.)

l.A.ii. Implicit Orthogonal Distance Regression

The univariate implicit orthogonal distance regression problem arises from the assump-

tion that there is no distinguished variable y and thus that the data must satisfy

fi{xi + 6*]P*) = Q t=l,...,n.

For G 3?^
,
this yields the minimization problem

n

i=l

(
1 .6)

subject to fi{xi -f)9) = 0 i = 1, . .
. ,
n,

where ws^ G ,
i = 1, . .

. ,
n, again denotes a set of positive numbers used for weighting.

(See §1.F.) The constraints in (1.6) are not assumed to be linear in 6i, and therefore

Ccinnot be eliminated to create an unconstrained problem as was done above to specify

the explicit problem (1.4). The implicit orthogonal distance regression problem must

therefore be solved differently than the explicit problem. (See §1.B.)

l.A.iii. Orthogonal Distance Regression for Multidimensional Data

For simplicity, the preceding two sections developed the explicit and implicit orthogo-

nal distance regression problem for univariate data, i.e., for i» G 3f?^ and yi G with

6 Getting Started

fi : ^ 3fJ'. In this section, we generalize these problems to allow for multivari-

ate explanatory data x, G J?"*, m > 1, and multiresponse dependent variables yi G 5?^,

q > 1, which are modeled by fi :
— 5^. For such higher dimensional data, the

errors G 3?^ associated with x*, and the errors c* G 3?^ associated with yi, can be

weighted by wsi € and G 31?^^^^, i = 1, , ..,n, respectively, where the ty^^must

be positive definite matrices and the We^-must be positive semidefinite matrices.^

For the explicit problem, we assume that the q responses of the observed values of yi

satisfies

yi = fiixi + 6l;/3*)- t=l,...,n,

for some actual, but unknown value /3*. Thus, if we let X G 3?”’^*" and Y G denote

the arrays with tth row Xj and yi, respectively, and A G and E G 3?”^® denote

the arrays with ith row Si and €i, respectively, we cLre then assuming that the observed

values X and Y satisfy

X = X*-A*
Y = Y*-E*,

and that the estimated values, which we denote by a “hat,” will satisfy

X = Z + A
Y = Y+E.

Generalizing the problem presented in §l.A.i, the explicit multiresponse orthogonal dis-

tance regression problem for multivariate explanatory data is defined as

.—1

subject to

Yii = fiiixi + 6i-,P)-Eii
'

Yi2 = fi2{Xi + bi\fi) — Ei2
i= 1, •)

n
,

Yiq — fiq{xi + bi] 0) — Eiq

(1.7)

where subscript il denotes the (t, /)th element of the corresponding array, e.g., Yu denotes

the lib. response of the tth observation, and /ti(x,- -|- 6i;P) denotes the model for the /th

^The matrix A is positive definite]£ nud only ii = A, and a^Aa > 0 for all nonzero vectors a. It is

positive semidefinite if and only if A’’^ = A, and a^Aa > 0 for all vectors a. When A is positive definite

or positive semidefinite, then there is an upper triangular matrix U such that A = if^U. ODRPACK
checks for positive (semi)definiteness by attempting to £3rm V.

Getting Started 7

response of observation t. Because the constraints in (1.7) are linear in E,

equivalent to the problem

n

minE ([/i(®i + - yiV'^lMxi + Si;P) - Vi] + SJwsiSi) imnS{/3,6)
,

p,6

this is

(1 .8)

where we define the weighted sum of squares S{P,6) by

S{P,6) = S.{P,6) + S6iP,S)

with

S^{P, ^) = ([/»(xi + Si; P) - yiVweilfiixi + Si; P) - yi])

*=i

and

»=1

The implicit multiresponse orthogonal distance regression problem for multivariate ex-

planatory data is

= rmnSsiPJ)
p ,6 . P ,0

fii{xi + Si;P) = 0]

fi2ixi + Si;P) = 0 I

subject to
,

>

fiqixi-\-Si;P) = 0 J

As was the case in §l.A.ii, the constraints in (1.9) are not assumed to be linear in Si,

and therefore cannot be eliminated to create an unconstrained problem as was done

above to specify the explicit problem (1.8). The implicit orthogonal distance regression

problem must therefore be solved differently than the explicit problem. (See §1.B.)

Note that when g > 1, the responses of a multiresponse orthogonal distance regression

problem cannot simply be treated as q separate observations as can be done for ordinary

least squares when the q responses are uncorrelated. This is because ODRPACK would

then treat the variables associated with these q observations as unrelated, and thus not

constrain the errors Si in i* to be the same for each of the q occurrences of the tth

observation. The user must therefore indicate to ODRPACK when the observations

are multiresponse, so that ODRPACK can make the appropriate adjustments to the

estimation procedure. (See §2.B.ii, subroutine argument NQ.)

8 Getting Started

l.B. Algorithm

The algorithm implemented in ODRPACK is described in [Boggs et al., 1987 and

1989]. Briefly, the solution is found iteratively using a trust region Levenberg-Marquardt

method, with scaling used to accommodate problems in which estimated values have

widely varying magnitudes. The Jacobian matrices, i.e., the matrices of first partial

derivatives of fui^i + » = l,...,n, and I — l,...,q, with respect to each com-

ponent of P and A, are computed at every iteration either by finite differences or by a

user supplied subroutine, as specified by subroutine argument JOB (see §2.B.ii, and also

§4.A). The iterations are stopped when any one of three stopping criteria are met. Two
of these indicate the iterations have converged to a solution. These are sum of squares

convergence^ which indicates that the change in the weighted sum of the squared ob-

servation errors is sufficiently small, and parameter convergence, which indicates the

change in the estimated values of P and A is sufficiently small. The third stopping

criterion is a limit on the number of iterations.

ODRPACK finds the solution of an implicit orthogonal distance regression problem

using the classic quadratic penalty function method. The penalty function is

= + + + .
(i.io)

1=1

with penalty term

i=\

and penalty parameter rk- A sequence of unconstrained minimization problems

imnP{P,6\rk)
p,6

is then solved for a sequence of values of the penalty parameter r* tending to oo.

These problems are equivalent to an explicit orthogonal distance regression problem

with £{ = fi{xi -1- 6i]P) . As r*. —» 00
,

—» 0, t = 1,. ..,n, and the solution to (1.10)

will approach that of the implicit problem defined by (1.9). See, e.g., [Gill et al., 1981]

for further discussion of penalty function methods.

l.C. Specifying the Task

The user has the option of specifying several different aspects of the problem:

1. whether the fit is to be by explicit or implicit orthogonal distance regression, or

by ordinary least squares (see §1.A);

Getting Started 9

2. whether the necessary Jacobian matrices should be approximated by ODRPACK
using forward or central finite differences, or whether the user has supplied the

code to compute them, and, if such code has been provided by the user, whether

it should be checked (see §4.A);

3. whether the covariance matrix Vp and standard deviations should be com-

puted for the estimators of and whether the Jacobian matrices should be

recalculated at the solution for this computation (see §4.B);

4. whether the errors A have been initialized by the user (see §1.E, and §2,B.ii,

subroutine arguments JOB and WORK);

5. whether the fit is a “restart,” i.e., whether the fit will use information preserved

in the vectors BETA, WORK and IWORK to continue from a previously found point

(see Chapter 3);

6. whether the data are multiresponse or not;

7. whether subsets of the unknowns 0 and A should be treated as constants with

their values held “fixed,” allowing the user to examine the results obtained by

estimating subsets of the parameters of a general model without rewriting the

model subroutine, and allowing the user to specify that some components of X
are to be treated as if they are known exactly;

8. whether weighted or unweighted analysis should be performed (see §1.F); and

9. whether the unknowns 0 and A should be scaled to compensate for cases where

their values vary widely in magnitude (see §4.D).

The first 5 of these options are specified by ODRPACK subroutine argument JOB; mul-

tiresponse data are indicated by subroutine argument NQ; parameter “fixing” is specified

by subroutine arguments IFIXB and IFIXX; weighting is controlled by arguments WE and

WD; and scaling is controlled by arguments SCLB and SOLD. A detailed discussion of each

of these subroutine arguments can be found in §2.B.ii.

l.D. ODRPACK Generated Results

Results generated by ODRPACK are returned to the user in four ways:

• the estimated parameter values 0 are returned in subroutine argument BETA;

• the stopping condition is returned in subroutine argument INFO;

• the computed results available at the time the job stopped are returned in the

vectors specified by subroutine arguments WORK and IWORK; and

• selected results are summarized in automatically generated reports.

10 Getting Started

Arguments BETA, INFO, WORK and IWORK are discussed in detail in §2.B.ii. The remainder

of this section describes ODRPACK’s automatically generated reports.

ODRPACK can generate two different types of reports. The first is an error report, and

the second is a computation report. These are written to the logical units specified by

subroutine arguments LUNERR and LUNRPT, respectively. The user can associate these

units with a file using a Fortran OPEN statement. If the user sets one or the other of

these units to a negative value, then the corresponding report will be generated on unit

6. On most systems, unit 6 is “standard output,” which for an “interactive” run will

be the screen. If the user sets one or the other of these units to 0, then generation of

the corresponding report is suppressed.

ODRPACK’s computation reports (see §l.D.ii below) can, at the user’s option, be writ-

ten simiiltaneously to both the file associated with the unit specified by LUNRPT and to

unit 6 (assuming LUNRPT does not specify unit 6). This option, invoked by ODRPACK
subroutine argument IPRINT, enables the user to monitor ODRPACK’s progress inter-

actively while still preserving the results in a file for future reference. The option is

especially useful when the user’s model is time consuming and the user is interactively

experimenting with starting values and other ODRPACK options: results printed to

the screen can be used to terminate ineffective or incorrect runs, while results stored on

the logical unit specified by LUNRPT can be used to preserve the successful experiments.

l.D.i. Error Reports

Error reports identify incorrect user supplied information passed to ODRPACK that

prevents the computations from beginning. For example, an error report will be gen-

erated if the user specifies the number of observations to be an obviously meaningless

number, such as a negative value. Error reports are self explanatory, and are not dis-

cussed further here. The information written in the error reports is also encoded and

returned to the user in subroutine argument INFO. (See §2.B.ii.)

l.D.ii. Computation Reports

Computation reports are divided into three sections:

a. the initial report,

b. the iteration report, and

c. the final report.

Each of these can be either “short” or “long”

.

Getting Started 11

l.D.ii.a. Initial Reports

ODRPACK’s initial report identifies the output for future reference, and provides infor-

mation that should enable the user to verify that the problem was specified correctly.

The short initial report is shown in §2.Ci.c. It includes

• the values n, m, p and g, the number n of observations with nonzero weights,

and the number p of pcirameters ft actually being estimated;

• the values specified by ODRPACK subroutine arguments JOB, NDIGIT, TAUFAC,

SSTOL, PARTOL, and MAXIT, that indicate, respectively, the requested task, the

number of “good” digits in the user’s function results, the stopping criteria for

testing for sum of squares convergence, the stopping criteria for testing for pa-

rameter convergence, and the maximum number of iterations permitted; and

• the weighted sum of the squared errors 5(/5,^), Ss{P,S) and Se{0,S), evaluated

at the initial values of P and A.

The long initial report, shown in §2.C.ii.c and §2.C.iii.c, includes all the information in

the short initial report and, in addition, includes a brief summary of the information

specified for the function parameters P, and also information about the user supplied

values for the X and Y data. This information includes

• the starting parameter values Pk,k = 1, . .
. ,p, whether or not each parameter is

to be treated as “fixed”, what “scale” value will be used, and, when the deriva-

tives are constructed using finite differences the step size used in that calculation,

or when the user supplied derivatives were checked what derivatives were identi-

fied as questionable;

• the value of the first and last observation of each column of the explanatory

variable X, and when the solution is found by orthogonal distance regression,

o the starting errors A for each of these observations,

o whether or not these values will be held fixed at their input values,

o the scale values,

o the diagonal elements of the weights wsi associated with eaoh of these obser-

vations, and

o when the derivatives are constructed using finite differences the step size used

in that calculation, or when the user supplied derivatives were checked what

derivatives were identified as questionable;

• the value of the first and last observation of the response variable Y, and the

value of the corresponding diagonal entries of the error weights We^.

12 Getting Started

l.D.ii.b. Iteration Reports

The ODRPACK iteration reports enable the user to monitor the progress of the fitting

procedure, where the user controls at which iterations these reports will be generated.

ODRPACK iteration reports are of the greatest use in cases when ODRPACK fails to

find a satisfactory solution. In cases when ODRPACK does reach a satisfactory solution,

the final report discussed below summarizes the most useful information.

The short iteration report, shown in §2.C.i.c, is a one line summary of the results,

listing

• the iteration number;

• the cumulative number of function evaluations made by the end of the listed

iteration;

• the weighted sum of the squared observation errors S{fi,6) at the current point;

• the actual relative reduction in S{fi,6) at the most recently tried step (used to

check for sum of squares convergence);

• the predicted relative reduction in S{P,6) at the most recently tried step (used

to check for sum of squares convergence);

• the ratio of the trust region radius to the scaled norm of (3 and A, which is an

upper bound on the relative change in the estimated values possible at the next

step (used to check for parameter convergence); and

• whether the step was a Gauss-Newton step.

The long iteration summary lists all of the information found in the short iteration

summary and, in addition, includes

• the values of at the end of the current iteration. (At the last iteration, the values

listed will be those that produced the actual and predicted relative reductions

shown only if the most recently tried step did in fact make the fit better. K not,

then the values of listed are those that produced the best fit.)

The long iteration report requires 125 columns, and uses [p/3] lines per iteration.

l.D.ii.c. Final Reports

The final report provides information that allows the user to assess the quality of the

solution found by ODRPACK.

The short final report, shown in §2.C.ii.c and §2.C.iii.c, includes

• the reason the computations stopped;

• the number of iterations;

Getting Started 13

• the number of function evaluations and, if the Jacobian was supplied by the user,

the number of Jacobian evaluations;

• the rank deficiency of the model at the time the computations stopped;

• the inverse of the condition number of the problem at the time the computations

stopped (see §4.C);

• the weighted sum of the squared errors, S{0,6)y Ss{Py6) and Se{P,6), evaluated

at the final values P and A, and if the covariance matrix was computed, the

estimated residual variance of the fit and its associated degrees of freedom; and

• the final values /3, whether each value was “fixed” using subroutine argument

IFIXB or “dropped” by ODRPACK because it induced rank deficiency, and, if the

covariance matrix Vp and standard deviations were computed, the standard

errors and 95% confidence intervals for the estimators of p. (See §4.B).

The long final report is shown in §2.C.i.c. It includes the same information as the short

final report, and, in addition, provides the values for all Eii,i = 1, . .
.

, n, I = 1, . .
. , q,

and Aij,i= 1, . .
.
,n, j = 1, . .

.
,m.

l.E. Starting Values

The user must supply starting values for the unknowns being estimated, i.e., for P and

A. Users familiar with the nonlinear ordinary least squares problem are generally aware

of the importance of obtaining good starting values for p. It is equally important here.

Good initial approximations can significantly decreaise the number of iterations required

to find a solution; a poor initial approximation may even prevent a solution from being

found. Reasonable initial approximations are often available from previous analysis or

experiments. When good starting values cire not readily available, the user may have

to do some preliminary analysis to obtain them. (See, e.g., [Bates and Watts, 1988], or

[Himmelblau, 1970].)

Users who do not provide scale information are strongly encouraged not to use zero as

an initial approximation for any of the parameters P since a zero value can result in

incorrect scaling. (See §4.D). Setting the initial approximation to the largest magnitude

that, for the user’s problem, is effectively zero, rather than to zero, will help to eliminate

scaling problems and possibly produce faster convergence. For example, if Pi represents

change in a cost measured in millions of dollars, then the value 10 might be considered

“effectively zero” and an initial value of P^ = 10 is preferable to P^ = 0.

When using orthogonal distance regression it is also important to have good starting

values for the estimated errors A. The ODRPACK default is to initialize A to zero,

which is the most obvious initial value. (Note that zero starting vadues for A do not

14 Getting Started

cause scaling problems similar to those discussed above for 0.) Initializing A to zero,

however, is equivalent to initially assigning all of the errors to the dependent variable

as is done for ordinary least squares. While this is quite adequate in many cases, in

others it is not. A plot of the observed data and of the curve described by the model

function for the initial parameters may indicate whether or not zero starting values for

A are reasonable and may make it possible to visually determine better starting values

for some of the A,j. For example, if such a plot shows that the vertical distance from a

data point (zj, y*) to the curve is far larger than the orthogonal distance, then 8i should

probably not be initialized to zero for that point. This may occur near an asymptote or

near a local minimum or maximum. In such cases, it is often appropriate to initialize

6i to the horizontal distance from the data point to the curve. (See §2.B.ii, subroutine

arguments JOB and WORK.)

l.F. Weights

Weights can be used to eliminate observations from the analysis, to compensate for

unequal variances or correlations in the variables y and x, or simply to modify the effect

of the various errors e and 8 on the fit.

The weights 6 associated with €i, i = 1,. ..,n, must be positive semidefinite

matrices, and the weights wsi G associated with 8i, i= 1, . .
.
,n, must be positive

definite matrices.^ If is diagonal, then the errors in the q responses of yi are treated

as uncorrelated. Similaxly, if ws^ is diagonal, then the errors in the m elements of Xi are

treated as uncorrelated. When the weights are not diagonal matrices, then the errors

within an observation are treated as correlated. In all CcLses, however, the errors between

observations are treated as uncorrelated.

Observations can be eliminated from the analysis by setting the appropriate weight

values w^io zero. This will produce the same results as an analysis with the zero-

weighted values removed from the data prior to calling ODRPACK. Zero weights can

be used to allow for cases of multiresponse data where the number of responses is not

constant for all observations. They also allow for easy examination of the effect of

outliers and influential data points.

Outliers can often be identified by large values of c and/or 8. Careful checking of the data

often leads to confirmation that the data are in error, and sometimes to a correction.

When a cause for suspicious data cannot be found, it may be advisable to compare the

analysis with and without the questionable data. Caution is in order if the estimates or

conclusions are highly sensitive to a small amount of suspicious data. Data that have

a very high influence on a fitted curve may not result in large errors, however, even if

^See footnote 1 on page 6.

Getting Started 15

they are in error. In fact, extremely influential observations may force the fitted curve

to be very close, leading to very small residuals. It is therefore desirable to identify

influential observations and to compare the results obtained with and without these

points. Several methods for detecting influential observations for ordinary least squares

are discussed in [Belsley et ai, 1980], [Bement and Williams, 1969], [Cook, 1977], and

[Hoaglin and Welsch, 1978].

Using weights to compensate for unequal error variances is not as straightforward as

using zero weights to eliminate observations from the analysis. When the errors e *, i =

1, . .
. ,
n, and tf,-, i= 1, . .

. ,
n, have covariances cr^. € and a], G. respectively,

that are known, then the weights can be set using

vki = cia-^ and tqj. =
,

i = l,...,n, where Ci and C2 are constants selected so that the magnitudes of the

weighted errors and SJvJSiSi will be approximately the same.

In practice, weights are often derived from theory or obtained from the data being fit.

Users must be aware that incorrectly specified weights can adversely affect the results.

(See, e.g., [Boggs and Rogers, 1990a].) Thus, when the need for weights is suspected

and the error covariances are not known, it is extremely important to analyze how
the weights are affecting the computed results. See [Fuller, 1987] for a more complete

discussion of weights and their implications for the estimation of the parameters of

measurement error models, and also [Bates and Watts, 1988] for a procedure that can

be used to estimate the covciriance matrix in the case of multiresponse nonlinear

ordinary least squares.

l.G. Default Values and Structured Arguments

ODRPACK uses default values and structured arguments to simplify the user interface.

The availability of default values in ODRPACK means that the user does not have to

be concerned with determining values for many of the ODRPACK arguments unless

the problem being solved requires the use of nondefault values. Structured arguments,

described below, can reduce the cimount of storage space required for some arguments,

and the work required by the user to initialize those arguments.

l.G.i. Default Values

Default values have been specified for ODRPACK subroutine arguments wherever rea-

sonable. These default values are invoked when the user sets the corresponding argu-

ment to any negative value. Arrays with default values are invoked by setting the first

16 Getting Started

element of the array to a negative value, in which case only the first value of the array

will ever be used. This allows a scalar to be used to invoke the default values of arrays,

thus saving space and eliminating the need to declare such arrays.

Users are encouraged to invoke the default values of arguments wherever possible. These

values have been found to be reasonable for a wide class of problems. Fine tuning these

arguments can then be done later if necessary.

l.G.ii. Structured Arguments

Certain ODRPACK arguments specify attributes of the individual components of X,
A, and Y. These attribute arrays are frequently either constant for all components or

are constant within each column and vary only between the columns. The structured

argument facility allows a scalar to specify an attribute of an entire column or of the

whole array.

For example, ODRPACK argument WD specifies the attribute array of weights

W/c^ G whose ith component specifies the elements of iqjj, i = 1, ...,n (cf.

(1.8) ajid (1.9)). Suppose X contains temperature measurements, where each row indi-

cates a different hour at which the readings were taken, and each column a different day.

Then the user might want to weight each component of A equally, and thus would

be constant throughout. If one column ofX contained hourly temperature readings and

the other hourly humidity readings, however, then the user would probably not want to

weight the errors in the temperature measurements the Scime as those in the humidity

measurements, but might want to specify the same weight for each observation. In

this case, the components of would be constant for each row t, i = l,...,n. Of

course, in other cases, the user might want to weight each component of A differently,

and thus each component of would be different.

ODRPACK structured arguments exploit this structure. If each of the elements of an

attribute array is the same, then a scalar can be used to specify all elements of the array.

If the values of such an array only vary between the columns, then each column of the

array can be specified by a single value using a row vector. Thus, it is only necessary

for the user to supply all elements of an attribute array when the elements of one or

more of the columns must be individually specified. The use of structured arguments

in described in detail in §2.B.ii. (See, e.g., subroutine argument WD.)

2. Using ODRPACK

2.A. Subroutine Declaration and Call Statements

The declaration and call statements for ODRPACK ’s user callable routines are given

below. DODR and DODRC invoke the double precision version of the code and SODR and

SODRC invoke the single precision version. DODR and SODR preset many arguments to

their default values and therefore have shorter call statements than DODRC and SODRC.

In contrast, DODRC and SODRC have expanded call statements that give the user greater

control in solving the orthogonal distance regression problem.

The information in this section, §2.A, is provided primarily for reference. Users are

directed to §2.B for definitions of the subroutine arguments, and to §2.C for sample

programs. The examples, which use Fortran PARAMETER statements to dimension ODR-
PACK arrays, provide a recommended format for creating an ODRPACK driver that

will allow future changes to be made easily.

Note that although ODRPACK is distributed in both single precision and double pre-

cision versions, both versions may not be available to all users. In addition, even when

both versions are available, the single precision version may not be appropriate to use.

This is because ODRPACK is sensitive to the machine’s precision, and requires approx-

imately 14 decimal places. Somewhat fewer places should still work, but six or seven

decimal places are definitely too few for general use, since only the simplest problems

could be solved correctly at such reduced precisions. When both versions are available,

the user must choose which version of ODRPACK to use based upon which version sup-

plies adequate precision on the target machine. To our knowledge, at present only Cray

and CDC machines offer sufficient precision to permit general use of the single precision

version of ODRPACK. For other machines, we recommend the double precision version.

If both versions of ODRPACK have sufficient precision on the user’s machine, then

either may be used. When both the single and double precision versions are available,

however, there are generally trade-offs between them. The double precision version

will offer greater accuracy in results, while the single precision version will require less

storage and possibly less machine time.

17

18 Using ODRPACK

DODR: Compute the explicit or implicit weighted orthogonal distance regression, or linear or

nonlinear ordinary le£ist squares solution in double precision. Derivatives are either

supplied by the user or numerically approximated by ODRPACK. Control variables are

preset to their default values, and a three part report of the results can be optionally

generated.

PROGRAM HAIR

I

EXTERRAL

+ FCR

IRTEGER

+ R.M.RP.RQ,

+ LDY.LDX, LDWE,LD2WE,LDWD,LD2WD,

+ JOB, IPRIRT.LURERR.LURRPT,

+ LVORK.LIVORK, IRFO

IRTEGER

IWORK(LIVORK)

DOUBLE PRECISIOR

+ BETA(RP), Y(LDY,Rq),X(LDX,M),

+ WE(LDWE,LD2WE.RQ),tfD(LDWD,LD2WD.M).

-I- WORK(LWORK)

I

CALL DODR

+ (FCR,

+ R,M,RP,RQ,

+ BETA,

+ Y,LDY,X,LDX,
+ VE,LDVE,LD2WE,WD,LDVD,LD2UD,

+ JOB,

+ IPRIRT,LURERR,LURRPT,

+ VORK,LVORK,IWORK,LIWOBK,

+ IRFO)

ERD

Using ODRPACK 19

DODRC: Compute the explicit or implicit weighted orthogonal distance regression, or linear or

nonlinear ordinary least squares solution in double precision. Derivatives are either

supplied by the user or numerically approximated by ODRPACK. Control values are

supplied by the user, and a three part report of the results can be optionally generated.

PROGRAM MAIH

I

EXTERHAL

+ FCH

IVTEGER

+ I.H.IP.HQ.

+ LDY.LDX, LDWE,LD2WE,IDWD,LD2WD, LDIFX,

+ JOB.HDIGIT, MAXIT, IPRIHT.LUHERR.LUHRPT,

+ LDSTPD, LDSCLD, LWORK , LItfORK , IHFO

IVTEGER

+ IFIXB(FP),IFIXX(LDIFX,M), IWORK(LIWORK)

DOUBLE PRECISIOF

+ TAUFAC, SSTOL.PARTOL

DOUBLE PRECISIOF

+ BETA(FP), Y(LDY,FQ),X(LDX,M).

+ WE(LDWE,LD2WE,FQ),WD(LDWD,LD2WD,M),
+ STPB(FP),STPD(LDSTPD, H), SCLB(FP) ,SCLD(LDSCLD,M)

.

«- VORK(LVORX)

I

CALL DODRC

+ (FCF,

+ F,M,FP,FQ,

+ BETA,

+ Y,LDY,X,LDX.

VE,LDUE,LD2UE,VD,LDVD,LD2WD,

+ IFIXB.IFIXX,LDIFX,

+ JOB, FDIGIT, TAUFAC,

+ SSTOL , PARTOL , MAXIT

,

+ IPRIFT,LUFERR,LUFRPT,

+ STPB,STPD, LDSTPD,

+ SCLB,SCLD, LDSCLD,

-I- WORK, LVORK.IWORK,LIWORK,

+ IFFO)

I

EFD

20 Using ODRPACK

SODR: Compute the explicit or implicit weighted orthogonal distance regression, or linear or

nonlinear ordinary least squares solution in single precision. (SODR is appropriate for

general use only on mcichines with approximately 14 decimal places of precision for single

precision.) Derivatives are either supplied by the user or numerically approximated by

ODRPACK. Control variables are preset to their default values, and a three part report

of the results Ccin be optionally generated.

PROGRAM MAIH

I

EXTERHAL
+ FCI

IHTEGER

+ I, M, HP, HQ,
+ LDY,LDX, LDWE,LD2HE,LDWD,LD2WD,

+ JOB, IPRIHT,LUHERR,LUHRPT,

+ LW0RK,LIH0RK, IHFO

IHTEGER
-I- IHORK(LIHORK)

REAL
+ BETA(HP), Y(LDY,HQ),X(LDX,M),

+ WE(LDWE,LD2HE,HQ),WD(LDHD,LD2HD,M),
-I- VORK(LVORK)

I

CALL SODR

+ (FCH,

+ H,M,HP,HQ,

+ BETA,

+ Y,LDY,X,LDX,

+ WE,LDVE,LD2WE,VD,LDHD,LD2WD,

+ JOB,

+ IPRIHT,LUHERR,LUHRPT,
* V0RK,LV0RK,IV0RK,LIW0BK,

+ IHFO)

EHD

Using ODRPACK 21

SODRC: Compute the explicit or implicit weighted orthogonal distance regression, or linear or

nonlinear ordinary le£ist squares solution in single precision. (SODRC is appropriate for

general use only on machines with approximately 14 decimal places of precision for single

precision.) Derivatives are either supplied by the user or numerically approximated by
ODRPACK. Control values are supplied by the user, and a three part report of the

results can be optionally generated.

PROGRAM HAIR

I

EXTERNAL
+ FCF

INTEGER

+ N.M.NP.NQ,

+ LDY.LDX, LDWE.LD2WE.LDWD,LD2WD, LDIFX,

+ JOB.NDIGIT, HAXIT, IPRINT.LUNERR.LUNRPT,

+ LDSTPD, LDSCLD, LWORK , LIWORK , INFO

INTEGER

+ IFIXB(NP),IFIXX(LDIFX,M), IWORK(LIWORK)

REAL

+ TAUFAC, SSTOL.PARTOL

REAL

+ BETA(NP), Y(LDY,Nq),X(LDX,M),
+ VE(LDVE.LD2WE.Nq).WD(LDVD.LD2WD.M),

+ STPB(NP),STPD (LDSTPD,M), SCLB(NP) ,SCLD(LDSCLD,M)

,

+ WORK (LWORK)

I

CALL SODRC

+ (FCN,

+ N.M.NP.Nq,

+ BETA,

+ Y,LDY,X,LDX,
I- VE,LDVE,LD2WE,VD,LDWD,LD2WD,

+ IFIXB,IFIXX,LDIFX,

+ JOB, NDIGIT, TAUFAC,

+ SSTOL,PARTOL,MAXIT,

+ IPRINT,LUNERR,LUNRPT,

+ STPB,STPD, LDSTPD,

+ SCLB,SCLD, LDSCLD,
+ WORK, LWORK, IWORK,LIWORK,

+ INFO)

END

22 Using ODRPACK

2.B. Subroutine Argument Descriptions

2.B.i. Synopsis

The arguments of the ODRPACK user callable subroutines are logically grouped as

shown below. Arguments shown in parenthesis (...) are not included in the DODR and

SODR call statements; DODR and SODR automatically preset these variables to the default

values given in §2.B.ii. All other arguments are common to all ODRPACK user callable

subroutines.

Argument
Number Arguments Group Description

1 FCH, Name of user supplied subroutine

for function and derivative computation

2 to 5 Problem size specification

6 BETA, Function parameters

7 to 10 Y,LDY,X,LDX, Dependent and explanatory variables

11 to 16 WE,LDWE,LD2WE.VD.LDWD,LD2WD, Weights

17 to 19 (IFIXB.IFIXX.LDIFX,) Parameter cind variable fixing

20 to 22 JOB, (IIDIGIT,TAUFAC,

)

Computation and initialization control

23 to 25 (SSTOL , PARTOL , MAXIT ,

)

Stopping criteria

26 to 28 IPRIFT ,LUHERR , LUHRPT

,

Print control

29 to 31 (STPB,STPD,LDSTPD,) Derivative step sizes

32 to 34 (SCLB,SCLD,LDSCLD,) Scaling

35 to 38 WORK , LVORK , IWORK ,LIUORK

,

Work vectors and returned results

39 IFFO Stopping condition

Using ODRPACK 23

ODRPACK Subroutine Argument Definitions

The arguments of ODRPACK’s user callable subroutines are described below in order

of their occurrence in the call statements. Appropriate declaration statements for each

argument are shown in brackets [. .
.]
following the argument name; the character string

<real> denotes REAL when using single precision subroutines SODR and SODRC (which

should be used only on machines with approximately 14 decimal digits of precision in

single precision), and denotes DOUBLE PRECISION when using double precision subrou-

tines DODR and DODRC. Each argument is numbered as shown in §2.Bi, and will be cross

referenced by both number and name, e.g., 1-FCN, enabling the user to easily find the

definition of a specific argument. In axidition, a flag indicating whether the argument

is passed to or from ODRPACK is placed in the left margin by the argument number.

The flags are:

indicating the eirgument specifies information that must be input to ODRPACK,
and that the input information is preserved upon return from the ODRPACK
subroutine;

•<= indicating the argument specifies information that is output by the ODRPACK
subroutine; and

indicating the argument specifies information that must be input to ODRPACK,
but that the input values will be overwritten by ODRPACK upon return from

the subroutine.

NOTE

Substitute DOUBLE PRECISION for <real> when using DODR and DODRC.

Substitute REAL for <real> when using SODR and SODRC.

24 Using ODRPACK

=^1 - FCN [EXTERNAL FCN]

The name of the user supplied subroutine that, given the current values of the

explanatory variable, Xi+^i, and the current values of the function parameters,

/S, computes the predicted values

F(I,L) = /il(xi + ^i;/3),

I = 1, . .
. , 71, and L = 1, . .

. , g, and optionally computes the matrices of first

partial derivatives, i.e., the Jacobian matrices

FJACB(I,K,L)
9fn,{^i ~l~ ^iiP)

for I = 1, ... ,71, K = 1, . . .,p, and L = 1, . . .,g, and

FJACD(I,J,L)
dfri,{xi + Si]P)

for I = 1, . .
. , 71, J = 1, . .

. , 771, and L = 1, . .
. , g. The code for evaluating F

must always be provided. The code for evaluating FJACB and FJACD is required

only when the second digit of argument 20-JOB is greater than or equal to

two. (When the second digit of JOB is zero or one, the necessary Jacobian

matrices will be approximated by ODRPACK using finite differences. See

argument 20-JOB, and also §4.A.) The code for FJACD does not need to be

supplied when the fit is by OLS.

At a given call to subroutine FCN, ODRPACK will never request that both the

function values (F) and the derivative values (FJACB and FJACD) be computed.

While it is generally most cost effective if the user only performs the required

computations, it is not an error for both function values and derivatives to be

computed each time FCN is invoked. Note, however, that array FJACD must

never he altered when the fit is by ordinary least squares, since no space is

assigned to that array in that case.

The user must supply a value for every element of the selected arrays. If some

responses of some observations are actually missing, then the user can set the

corresponding weights in argument 11-WE to zero in order to remove the effect

of the missing observation from the analysis. (See §1.F.)

ODRPACK ’s parameter fixing arguments IFIXB, IFIXX and LDIFX are passed

to subroutine FCN for the user’s convenience. When a parameter is fixed, then

the derivative with respect to that parameter can be set to zero. ODRPACK
will automatically zero these derivative values, however, and thus it is not

necessary for the user to be concerned with this unless the derivative compu-

tations are especially expensive. (See Chapter 3.)

Using ODRPACK 25

The argument list cind dimension statements for subroutine FCN must be ex-

actly as shown below.

SUBROUTIFE FCH(H,M,HP,FQ,

+

+

+

+

+

LDI.LDM.LDIP.

BETA.XPLUSD,

IFIXB.IFIXX.LDIFX,

IDEVAL ,F , FJACB ,FJACD

,

ISTOP)

C

C

C

C

C

C

ISPUT ARGUMENTS

(WHICH MUST HOT BE CHANGED BY THIS ROUTINE)

INTEGER IDEVAL , LDFIX ,LDM , LDN , LDNP , M , N ,NP , HQ

INTEGER IFIXB(NP),IFIXX(LDIFX.M),

<real> BETA(NP) ,XPLUSD(LDN,M)

OUTPUT ARGUMENTS

INTEGER ISTOP

<real> F(LDN,Nq) , FJACB (LDN, LDNP, NQ) , FJACD (LDN, LDM, NQ)

< set ISTOP >

IF (ISTOP. HE. 0) RETURN

COMPUTE FUNCTION

IF (MOD (IDEVAL, 10).GE.l) THEN
< compute F(I,L), 1=1,..., N, A L=1,...,NQ >

END IF

COMPUTE DERIVATIVES WITH RESPECT TO BETA

IF (M0D(IDEVAL/10,10).GE.l) THEN
< compute FJACB(I,K,L), 1=1,..., H, K=1,...,NP, A L=1,...,NQ >

END IF

COMPUTE DERIVATIVES WITH RESPECT TO DELTA

IF (M0D(IDEVAL/100,10) .GE.l) THEN
< compute FJACD(I,J,L), 1=1,..., N, J=1,...,M, A L=l,...,Nq >

C

C

C

C

C

C

END IF

RETURN

END

where

26 Using ODRPACK

N is the number of observations, n.

M is the number of elements, m, in each explanatory variable, x j 6 3?”*,

i.e., the number of columns of data in X + A.

NP is the number of function pzirameters, p.

NQ is the number of responses, q, per observation.

LDN is an array leading dimension declarator that equals or exceeds n.

LDM is an array leading dimension declarator that equals or exceeds m.

LDNP is an array leading dimension declarator that equals or exceeds p.

BETA is the singly subscripted array that contains the current values of /3.

XPLUSD is the doubly subscripted array that contains the current value of

the explanatory variables, i.e., X + A.

IFIXB is the singly subscripted array designating whether a given parameter

Pk is to be treated as fixed. (See argument 17-IFIXB below.)

IFIXX is the doubly subscripted array designating whether, when the solu-

tion is found by orthogonal distance regression, a given explanatory

variable Xu is to be treated as without error. (See argument 18-

IFIXX below.)

LDIFX is the leading dimension of array IFIXX. (See argument 19-LDIFX

below.)

IDEVAL is a three digit INTEGER variable with decimal expansion J3J2J1

passed to subroutine FCN by ODRPACK to designate what values

are to be computed.

Computation Digit

F Ji = 0 array F need not be computed
= 1 function values F must be computed

(for constructing finite difference derivatives)

= 2 function values F must be computed
(for evaluating S{0,6) at new point)

= 3 function values F must be computed

(for miscellaneous calculations)

FJACB J2 = 0 array FJACB need not be computed
= 1 derivative values FJACB must be computed

FJACD J3 = 0 array FJACD must not be altered

= 1 derivative values FJACD must be computed

(required for ODR fits only)

F is the doubly subscripted array in which the nx q array of predicted

values for each response of each observation must be stored.

Using ODRPACK 27

FJACB is the triply subscripted array in which the nxpx q array of partial

derivatives with respect to P for each response of each observation

must be stored.

FJACD is the triply subscripted array in which the nxmxq array of partial

derivatives with respect to A for each response of each observation

must be stored.

ISTOP is a variable that enables the user to instruct ODRPACK to reject

the current values in BETA cind XPLUSD as unacceptable.

ISTOP Meaning

< 0

= 0

> 0

regression procedure should be stopped

current ^ and A are acceptable for use by FCH:

requested values were properly computed within FCI and

regression procedure should continue

current and A are unacceptable for use by FCS:

if call to FCI was for constructing derivatives

regression procedure will be stopped

if call to FCI was for evaluating 5(0,6)
a new point will be selected closer to the most

recently tried acceptable values of 0 and A
if call to FCI was for miscellaneous calculations

regression procedure will be stopped

Note that even when ISTOP is used to stop the regression procedure,

the final summary of the computation report will still be generated

if it ha.s been requested. (See argument 26-IPRINT.)

=2 - N [INTEGER N]

The number of observations, n.

=>3 - M [INTEGER M]

The ntunber of elements, m, in each explanatory variable € 3?”^, i.e., the

number of columns of data in X.

=4 - NP [INTEGER NP]

The number of function parameters, p.

==J^5 - NQ [INTEGER NQ]

The number of responses, q, per observation.

^6 - BETA [<real> BETA(NP)]

The singly subscripted array that contains the (current) values of /3.

28 Using ODRPACK

On input: BETA must contain initial approximations for the function param-

eters p. Initial approximations should be chosen with care since

poor initial approximations can significantly increase the number
of iterations required to hud a solution and possibly prevent the

solution from being found at all. (See §1.E.)

On return: BETA contains the “best” estimate of the parameters, at the

time the computations stopped.

=^7 -Y [<real> Y(LDY,NQ)]

The double subscripted array that contains the values of the response variable

Yu.,1 = 1,... ,n, L = l,...,g. When the model is explicit, the user must

supply a value for each of the n x q elements of Y; if some responses of some

observations are zu:tually missing, then the user can set the corresponding

weight in argument 11-WE to zero in order to remove the effect of the missing

observation from the analysis. When the model is implicit, Y is not referenced.

(See argument 20-JOB, and §1.F.)

=>8 - LDY [INTEGER LDY]

The leading dimension of array Y. AVhen the model is explicit, LDY must equal

or exceed n. When the model is implicit, LDY must equal or exceed 1.

=>9 - X [<real> X(LDX,M)]

The doubly subscripted array that contains the observed values of the ex-

planatory variable X.

=>10 - LDX [INTEGER LDX]

The leading dimension of array X. LDX must equal or exceed n.

=^>11 - WE [<real> WE(LDWE,LD2WE,Nq)]

The triply subscripted array that, when the model is explicit specifies how
each €i is to be weighted in the weighted orthogonal distance, and when the

model is implicit specifies the starting penalty parameter value, tq (see §1.A,

§1.B, §1.F, and argument 20-JOB).

For explicit models, WE is a structured argument: only the specific elements

of WE identified in the table below are referenced by ODRPACK. (See §1.G.)

Using ODRPACK 29

WE(1,1,1) LDWE LD2WE

For I = 1,. . .,n,

t«ei

<0 — — = —WE(1,1,1)J,, Ig a, q X q identity matrix

>0 =1 =1 = diag{WE(l.l,L2), L2 = 1,...,9}

> n =1 = diag{WE(I,l.L2), L2 = 1,...,5}

= 1 >9 = WE(1,L1,L2), LI = l,...,g, & L2 = 1,...,9

> n > q = WE(I,L1,L2), LI = 1,...,9, & L2 =

For implicit models, only the first element of WE is ever referenced, and tq is

set as follows.

WECl.l.l) ro

o

o

VI

A

= 10

= WECl.l.l)

=J^12 - LDWE [INTEGER LDWE]

The leading dimension of array WE. LDWE must either exactly equal one, or

must equal or exceed n. See argument 11-WE for further details.

=>13 - LD2WE [INTEGER LD2WE]

The second dimension of array WE. LD2WE must either exactly equal one, or

must equal or exceed q. See argument 11-WE for further details.

=>14 - WD [<real> WD(LDWD,LD2WD,M)]

The triply subscripted array that specifies how eaoh 6i is to be weighted in

the weighted orthogonal distance. (See §1.A and §1.F.) WD is a structured

argument; only the specific elements of WD identified in the table below are

ever referenced by ODRPACK. (See §1.G.)

WD(l.l.l) LDWD LD2WD

For I = 1, . . ., n,

ws,

<0 — — = —WD(l.l.l)/,ni Jm Au X m identity matrix

= 0 — — = Imi Im an m X m identity matrix

>0 =1 =1 = diag{WD(l.l.J2), J2 = l,...,m}

> n =1 = diag{WD(I.l.J2), J2 = l,...,Tn}

= 1 > m = WD(1.J1.J2), J1 = l,...,m,&J2 = l,...,m

> n "> m = WD(I.J1.J2), J1 = l,...,m,&J2 = l,...,Tn

=»15 - LDWD [INTEGER LDWD]

The leading dimension of array WD. LDWD must either exeictly equal one, or

must equal or exceed n. See argument 14-WD for further details.

30 Using ODRPACK

=j>16 - LD2WD [INTEGER LD2WD]

The second dimension of array WD. LD2WD must either exactly equal one, or

must equal or exceed m. See argument 14-WD for further details.

=>17 - IFIXB [INTEGER IFIXB(NP)]

The singly subscripted array that specifies the indicator variable des-

ignating whether /3k is to be treated as “fixed,” i.e., is to be treated as a

constant, or is to be “unfixed” and thus is to be estimated.

• If — 0 then /3k is fixed and BETA(K) is not changed.

• If ^ 0 then /3k is unfixed cind BETA(K) is overwritten by

The default values are = 1, K = 1, . . .,p.

IFIXB (1)

ForK=

< 0

> 0

= 1

= IFIXB (K)

=>18 - IFIXX [INTEGER IFIXX(LDIFX,M)]

The doubly subscripted array that specifies the indicator variable desig-

nating whether, when the solution is found by orthogonal distance regression,

the (I, J)th element of the explanatory variable Xu is to be treated as with-

out error and thus Au is to be “fixed” at zero, or whether that observation is

“unfixed” and therefore the error Au is to be estimated. (When the solution

is foimd by ordinary least squares, the Xu we always treated as fixed, and

thus Au = 0 for all I = 1, . .
. ,

n, and J = 1, . .
. ,
m.)

• K = 0 then Xu is fixed and Au is set to zero.

• K ^ 0 then Xu is unfixed and Au is estimated.

The default values are = 1, I = 1, . .
. ,
n, and J = 1, . .

. ,
m.

IFIXX is a structured argument: only the specific elements of IFIXX identified

in the table below are referenced by ODRPACK. (See §1.G.)

IFIXX (1,1) LDIFX

For I = l,...,n,

& J = l,...,m,

<0 —
>0 =1

> n

= 1

= IFIXXd.J)
= IFIXXd.J)

=^19 - LDIFX [INTEGER LDIFX]

The leading dimension of array IFIXX. LDIFX must either exactly equal one.

Using ODRPACK 31

or must equal or exceed n. See argument 18-IFIXX for further details.

=>20 - JOB [INTEGER JOB]

The variable that specifies problem initialization and computational methods.

(See §1.C.) The default options, selected when JOB < 0, are that

• the solution will be found by explicit orthogonal distance regression;

• the derivatives will be computed by forward finite differences;

• the covariance matrix will be computed using Jacobian matrices recalcu-

lated at the solution;

• A will be initialized to zero; and

• the fit will not be a restart.

When JOB > 0, it is assumed to be a 5 digit INTEGER with decimal expansion

J5J4Z3J2J1 ,
where each digit controls a different option.

Option Digit Selection

Computational method

(see §1.A)

Ji = 0 explicit orthogonal distance regression

= 1 implicit orthogonal distance regression

> 2 ordinary least squares

Derivative calculation

(see §4.A)

I2 = 0 forward Unite differences

= 1 central finite differences

= 2 user supplied derivative code,

checked by ODRPACK
> 3 user supplied derivative code,

not checked by ODRPACK
Covariance matrix Vp,

iz. standard deviation ap

(see §4.B)

X3 = 0 Vp and ap calculated using

derivatives recomputed at solution

= 1 Vp and <Tp calculated using

derivatives from last iteration

>2 Vp and ap not calculated

A Initialization

(see §1.E)

I4 = 0 A initialized to zero by ODRPACK
>1 A initialized by user

(see argument 36-WORK)

Restart facility

(see Chapter 3)

J5 = 0 fit is not a restart

>1 fit is a restart

=>21 - NDIGIT [INTEGER NDIGIT]

The variable that specifies the number of reliable decimal digits tj} in the

values computed using subroutine FCN. The value ^ is needed to calculate the

default values for the relative step sizes used in calculating finite difference

derivatives. (See arguments 29-STPB and 30-STPD, and §4.A.) It is also used

to determine when the Jacobian with respect to one or more of the parameters

32 Using ODRPACK

P appears to be rank deficient. It can not exceed the number of decimal

digits $ carried by the user’s computer for a <real> value. The default value

is experimentally determined by ODRPACK for the user’s particular model.

This determination of rj; requires 4 evaluations of the model function from

user supplied subroutine FCN.

IDIGIT

< 1

> 2

= default value

= min{HDIGIT,

=>22 - TAUFAC [<real> TAUFAC]

The variable that specifies the factor r used to initialize the trust region

radius. The trust region is the region in which the local approximation to

S{P, 6) is considered reliable. The diameter of this region is adaptively chosen

at each iteration based on information from the previous iteration. At the first

iteration, the initial diameter is set to r times the length of the full Gauss-

Newton step calculated at the initial values of ft and A. The default value is

r = 1. When r < 1 the size of the initial step attempted at the first iteration

is smaller than the full Gauss-Newton step. This may be appropriate if, at

the first iteration, the computed results for the full Gauss-Newton step cause

an overflow, or cause and/or A leave the region of interest.

TAUFAC T

< 0

>0
= 1

= mm{TAUFAC, 1}

=>23 - SSTOL [<real> SSTOL]

The variable that specifies Ts, the stopping tolerance for sum of squares con-

vergence, i.e., for convergence based on the relative change in S{P,6). The
default value is Ts = where ^ is defined as the smallest value such that

1 -f ^ > 1 for a <real> computation on the machine being used.

SSTOL Ts

< 0

> 0

- ^1/2

= min{SST0L, 1}

=>24 - PARTOL [<real> PARTOL]

The variable that specifies Tp, the stopping tolerance for parameter conver-

gence, i.e., for convergence based on relative change in the estimated param-

eters P and A. When the model is explicit the default value is Tp = and

when the model is implicit the default value is Tp = where ^ is defined

as the smallest value such that 1 + ^ > 1 for a <rGal> computation on the

Using ODRPACK 33

machine being used.

PARTOL Tp

< 0

> 0

= default value

= nim{PARTOL, 1}

=>25 - MAXIT [INTEGER MAXIT]

The variable that specifies 7/, the maximum number of iterations allowed. The

default value depends on whether the fit is a restart or not. (See argument

20-JOB.) If the fit is not a restart, then

T/ = 50 .

If the fit is a restart, then

7/ = 7}_ + 10 ,

where 7/_ is the number of iterations completed in the previous run, thus

indicating that the procedure will continue for an additional 10 iterations.

MAXIT Restart Ti

<0 no

yes

>0 no

yes

= 50

= Tj. + 10

= MAXIT

= Tj- + MAXIT

If MAXIT = 0 then no iterations wiU be taken, but whatever computations are

required to complete the final computation report will be made. For example,

by setting MAXIT = 0 and the third digit of JOB to zero, the user can compute

the covariance matrix Vp for the input values /3 and A. (See arguments 20-JOB

and 26-IPRINT, and also §1.D.)

=>26 - IPRINT [INTEGER IPRINT]

The variable that controls generation of the computation reports described in

§1.D. The default computation reports include

• a long initial summary,

• no iteration summary, and

• a short final summary.

When IPRINT < 0, the default reports are generated only on Ccr, the logical

unit specified by argument 28-LUNRPT. When IPRINT > 0, it is assumed

to be a 4 digit INTEGER with decimal expansion where each digit

controls a different part of the computation report and whether that report

is to be generated only on Ccr or to both Ccr and unit 6. (See §1.D).

34 Using ODRPACK

Initial summary

14 - unit -

Ccr 6

Iteration

I3 Ja

summary
- unit -

Ccr 6

Final summary
X\ - unit -

Ccr 6

> 0 = 0 none none

= 0 none none = 0 > 1 none none = 0 none none

= 1 short none = 1 > 1 short none = 1 short none

= 2 long none = 2 > 1 long none = 2 long none

= 3 short short = 3 > 1 short short = 3 short short

= 4 long short = 4 > 1 long short = 4 long short

= 5 short long = 5 > 1 short long = 5 short long

= 6 long long = 6 > 1 long long = 6 long long

If J2 = 0 no iteration summary will be generated, even if the value of J3

is nonzero.

If J2 > 1 an iteration summary will be generated every X2th iteration be-

ginning with iteration one.

=>27 - LUNERR [INTEGER LUNERR]

The variable that specifies Cer, the logical unit number to be used for error

messages. (See §1.D.) By default, Cer =

LUITERR Cer

< 0 = 6

= 0 error messages suppressed

> 0 = LUHERR

=>28 - LUNRPT [INTEGER LUNRPT]

The variable that specifies Ccr, the logical unit number to be used for com-

putation reports. (See also argument 26-IPRINT, and §1.D.) By default,

Ccr = 6.

LUHRPT Ccr

< 0 = 6

= 0 computation reports suppressed.

even when argument 26-IPRIHT is nonzero

> 0 = LUHRPT

=>29 - STPB [<real> STPB(NP)]

The singly subscripted array that specifies the relative step sizes, K =
1, . . .,p, used to compute the finite difference derivatives with respect to each

of the parameters fS as discussed in §4.A. The default value is set as described

in §4.A.iii depending on whether forward or central finite difference derivatives

are being computed. (See argument 20-JOB.)

Using ODRPACK 35

STPB(l)

II

o

o

VI

A
= default value

= STPB(K)

=i^30 - STPD [<real> STPD(LDSTPD,M)]

The doubly subscripted array that specifies the relative step sizes, /iau, I =
and J = used to compute the finite difference derivatives

with respect to the errors in each of the elements of X as discussed in §4.A.

The default value is set as described in §4.A.iii depending on whether forward

or central finite difference derivatives are being computed. (See argument

20-JOB.) STPD is a structured argument: only the specific elements of STPD

identified in the table below are referenced by ODRPACK. (See §1.G.)

STPDCl.l) LDSTPD

For I = 1, . . ., n,

& J = 1, . . ., m,

hAu

< 0 — = default value

> 0 = 1 = STPD(1,J)

> n = STPDd.J)

=i^31 - LDSTPD [INTEGER LDSTPD]

The leading dimension of array STPD. LDSTPD must either exactly equal one,

or must equal or exceed n. See argument 30-STPD for further details.

=>32 - SCLB [<real> SCLB(NP)]

The singly subscripted array that specifies the scale values, SCALe{)3k}i

K = 1, . . .,p, of the function parameters, i.e., the reciprocals of the expected

magnitudes or typical sizes of — l,...,p. Scaling is used within the

regression procedure in order that the units of the variable space will have

approximately the same magnitude. This increases the stability of the pro-

cedure, but does not affect the problem specification. Scaling should not be

confused with the weighting matrices and ws^ specified by arguments 11-

WE and 14-WD. (See §1.A, and §1.F.) Except as noted below, the scale values

specified for each value of must be greater than zero. The default values

are set as described in §4.D.i.

SCLB(l)

ForK= l,...,p,

scalb{/3k}

o

o

VI

A
= default value

= SCLB(K)

36 Using ODRPACK

==>33 - SOLD [<real> SCLD(LDSCLD,M)]

The doubly subscripted array that specifies the scale values for the errors A in

the explajiatory variable X, i.e., the reciprocals of the expected magnitudes or

typical sizes of Au, I = 1, . .
. ,

n, and J = 1, . .
. ,
m. Scaling is used within the

regression procedure in order to ensure that the units of the variable space will

have approximately the same magnitude. This increases the stability of the

procedure, but does not affect the problem specification. Scaling should not

be confused with the weighting matrices tyq and tuis^ specified by arguments

11-WE and 14-WD. (See §1.A, and §1.F.) Except as noted below, the scale

values specified for each value of A must be greater than zero. The default

values are set as described in §4.D.ii. SOLD is a structured argument: only

the specific elements of SOLD identified in the table below are referenced by

ODRPACK. (See §1.G.)

SCLDd.l) LDSCLD

For I = 1, . . ., n,

& J = 1, .. .,m,

scale{Au}

< 0 — = default value

> 0 = 1 = SCLDd.J)
> n = SCLDd.J)

=>34 - LDSCLD [INTEGER LDSCLD]

The leading dimension of array SOLD. LDSCLD must either exactly equal one,

or must equal or exceed n. See argument 33-SCLD for further details.

^35 - WORK [<real> WORK(LWORK)]

The singly subscripted array used for <rGal> work spcice, and an array in

which various computed values are returned. The smallest acceptable dimen-

sion of WORK is given below in the definition of argument 36-LWORK. The work

area does not need to be initialized by the user unless the user wishes to ini-

tialize A, which is stored in the first n x m locations of WORK. An easy way to

access these values, either for initialization, as is necessary when the fourth

digit of argument 20-JOB is nonzero and the fit is by orthogonal distance re-

gression, or for analysis upon return from ODRPACK, is to include in the

user’s program the declaration statements

<real> DELTA«N>.<M»
EQUIVALENCE (WORK(l), DELTA (1,1))

where <N> indicates that the first dimension of the array DELTA must be ex-

actly the number of observations, N = n; and <M> indicates that the second

dimension of the array DELTA must be exactly the number of columns, M = m.

Using ODRPACK 37

of the explanatory variable X. This allows the error associated with observa-

tion X(I, J) to be accessed as DELTA(I,J) rather than as WORKCl-t-CJ-D^N).

The values in DELTA will be over written by the final estimates of the errors

in the explanatory variable when this equivalencing method is used. Other

values returned in array WORK may also be of interest and can be accessed as

described in §5.A.

N.B., if the fit is a “restart,” i.e., if the fifth digit of argument 20-JOB is

nonzero, then all elements of vector WORK, including the values of DELTA, must

be exactly as returned from a previous call to ODRPACK.

=>36 - LWORK [INTEGER LWORK]

The length of array WORK.

For orthogonal distance regression LWORK must equal or exceed

18-|-llp-|-p^-fm-|-m^-|-4n9-l-6nm-|-2n9p-(-2n9m-|-5^-|-59-|-g(p-l-m)-f-(LDWE*LD2WE)g.

For ordinary least squares LWORK must equal or exceed

18 -I- lip -|- p^ -I- m -f -f Anq 4- 2nm -f 2nqp + 5^ 4- q{p 4- m) 4- (LDWE*LD2WE)9.

^37 - IWORK [INTEGER IWORK(LIWORK)]

The singly subscripted array used for INTEGER work space, and an array in

which various computed values are returned. The smallest acceptable dimen-

sion of IWORK is given below in the definition of argument 38-LIWORK.

Certain values returned in array IWORK are of general interest and can be

accessed as described below in §5.B. In particular, the results of the derivative

checking procedure are encoded in IWORK. These results may be especially

useful if ODRPACK’s error reports have been suppressed. (See argument

27~LUNERR.)

N.B., if the fit is a “restMt,” i.e., if the fifth digit of argument 20-JOB is

nonzero, then all elements of vector IWORK must be exactly as returned from

a previous call to ODRPACK.

=>38 - LIWORK [INTEGER LIWORK]

The length of array IWORK.

For both orthogonal distance regression and ordinary least squares LIWORK

must equal or exceed

20 -f- p 4- g(p 4- m).

<=39 - INFO [INTEGER INFO]

The variable used to indicate why the computations stopped.

38 Using ODRPACK

INFO Stopping Condition

= 1 sum of squares convergence

= 2 parameter convergence

= 3 both sum of squares and parameter convergence

= 4 iteration limit reached

> 5 questionable results or fatal errors detected

When INFO > 5 the questionable results or fatal errors detected by ODR-
PACK are reported in the messages generated on the logical units specified by

arguments 27-LUNERR and 28-LUNRPT. In this case, INFO is a 5 digit INTEGER

with decimal expansion where J5 = 0 indicates that questionable

conditions were found, and X5 > 1 indicates that fatal errors were detected.

The nonzero values of I5, J4, J3, J2 and X\ are used to identify what condi-

tions were detected at the time the program stopped.

Questionable Results:

J5 = 0 with J4 ^ 0

X3/O

X2/O
Ji = l

= 2

= 3

= 4

derivatives possibly not correct (see §4.A)

ISTOP 0 at last call to FCN

(see argument 1-FCN)

problem is not full rank at solution

sum of squares convergence

parameter convergence

sum of squares and parameter convergence

iteration limit reached

Falal Errors:

J5 = 1 with J4 ^ 0 N < 1

M < 1

NP < 1 or NP > N

JlT^O NQ < 1

J5 = 2 with J4 ^ 0 LDY and/or LDX incorrect

LDWE, LD2WE, LDWD and/or LD2WD incorrect

X2#0 LDIFX, LDSTPD and/or LDSCLD incorrect

Xi/0 LWORK and/or LIWORK too small

J5 = 3 with J4 / 0 STPB and/or STPD incorrect

SCLB and/or SOLD incorrect

X2 5^0 WE incorrect

XiT^O WD incorrect

X5 = 4 error in derivatives

X5 = 5 ISTOP / 0 at last call to FCN

II

(see argument 1-FCN)

numerical error detected

Using ODRPACK 39

Note that INFO = 60000 indicates an error possibly caused by incorrectly

specified user input to ODRPACK, and more commonly by a poor choice of

scale or weights, or a discontinuity in the derivatives.

2.C. Examples

The following sample programs invoke DODR and DODRC to solve the examples of explicit,

implicit and mtdtiresponse problems shown in §1.A.

The first program invokes DODRC with user supplied derivatives, the second program

invokes DODR with the derivatives approximated by ODRPACK using forward finite

differences, and the third invokes DODRC with central finite difference derivatives. The

use of forward or central difference derivatives generally causes very little change in the

results from those obtained using analytic derivatives. (See §4.A.)

Users are encouraged to use these examples, modified as necessary, to form their own

ODRPACK drivers. Single precision sample programs can be easily generated from these

two programs by changing all DOUBLE PRECISION variables to REAL, and substituting

SODRfor DODR and SODRC for DODRC. Note especially that by using NAXN, MAXN, HAXNP and

NAXNQ to specify the largest problem the program can solve without modification, and

by specifying LWORK and LIWORK exactly as shown, the user greatly reduces the number

of changes that must be made to the program in order to solve a larger problem.

2.C.i. Example Problem for an Explicit Model

The following sample program invokes DODRC to solve example 3.2.2 on pages 230-238

of [Fuller, 1987]. The data (xi,yi) 3se the percent saturation of nitrogen gas in a brine

solution forced into the pores of sandstone, emd the observed compressional wave velocity

of ultrasonic signals propagated through the sandstone, respectively. These data (listed

in §2.C.i.b) are modeled by the explicit function

Vi « /(xi;/3) = +)32 [c^*‘ - l]^ i = l,...,n.

The starting values for the model parameters are

P = (1500.0,-50.0,-0.1)''

and A is initialized to zero.

Fuller notes that it is reasonable to believe that the saturation measurements of 0%
and 100% are more precise than the other saturation measurements. We have thus

40 Using ODRPACK

“fixed” xi, X2 and X 12 at their original values. As a consequence, = ^| = = 0

at the solution. We assume the remaining observed data axe all of equal precision, and

thus set Ttfe = = 1 using ODRPACK ’s structured argument feature. The remaining

arguments are set to their default values. (See §1.G.)

2.C.i.a. User Supplied Code

PROGRAH sanple

ODRPACK

<*=>

<-»>

Argvment

Icn

np

nq

beta

y
Idy

z

Idz

we

Idwe

ld2«e

«d

Idvd

ld2sd

ifizb

ifizz

Idifz

job

ndigit

taufac

satol

partol

aazit

iprint

lunerr

lunrpt

atpb

atpd

Idstpd

sclb

acid

Idscld

vork

Ivork

iwork

Definitions

nane of the user si;q)plied function subroutine

number of observations

columns of data in the ezplanatory variable

number of parameters

number of responses per observation

function parameters

response variable

leading dimension of array y
ezplanatory variable

leading dimension of array z

"epsilon" weights

leading dimension of array ve

second dimension of array we

"delta" weights

leading dimension of array wd

second dimension of array wd

indicators for "firing" parameters (beta)

indicators for "firing" ezplanatory variable (z)

leading dimension of array ifizz

task to be performed

good digits in subroutine function results

trust region initialization factor

sun of sqiiares convergence criterion

parameter convergence criterion

mazimum number of iterations

print control

logical unit for error reports

logical unit for computation reports

step sizes for finite difference derivatives wrt beta

step sizes for finite difference derivatives wrt delta

leading dimension of array stpd

scale values for parameters beta

scale values for errors delta in ezplanatory variable

leading dimension of array scld

DOUBLE PRECISION work vector

dimension of vector work

INTEGER work vector

Using ODRPACK 41

c «> livork diBension of vector ivork

c <« info stopping condition

c Paraneters specifying »T-inii problen sizes handled by this driver

c Bam BariBUB nuBber of observations

c BeucB BaziauB ntuber of coluBns in explanatory variable

c Basip wTiBiia nuBber of function paraneters

c Baznq BaziBUB nuBber of responses per observation

c Paraneter Declarations and Specifications

INTEGER Idifz , Idscld , Idstpd , Idsd , Idve , Idz , Idy , ld2Bd , ld2Be

,

livork. Ivork,BazB,Bazn,Baziq>,Baznq

PARAMETER (Baza«5,Bazn’E25,BaznpBB,Baznq«l,

BazB *1’ BazBee2

Idy^azn , ldz<>Bazn

,

Idsesl , ld2vesl , Idvd^l , ld2vd=l

,

Idifz^azn , ldstpd= 1 , ldscld=l

,

lvork=18 llVBaznp Baznpee2
AeinTm^inTnq -f fiewmemaxa + ?*iBitxn iBiiTnq»«iinmp +

2eBazn*BaznqVBazB + Baznqee2 +

SvBaxnq Baznq*(Bazzq>-hnazB) ldvevld2veVBaznq,

livork=2(Haaz]:q>-^aznq* (Baznp+Bazn))

Variable Declarations

INTEGER i,info,iprint, j, job,l,lunerr,lunrpt,B,Bazit,n,

+ ndigit,np,nq

INTEGER if izb(Baznp) ,ifizz(ldifz,Bzum) , ivork (livork)

DOUBLE PRECISION partol,sstol,taufac

DOUBLE PRECISION beta(Baznp) ,sclb(Baznp) ,scld(ldscld,BazB)

,

+ stpb(Baznp) ,stpd(ldstpd,BazB)

,

+ vd(Idvd , ld2vd .Bazn) . ve (Idve , ld2ve ,Baznq)

,

vork(lvork),z(ldz,BazB) ,y(ldy,Baznq)

EXTERNAL fen

c Specify default values for dodre argUBents

ved.l.l)
vdCl.l.l)

ifizb(l)

ifizzd.l)
job

ndigit

taufac

sstol

partol

Bazit

iprint

lunerr

lunrpt

stpbCl)

-l.OdO

-l.OdO
-1

-1

-1

-1

-l.OdO

-l.OdO

-l.OdO
-1

-1

-1

-1

-l.OdO

42 Using ODRPACK

stpd(l.l) - -l.OdO

sclbCl) - -l.OdO

Bcldd.l) “ -l.OdO

c Set up ODRPACK report files

lunerr > 9

liinrpt « 9

OPEH (unit«9,f lies’reportl*)

c Read problem data, and set nondefault value for argument ifixz

OPEH (unitsS.files>datal ’)

READ (5,FMTs*) n,m,np,nq

READ (5,FMT-*) (beta(i) ,i-l,np)

DO 10 isi.n

READ (B.FMT-*) (x(i, j),jsl,m) ,(y(i,l),l=l,nq)

if (x(i,l) .eq.O.OdO .or. x(i,l) .eq.lOO.OdO) then

ifixx(i,l) s 0

else

ifixx(i,l) s 1

end if

10 CONTINUE

c Specify task: explicit orthogonal distance regression

c «ith user supplied derivatives (checked)

c covariance matrix constructed with recomputed derivatives

c delta initialized to zero

c not a restart

c and indicate short initial report

c short iteration reports every iteration, and

c long final report

job s 00020

iprint > 1112

c Compute solution

CALL dodrcCfcn,

+ n,m,np,nq.

+ beta.

+ y,ldy,x,ldx.

+ se , Idse , ld2se ,vd , Idvd , ld2vd
^

+ if ixb , ifixx , IdifX

,

+ job ,ndigit ,taufac

,

+ sstol,partol,naxit

,

+ iprint , lunerr ,lunrpt

,

+ stpb, stpd, Idstpd,

+ sclb , scld, Idscld,

+ vork , Ivork , ivork , livork

,

+

END

info)

Using ODRPACK 43

STJBROUTIHE lcn(n,B,np,nq,

+ Idn.ldB.ldnp,

+ bata,xplusd,

+ ilixb.ilixx.ldifx,
-4- ideval,! ,fjacb,fjacd,

-t- iatop)

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

Subroutine Arguments
B=> n number of observations
n> B number of columns in explanatory variable

»> np number of parameters

nq number of responses per observation

»> Idn leading dimension declarator equal or exceeding n
»> Idn leading dimension declarator equal or exceeding a
»> Idnp leading dimension declarator equal or exceeding np
b:> beta current values of parameters

»> xplusd current value of explanatory variable, i.e., x delta
ss> ifizb indicators for "fixing” parameters (beta)

»=> ifixx indicators for "fixing" explanatory variable (x)

°=> Idifx leading dimension of array ifixx

»> ideval indicator for selecting computation to be performed
<•** f predicted function values
<>« fjacb Jacobian with respect to beta
<mm fjacd Jacobian with respect to errors delta
<" istop stopping condition, where

0 means current beta and x+delta were

acceptable and values were computed successfully

1 means current beta and x+delta are

not acceptable; ODRPACK should select values

closer to most recently used values if possible
-1 means current beta and x+delta are

not acceptable: ODRPACK should stop

Input arguments, not to be changed by this routine:

INTEGER i , ideval , istop , 1 , Idifx , Idm, Idn , Idnp ,a ,n ,np ,nq
DOUBLE PRECISION beta(np) ,xplusd(ldn,n)

INTEGER ifixb(np) ,ifixx(ldifx,n)

Output arguments:

DOUBLE PRECISION f (ldn,nq) ,fjacb(ldn, Idnp,nq) ,fjacd(ldn, 1dm,nq)
Local variables

INTRINSIC exp

c Check for imacceptable values for this problem

IF (beta(l) .LT. O.OdO) THEN

istop = 1

return

ELSE

44 Using ODRPACK

istop E 0

EHD IF

c Confute predicted values

IF (HOD(ideval.lO).GE.l) THEN

DO 110 1 « l.nq

DO 100 i » l,n
•= beta(l) +

+ beta(2)*(exp(beta(3)*xplusd(i,l)) - 1.0d0)**2

100 CONTINUE

110 CONTINUE

END IF

c Compute derivatives vith respect to beta

IF (H0D(ideval/10.10).GE.l) THEN

DO 210 1 >= l,nq

DO 200 i > l.n

fjacb(i,l,l)

fjacb(i,2,l)

ijacb(i,3,l)

+

+

200 CONTINUE

210 CONTINUE

END IF

l.OdO

(exp(beta(3)*xplusd(i,l)) - 1.0d0)**2

beta(2)*2e

(exp(beta(3)*xplusd(i,l)) - l.OdO)*

exp(beta (3) explusd (i . 1)) *xplusd (i , 1

)

c Compute derivatives with respect to delta

IF (M0D(ideval/100,10).GE.l) THEN

DO 310 1 l.nq

DO 300 i B l.n

fjacd(i,l,l) K beta(2)*2*
+ (ezp(beta(3)explusd(i,l)) - l.OdO)*

+ exp(beta(3)*xplusd(i,l)}*beta(3)

300 CONTINUE

310 CONTINUE

END IF

RETURN

END

Using ODRPACK 45

2.C.i.b. User Supplied Data (file datal)

12 1 3

1500.0 -50.0 -(

0.0 1265.0

0.0 1263.6

5.0 1258.0

7.0 1254.0

7.5 1253.0

10.0 1249.8

16.0 1237.0

26.0 1218.0

30.0 1220.6

34.0 1213.8

34.5 1215.5

100.0 1212.0

46 Using ODRPACK

2.C.i.c. Report Generated by ODRPACK (file reportl)

*«*******«***«********«***************4i**«*************

* odzpack version 2.01 of 06-19-92 (double precision) *

*** derivative checking report for fit by method of odr ***

' response 1 of observation 3

user

supplied relative derivative

derivative wrt value difference assessment

beta(1) l.OOD+00 O.OOIHOO verified

beta(2) 1.S5D-01 1.66D-06 verified

beta(3) 1 . 19D+02 2.94D-06 verified

delta (3. 1) -2.39D+00 2.96D-06 verified

number of reliable digits in function results 16

(estimated by odrpack)

number of digits of agreement required between

user supplied and finite difference derivative for

user supplied derivative to be considered verified 4

row number at which derivatives were checked 3

-values of the explanatory variables at this row

i(3, 1) B.OOOOOOOODfOO
e«******«******«***e******4i****4i****e*e«eeeeee«e*4i**4i4i*

* odrpack version 2.01 of 06-19-92 (double precision) *

*** initial summary for fit by method of odr ***

problem size:

n

nq

m
np

12

1

1

3

(number with nonzero weight

(number unfixed 3)

12)

control values:

job <B 00020

Using ODRPACK 47

> abcda, vhere

a>0 »> fit is not a restart.

b>0 »> deltas are initialized to zero.

c>0 »> covariance natriz vill be computed using

derivatives re-evaluated at the solution.

d^2 »> derivatives are supplied by user,

derivatives sere checked,

results appear correct.

e>0 »> nethod is explicit odr.

ndigit c 16 (estimated by odrpack)

taufac = l.OOD+00

stopping criteria:

sstol « 1.49D-08 (sum of squares stopping tolerance)

partol 3.67D-11 (parameter stopping tolerance)

mazit ~ 50 (mazimum number of iterations)

initial weighted stub of squares « 6.63720354D+05

sum of squared weighted deltas « 0 . OOOOOOOOD+OO

sum of squared weighted epsilons = 6 . 63720354D+05

*** iteration reports for fit by nethod of odr ***

it.

num.

cum.

no. fn

evals

weighted

8um-of-sqs

act. ral.

STUB-of-sqs

reduction

pred. rel.

sum-of-sqs

reduction tau/pnorm

g-n

step

1 19 2.51166IH01 9.9996D-01 9.9997D-01 3.499D-01 yes

2 20 2.14730D+01 1.4507D-01 1.5249D-01 6.900D-02 yes

3 21 2.144631H01 1.2418D-03 1.4631D-03 8.573D-03 yes

4 22 2. 144551H01 3.7676D-05 4.7131D-05 2.016D-03 yes

5 23 2. 14455D-i-01 1.5116D-06 1 . 8950D-06 3.927D-04 yes

6 24 2.14455IH01 6.2002D-08 7.7723D-08 8.017D-05 yes

7 25 2.14455D-t-01 2.5359D-09 3.1790D-09 1.617D-05 yes

*** final summary for fit by method of odr ***

— stopping conditions:

info > 1 »> sum of squares convergence,

niter > 7 (number of iterations)

nfev B 25 (number of function evaluations)

njev > 8 (number of Jacobian evaluations)

irank « 0 (rank deficiency)

rcond > 6.12D-03 (inverse condition number)

istop > 0 (returned by user from subroutine fen)

final weighted sums of squares 2.14455017IH01

48 Using ODRPACK

8UB of squared weighted deltas « 7.78974669IH00

SUB of squared weighted epsilons > 1.36557550D+01

residual standard deviation

degrees of freedom 9

1.54364294IH00

estimated beta(j) . j 1, np:

1

beta

1.2646B481IH-03

s.d. beta

1.0349IH00

9BX confidence interval

1.26231139IH03 to 1 . 26699822D-K)3

2 -B.40184100IH01 1.B840D-I-00 -B.760B0942IH01 to -B.043172B7D+01

3 -8.78497122D-02 6.3322D-03 -1.02187862D-01 to -7.3B11B621D-02

estimated epsilonCi) and deltaCi,*), i - 1, . . . , n:

i epsilonCi.l) delta(i,l)

1

2

3

4

5

6

7

8

9

10

11

12

-3.45194935D-01

1 . 05480B06IH00

-3.00719286D-02

-1.13916405D-01

-1.40250730D-01

-5.53155556D-01

-6.99564762D-01

1.88412530IH00

-1.70916306D+00

1.80916198D+00

1.90299896D-01

-1.34707485D+00

O.OOOOOOOOD+00

0,00000000D+00

-6.50838155D-02

-2.67201445D-01

-3.31357554D-01

-1.30641313IH00

-1.3252B687D+00

1 .4B88B497D-)-00

-1.18803B77D+00

7.71243449D-01

8.241392B3D-02

0 . OOOOOOOOD+00

Using ODRPACK 49

2.C.ii. Example Problem for an Implicit Model

Tliis sample program invokes DODR to solve the implicit problem shown in example

3.2.4 on page 244 of [Fuller, 1987]. In this example, the data (listed in §2.C.ii.b) are

observations digitized from the x-ray image of a hip prosthesis, where the variables

Xi = {vi,hi), i = l,...,n, are the vertical and horizontal distances from the origin,

respectively, and the implicit model is that of the ellipse

fi{xi‘,/3) = P3{vi-l3iy + 2P^{vi-fii)ihi-/32) + fi5{hi-fi2y = 0

for T = 1, . .
.
,n. The starting values for the model parameters are

P = (-1.0, -3.0, 0.09, 0.02, 0.08)

and A is initialized to zero. Since the observed data are all of equal precision, we set

vis = 1 using ODRPACK ’s structured argument feature. The remaining arguments are

set to their default values. (See §1.G.)

2.C.ii.a. User Supplied Code

PROGRAM sample

ODRPACK Argument

=> fen
*=> n
»=> m
»=> np
=> nq

<«a=> beta

“> y
=> Idy
•=> I

=> Idx

=> we

=> Idwe
=> ld2we

=> wd

=> Idwd
=> ld2wd

=> job

=> iprint
*> lunerr

=> lunrpt
<==> work

Definitions

name of the user supplied function subroutine

number of observations

columns of data in the explanatory variable

number of parameters

ntuber of responses per observation

function parameters

response variable (unused when model is implicit)

leading dimension of array y
explanatory variable

leading dimension of array x

initial penalty parameter for implicit model

leading dimension of array we

second dimension of array we

“delta" weights

leading dimension of array wd

second dimension of array wd

task to be performed

print control

logical unit for error reports

logical unit for computation reports

DOUBLE PRECISION work vector

50 Using ODRPACK

c

c

c

c

“> Isork
<“ ivork

“> 1ivork

<“ info

dinension of vector vork

INTEGER vork vector

dimension of vector ivork

stopping condition

c

c

c

c

c

Paraaeters specifying naxiauB problea sizes handled by this driver

main aaziaua nuaber of observations

aaza Baziaua nuaber of coluans in explanatory variable

aaxnp maxiaua nuaber of function paraaeters

iq Baxiaua nuaber of responses per observation

Paraaeter Declarations and Specifications

INTEGER Idvd,ldve,ldx,ldy,ld2vd,ld2ve,

+ livork. Ivork, aaza,Baxn,Baxiq>,Baxnq

PARAMETER (BaxB=5,aaxn=25.aaznp=5,aaxnq>2,

ldy=naxn,ldx>cBaxn,

+ Idve=l,ld2ve<=l,ldvd=l,ld2vd=l,

+ Ivork^lS -f lleaaxnp Baxnpv*2 + aaxa + BaxB**2 +

+ 4eBaxneBaxnq + SvBaxnVBaxB + 2vBaxnVBajQiqVBaxnp +

+ 2eBaxnVBaxnqVBazB + Banqee2 +

f Svaaxnq aaxnq* (aaxiy •^Baxa) + ldve*ld2veVBajaiq,

+ livork=20->-Baxz9+Baxnq* (aaxi^+Baxa))

c Variable Declarations

INTEGER i , info , iprint . j , j ob , lunerr , lunrpt ,a ,n , np ,nq

INTEGER ivork(livork)

DOUBLE PRECISION betaCaaxnp),

+ vd(Idvd , ld2vd .aaxa) , ve (Idve , ld2ve .aaxnq)

,

-i- vork(lvork) ,x(ldx,BarB) ,y(ldy,aaxnq)

EXTERNAL fen

c Specify default

ve(l,l,l) =

vdd.l.l) -

job •=

iprint =

lunerr >=

lunrpt =

values for dodr arguaents

-l.OdO

-l.OdO
-1

-1

-1

-1

c Set up ODRPACK report files

lunerr > 9

lunrpt ~ 9

OPEN (unitB9,file=’report2')

c Read problea data

OPEN (unites,file=*data2')

READ (5,FMT'>*) n,B,np.nq

READ (B,FMT=*) (beta(i) ,i=l,np)

Using ODRPACK 51

DO 10 i-l.n

READ (B.FMT-*) (i(i, j). j-l,*)

10 CONTIHUE

c

c

c

c

c

Specify task: ii^licit orthogonal distance regression

with forward finite difference derivatiwes

covariance natrix constructed with recomputed derivatives

delta initialized to zero

not a restart

job 00001

c Compute solution

CALL dodrCfcn,

+ n,m,np,nq.

+ beta.

+ y,ldy,x,ldx.

+ we , Idee , ld2we ,wd , Idsd , ld2wd

,

+ job.

+ iprint , lunerr ,lunrpt

,

+ work , Isork , iwork , liwork

,

+

END

info)

SUBROUTTNE fcn(n,n,np,nq,

+ ldn,ldm,ldnp,

+ beta.zplusd,

+ ifixb,ifirx.ldifx,

+ ideval.f ,fjacb.fjacd,

+ istop)

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

Subroutine Arguments
a> n number of observations
mm> number of columns in explanatory variable

«> np number of parameters
—> nq number of responses per observation
-=> Idn leading dimension declarator equal or exceeding n
n> 1dm leading dimension declarator equal or exceeding a
=> Idnp leading dimension declarator equal or exceeding np
n> beta current values of parameters
*=> xplusd current value of explanatory variable, i.e., x delta
a> ifixb indicators for "fixing” parameters (beta)

ifixx indicators for "fixing" explanatory variable (x)

=> Idifx leading dimension of array ifixx

>=> ideval indicator for selecting computation to be performed
<«<= f predicted function values

<= fjacb Jacobian with respect to beta

fjacd Jacobian with respect to errors delta
<s= istop stopping condition, where

52 Using ODRPACK

c 0 Beans current beta and x+delta sere

c acceptable and values were computed successfully

c 1 Beans current beta and x+delta are

c not acceptable: ODRPACK should select values

c closer to Bost recently used values if possible

c -1 Beans current beta and x+delta are

c not acceptable; ODRPACK should stop

c Input arguBents, not to be changed by this routine:

IHTEGER i.ideval,istop,l,ldifx,ldB,ldn,ldiq>,B,n,np,nq

DOUBLE PRECISION beta(np) .xplusdCldn.m)

INTEGER ifixb(np) ,ifixx(ldifx,B)

c Output arguBents

:

DOUBLE PRECISION f (Idn.nq) .fjacb(ldn,l<inp.nq) ,fjacd(ldn.ldB.nq)

c Check for unacceptable values for this problem

IF (beta(l) ,GT. O.OdO) THEN

istop 1

return

ELSE

istop > 0

END IF

c Compute predicted values

IF (MOD(ideval.lO).GE.l) THEN

DO 110 1 = l.nq

DO 100 i - l.n

f (i,l) K beta(3)*(xplusd(i,l)-beta(l))*e2 +

+ 2ebeta(4)*(xplusd(i,l)-beta(l))*

+ (xplusd(i,2)-beta(2)) +

+ beta(5)*(xplusd(i,2)-beta(2))*e2 - l.OdO

100 CONTINUE

110 CONTINUE

END IF

RETURN

END

Using ODRPACK 53

2.C.u.b. User Supplied Data (file data2)

20 2 5 1

- 1.0 -3.0 0.09 0.02 0.08

0.50 -0.12

1.20 -0.60

1.60 - 1.00

1.86 - 1.40

2.12 -2.54

2.36 -3.36

2.44 -4.00

2.36 -4.75

2.06 -5.25

1.74 -5.64

1.34 -5.97

0.90 -6.32
-0.28 -6.44
-0.78 -6.44
- 1.36 -6.41
- 1.90 -6.25
-2.50 -5.88
-2.88 -5.50
-3.18 -5.24
-3.44 -4.86

54 Using ODRPACK

2.C.ii.c. Report Generated by ODRPACK (file rGport2)

****4t**********************************«***************

* odrpack TerBion 2.01 oi 06-19-92 (double precision) *

*** initial Bumnary lor lit by nethod ol odr ***

problen size:

n “ 20 (number with nonzero weight

nq - 1

m > 2

np - 5 (number unlized > 5)

control values:

job = 00001

« abode, where

a=0 «=>

b-0 —

>

c=0 =>

d«0 -=>

e=l *=>

ndigit - 15

taiilac K 1 . OOD+OO

stopping criteria:

sstol : 1.49D-08 (stm ol squares stopping tolerance)

partol > 6.06D-06 (parameter stopping tolerance)

mazit > 100 (maziaun number ol iterations)

lit is not a restart,

deltas are initialized to zero,

covariance matriz vill be computed using

derivatives re-evaluated at the solution,

derivatives are estimated by lorvard dillerences.

method is implicit odr.

(estimated by odrpack)

O.OOOOOOOOIHOO

8.39823392D-01

8.39823392D-01

l.OD+01

lunction parameter summary:

initial sum ol squared weighted deltas ^

initial penalty lunction value >=

penalty term >

penalty parameter

indez beta(k) lized

(k) (ilizb)

scale derivative

step size

(sclb) (stpb)

1 -l.OOOOOOOOD+00

2 -3.00000000D+00

3 9.00000000D-02

4 2.00000000I>-02

6 8.00000000D-02

no l.OOOOOOOOD+OO 3.16228D-10

no 3.33333333D-01 3.16228D-10

no l.llllllllIHOl 3.16228D-10

no E.OOOOOOOOD+Ol 3.16228D-10

no 1.25000000D+01 3.16228D-10

Using ODRPACK 55

explanatory variable and delta veight auanary:

index x(i.j) delta(i, j) fixed scale veight derivative

(i.j) (if ixx) (scld) (wd)

step size

(stpd)

1.1 5.000D-01 O.OOOD+00 no 2.000+00 1.000+00 3.162280-10

n,l -3.440D+00 O.OOOD+00 no 2.910-01 1 . 000+00 3.162280-10

1.2 -1.200D-01 O.OOOD+00 no 8.330+00 1.000+00 3.162280-10

n.2 -4.8600+00 O.OOOD+00 no 2.060-01 1.000+00 3.162280-10

*** final aunnary for fit by nethod of odr ***

stopping conditions:

info K 2 »> paraneter convergence,

niter > 18 (nunber of iterations)

nfev > 217 (niuber of function evaluations)

irank « 0 (rank deficiency)

rcond > 3.18D-02 (inverse condition number)

istop B 0 (returned by user from subroutine fen)

final sum of squared weighted deltas «

final penalty function value =

penalty term >

penalty parameter

8 . 82420346D-02

8. 824456 16D-02

2 . 52700897D-06

1 . OD+OS

residual standard deviation

degrees of freedom 15

7.66994283D-02

estimated beta(j)
, j 1, np:

beta s.d. beta 95X confidence interval

1 -9.99380972D-01

2 -2.93104848D+00

3 8.75730479D-02

4 1 . 62299739D-02

5 7.97538008D-02

1.1138D-01

1.0977D-01

4.1061D-03

2.7500D-03

3.4963D-03

-1.23682206IH00 to

-3. 1650435IIHOO to

7.88199915D-02 to

1.03676338D-02 to

7 . 23007073D-02 to

-7.61939883D-01

-2.69705344D+00

9.63261044D-02

2.20923140D-02

8.72068944D-02

56 Using ODRPACK

2.C.iii. Example Problem for an Explicit Model with Multiresponse Data

The problem shown here is an example of multiresponse data that originates because the

underlying data are complex. The problem is described in Chapter 4, and on pages 280-

281, of [Bates and Watts, 1988]. In this case, the dependent variable is the pair of values

representing the real eind imaginary parts of complex-valued impedance measurements

of a polymer, Zi, i = 1, ...,n, and the explanatory variable, Xj, i = l,...,n, is the

(real-valued) frequency. The data are shown in §2.C.iii.b. The function form is explicit,

representing the dielectric constant by the general model proposed by [Havriliak and

Negami, 1967]

for i = l,...,n, where] = 1. For ODRPACK, this must be encoded as two-

term multiresponse data with yi £ 8?^ representing the pair of values [3?(2i), 5(2^)], i =
l,...,n. Havriliak and Negami (1967) show that the real and imaginary components

can be written as

where

and

9t{zi) = /32 + {01 - 02)R^ cos{/3s<f>)

= {01 - 02)R^ sm{Ps4>)

R2 _
1 -I- (27rxi/^3)^* cos(7r/54/2)] -f [(2xi,/^3)^* sin(xM^)\

{2T:xil02tY* sin(7r/34/2)
(j) = arctan

1 + {2'KXil0zY^ cos
(
x/34/2)

The estimation procedure described in [Bates ajid Watts, 1988] for this multiresponse

problem is slightly different from that implemented in ODRPACK. In particular, their

procedure provides an estimate of We, but does not include estimates of A. Thus, we
would not assume that the results obtained here using ODRPACK will exactly equal

those presented by Bates and Watts.

For our example, we have set the starting values for the model parameters to be the

hnal solution shown on page 152 of [Bates and Watts, 1988], i.e..

0 = (4.398,2.451,8.245,0.487,0.571)’’

and have initialized A to the decade corrections described by them.

Bates and Watts assume that there is no error in the first decade of frequency values,

and we have done the same, “fixing” these variables at their input values. Bates and

Using ODRPACK 57

Watts also identify two outliers in the data set, which are eliminated from our analysis

by setting the corresponding weights to zero. The remedning weights w^i in our example

are set to an estimate of the 2x2 covariance matrix of the errors in the responses of

the dependent variable,

where Cj is the estimate of i= 1, . .
.
,n, obtained using the Bates and Watts solution.

The weights are set to values proportional to the magnitude of the frequencies. The

remaining arguments are set to their default values. (See §1.G.)

2.C.iii.a. User Supplied Code

PROGRAM sanple

c ODRPACK Argiuent

c “=> Icn

c *> n

C => B

c “> np

c “> nq

c <**> beta

c -*> y
c => Idy

c => X

c => Idx

c “> ve

c “> Idwe

c »> ld2ve

c ™> vd

c “> Idwd

c »> ld2vd

c “=> ifixb

c *=> if ixx

c => Idifx

c »=> job

c => ndigit

c =«> taufac

c aatol

c **> partol

c “> Baxit

c “> iprint

c B=> lunerx

c “> lunrpt

c => stpb

c => stpd

c => Idstpd

Definitions

nane of the user supplied function subroutine

nuBber of observations

coluBns of data in the explanatory variable

nuBber of paraneters

nuBber of responses per observation

function paraBeters

response variable

leading dinension of array y
explanatory variable

leading diaension of array x

"epsilon" weights

leading dinension of array se

second dinension of array we

"delta" weights

leading dinension of array wd

second dinension of array wd

indicators for "fixing" paraneters (beta)

indicators for "fixing" explanatory variable (x)

leading dinension of array ifixx

task to be perfomed
good digits in subroutine fen results

trust region initialization factor

SUB of squares convergence criterion

paraaeter convergence criterion

BaxinuB nunber of iterations

print control

logical unit for error reports

logical unit for coaputation reports

step sizes for finite difference derivatives wrt beta

step sizes for finite difference derivatives wrt delta

leading dinension of array stpd

58 Using ODRPACK

c

c

c

c

c

c

c

c

n> 8Clb
“> scld
—> Idscld

<“> «ork
“> Ivork

<“ ivork

“> 1ivork
<*= info

scale values for paraaeters beta

scale values for errors delta in explanatory variable

leading dinension of array scld

DOUBLE PRECISION vork vector

dinension of vector vork

INTEGER vork vector

dimension of vector ivork

stopping condition

c Parameters specifying maximum problem sizes handled by this driver

c maxn maximum number of observations

c maxm maximum number of columns in explanatory variable

c maxnp maximum number of function parameters

c maxnq aximun number of responses per observation

c Parameter Declarations and Specifications

INTEGER IdifX , Idscld , Idstpd , Idvd , Idve , Idx , Idy , ld2vd , ld2ve

,

livork, Ivork, naxm,naxn,naxi^),naxnq

PARAMETER (maxm=5,meucn=100,maxiq>=25,maxnq=5.

+

+

+

+

+

+

+

+

ldy=maxn ,Idx^maxn

,

ldve=maxn, ld2ve=maxnq , ldvd=naxn , ld2vd=l

,

ldifx=maxn,ldscld=l,ldstpd=l

,

lvork=18 llenaxnp + maxnpe*2 + naxa aaza*e2 +

4*naxn*naxnq + 6*maxnemaxm ^ennfm ^imiTnqanimTTip +
2emaxnemaxnq*naxa + maxnq*e2 +

Eemaxnq maznq*(aaxiip-fmaxm) ldveeld2vevinaxnq,

livork=2(H-maziq>4maxnq* (maxnp-^maxm))

Variable Declarations

INTEGER i,info,iprint, j, job,l,lunerr,lunrpt,n,nnxit,n,

ndigit.np.nq

INTEGER ifixb(maxnp) ,ifizx(ldifx,maxm) , ivork (livork)

DOUBLE PRECISION partol,sstol,taufac

DOUBLE PRECISION beta(aaxnp) ,sclb(aaxnp) ,8cld(ldscld,maxm)

,

8tpb(naxnp),8tpd(ldstpd,maxm},

+ vd(ldvd,ld2vd,aaxn) ,ve(ldve,ld2ve,maxnq)

,

+ vork(lvork) ,x(ldx,naxm) ,y(ldy,maxnq)

EXTERNAL fen

c Specify default values for dodre arguments

ve(l,l,l) = -l.OdO

vdd.l.l) = -l.OdO

ifixb(l) = -1

ifixxd.l) = -1

job = -1

ndigit = -1

taufac = -l.OdO

sstol = -l.OdO

Using ODRPACK 59

partol m -l.OdO

maxit m -1

iprint m -1

lunerr m -1

lunrpt m -1

stpb(l) m -l.OdO

stpd(l,l) m -l.OdO

sclb(l) m -l.OdO

scld(l.l) B -l.OdO

c Set up ODRPACK report files

lunerr « 9

lunrpt > 9

OPEN (uiiit=9,file®’report3’)

c Reed problem data

OPEN (unit-5,lile-‘data3')

READ (5,FHT>*) n,B,np,nq

READ (5,FMT=*) (beta(i) ,i=l,np)

DO 10 i=l,n

READ (S.FMT-*) (x(i. j) ,
j=l.B) . (y(i,l) .I'l.nq)

10 CONTINUE

c Specify task as explicit orthogonal distance regression

c with central difference derivatives

c covariance matrix constructed with recomputed derivatives

c delta initialized by user

c not a restart

c and indicate long initial report

c no iteration reports

c long final report

job - 01010

iprint » 2002

c Initialize delta, and specify first decade of frequencies as fixed

DO 20 i^l.n

if (x(i,l) .It. lOO.OdO) then

vork(i) B O.OdO

ifixz(i,l) 0

else if (x(i,l) .le.150.0d0) then

vork(i) B O.OdO

ifixx(i, 1) B 1

else if (x(i,l).le.l000.0d0) then

Bork(i) B 25.0d0

ifixx(i, 1) B 1

else if (x(i,l) .le. 10000. OdO) then

vorkCi) B 560. OdO

ifixx(i, 1) B 1

else if (x(i,l) .le. 100000. OdO) then

60 Using ODRPACK

ork(i) - 9500. OdO

ifixxCi.l) - 1

else

«ork(i) - 144000. OdO

ifizx(i,l) - 1

end if

20 CONTIVUE

Set Heights

DO 30 i-l,n

il

He(i,l,l)

He(i.l,2)

se(i,2,l)

ve(i,2.2)

else

se(i,l,l)

se(i.l.2)

ve(i.2.1)

wed, 2, 2)

end il

wd(i,l.l)

30 COHTINOE

(x(i,l) .eq. 100. OdO

O.OdO

O.OdO

O.OdO

O.OdO

.or. x(i,l) •q* IBO.OdO) then

559. 6d0

-1634. OdO

-1634. OdO

8397. OdO

(1.0d-4)/(x(i.l)**2)

c Coiq>ute solution

CALL dodrcClcn,

+ n,n,np,nq.
+ bets.

+ 7,ldy,x,ldx,

+ we , Idwe , ld2we ,vd, Idvd, ld2Hd,

+ ilixb.if ixx.ldilx.

+ job ,ndigit ,taulsc

,

+ sstol,partol,naxit

,

+ iprint , lunerr , Ixuirpt

,

+ stpb , stpd, Idstpd,

+ sclb , sold, Idscld,

+ work , Isork , isork , 1isork

,

+

EHD

info)

SXXBROUTINE lcn(n,n,np,nq.

+ ldn,ldm,ldnp.

+ beta,xplusd.

+ ilixb , ilixx , Idilx

,

+ ideval . 1 ,1jacb , 1j acd

,

+ istop)

c Subroutine Arguments

Using ODRPACK 61

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

=> n
—«>

»=> np
m=> nq
«=> Idn
—> Ida
««=> Idnp

*=> beta
*=> xplusd

=> ilizb
-=> ifixi
*> Idilx
“*> ideval

<== f

<= Ijacb
<»= Ijacd
<== iatop

nuabar ol obserrationa

nuaber of coluana in explanatory variable

nuaber of paraaetera

nuaber of reaponsea per obaervation

leading diaenaion declarator equal or exceeding n

leading diaenaion declarator equal or exceeding a

leading diaenaion declarator equal or exceeding np

current valuea of paraaetera

currant value of explanatory variable, i.e., x + delta

indicatora for "fixing” paraaetera (beta)

indicatora for "fixing" explanatory variable (x)

leading diaenaion of array ifixx

indicator for aelecting coaputation to be perforaed

predicted function values

Jacobian with respect to beta

Jacobian with respect to errors delta

stopping condition, where

0 aeans current beta and x+delta were

acceptable and values sere coaputed successfully

1 aeans c\irrent beta and x+delta are

not acceptable: ODRPACK should select values

closer to aost recently used values if possible
-1 aeans current beta and x+delta are

not acceptable; ODRPACK should stop

c Input arguaents, not to be changed by this routine:

IlfTEGER i , ideval , istop , Idifx ,Ida , Idn , Idnp ,a ,n , iq> ,nq

DOUBLE PRECISION beta(np) ,xplusd(ldn,n)

INTEGER if ixb(np) ,ifixx(ldifx,n)

c Output arguaents

:

DOUBLE PRECISION f (ldn,nq) ,fjacb(ldn,ldnp,nq) ,fjacd(ldn,ldB,nq)

c Local variables

double precision freq,pi, onega,ctheta,stheta,theta,phi,

r

INTRINSIC atan2,e:q>,sqrt

c Check for unacceptable values for this problea

DO 10 i>l,n

IF (xplusd(i,l).LT.0.0d0) THEN

iatop * 1

return

END IF

10 CONTINUE

iatop 0

pi 3.141592653589793238462643383279d0

theta ~ pi*beta(4)*0.5d0

ctheta B cos (theta)

62 Using ODRPACK

stheta B 8in(theta)

c Coiq>uta predicted values

IF (MOD(ideval.lO).GE.l) THEN

DO 100 1^1,11
freq > zplu8d(i,l)

oaega > (2.0d0«pi*lreq*exp(-beta(3)))**beta(4)

phi atan2((oBegae8theta} , (l+oaega*ctheta))

r “ (beta(l)-beta(2)) •

+ 8qrt((l-i-oBega*ctheta)**2+

+ (oBega*8theta)**2)**(-beta(5))

f (i,l) = beta(2) + r*co8(beta(5)*phi)

l(i,2) = r*8in(beta(B)*phi)

100 CONTINUE

END IF

RETURN

END

Using ODRPACK 63

2.C.iii.b. User Supplied Data (file dataS)

23 1 5 2

4.0 2.0 7 .0 0.40 0.50

30.0 4.220 0.136

50.0 4.167 0.167

70.0 4.132 0.188

100.0 4.038 0.212

150.0 4.019 0.236
' 200.0 3.956 0.257

300.0 3.884 0.276

500.0 3.784 0.297

700.0 3.713 0.309

1000.0 3.633 0.311

1500.0 3.540 0.314

2000.0 3.433 0.311

3000.0 3.358 0.305

5000.0 3.258 0.289

7000.0 3.193 0.277

10000.0 3.128 0.255

15000.0 3.059 0.240

20000.0 2.984 0.218

30000.0 2.934 0.202

50000.0 2.876 0.182

70000.0 2.838 0.168

100000.0 2.798 0.153

150000.0 2.759 0.139

64 Using ODRPACK

2.C.iii.c. Report Generated by ODRPACK (file reports)

» odrpack Tersion 2.01 of 06-19-92 (double precision) *

^^f*4f*

*** initial sunmary lor lit by method of odr ***

problea size:

n 23 (number with nonzero weight

nq - 2

m > 1

np - 5 (number unfized > 5)

control values:

job = 01010
K abode, where

a«0 =>
b=l =>
c»0 “>

d-1 —

>

esO -=>

ndigit 15

taufac = I.OOIHOO

stopping criteria:

sstol B 1.49D-08 (s\in of squares stopping tolerance)

partol 3.67D-11 (parameter stopping tolerance)

mazit 50 (maziaum number of iterations)

fit is not a restart,

deltas are initialized by user,

covariance matriz will be computed using

derivatives re-evaluated at the solution,

derivatives are estimated by central differences,

method is ezplicit odr.

(estimated by odrpack)

initial weighted sun of squares

sum of squared weighted deltas

sun of squared weighted epsilons

1.71064070D+03

2.01382943D-04

1.71064050IH03

function parameter summary:

indez beta(k) f ized scale derivative

(k) (if izb) (sclb)

step size

(stpb)

1 4.00000000IH00 no 2.50000000D-01 1.000000-05

2 2.000000001>f00 no 5 . OOOOOOOOD-01 1.000000-05

3 7.00000000IH00 no 1.42857143D-01 1.000000-05

4 4.00000000D-01 no 2 . 500000000+00 1.000000-05

5 5.00000000D-01 no 2.000000000+00 1.000000-05

ezplanatory variable and delta weight summary:

Using ODRPACK 65

index x(i.j) delta(i, j) fixed scale veight derivative

(i.j) (iiixx) (scld) (vd)

step size

(stpd)

1.1 3.000IH01 0.0000+00 yes 3.330-02 1.110-07 1.000000-05

n,l 1.500IHOB 1.4400+05 no 6.670-06 4.440-15 1.000000-05

response variable and epsilon error veight summary:

index

(i.l)

y(i.i) veight

(ve)

1.1 4.2200400 5 . 5960+02

n,l 2. 7590+00 5 . 5960+02

1.2 1.3600-01 8.3970+03

n,2 1.3900-01 8.3970+03

*** final susBary lor lit by aathod ol odr ***

-— atopping conditions:

inlo c 1 sun ol squares convergence,

niter « 8 (number ol iterations)

nlev B 121 (number ol function evaluations)

irank ^ 0 (rank deficiency)

rcond ^ 8.1BD-03 (inverse condition number)

istop K 0 (returned by user from subroutine Icn)

final veighted sums ol squares >

sum ol squared veighted deltas «

sum ol squared veighted epsilons =

4.20538922D-01

5.54021897D-04

4.19984900D-01

residual standard deviation

degrees ol freedom 16

1.62122431D-01

estimated beta(j)
. j « 1, np:

beta s.d. beta 95% confidence interval

1 4.379988030+00 1.30630-02 4.352293880+00 to 4.407682180+00

2 2.433305760+00 1.30500-02 2.405638200+00 to 2.460973320+00

3 8.002884590+00 1.16710-01 7.755448030+00 to 8.250321150+00

4 5.101147160-01 1.32640-02 4.819928240-01 to 5.382366090-01

5 5.173902330-01 2.88530-02 4.562184980-01 to 5.785619680-01

estimated epsilon(i) and delta(i,e), i > 1, n:

i epsilon(i,l) epsilon(i,2) delta(i,l)

66 Using ODRPACK

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

-7.3855879BD-03

-1.05614733D-03

-2.70863920D-03

4.68593517D-02

8.08102389D-03

1.53882522D-03

4.60535703D-03

4.50906164D-03

-1.00621895D-03

1.05810802D-02

6.93622739D-03

3. 9582801 lD-05

-3.77617796D-03

-5.56734978D-04

2.08263807D-03

-7.50689916D-03

-1.56731844D-03

-5.93223183D-04

1 . 15260099D-04

2. 6364111 lD-04

-3.81011180D-04

-3. 368226llD-04

2.87173883D-03

1.26939187D-03

-1.22846292D-03

-2.14347329D-03

-4.25940138D-03

-3.47639194D-03

3. 852937 13D-04

1.19118896D-03

1.235708920-03

-2. 918650430-04

3.272841940-03

2.434821060-03

1.759050140-05

-2.429078140-03

-1.701237840-03

-2.237232330-03

2 . 164628930-03

2.033670850-04

2.720691710-05

-2.421261310-07

5.185103190-06

-1.039638500-05

-1.261413910-05

1.411998410-04

0 . 000000000^00

0.000000000-K)0

0.000000000+00

0.000000000+00

0.000000000+00

3.036944000+01

3.789867500+01

6.226304870+01

1.111869800+02

1 . 157098770+02

2.414365910+02

9.613445320+02

1.330298450+03

2.075115660+03

2.902895320+03

5.218158180+03

7.545646360+03

1.742010210+04

2.427454720+04

3.784920520+04

5.534932800+04

8.757914320+04

1.294963000+05

3. When the Model Is Very Time Consuming

ODRPACK executes user supplied subroutine FCN not only to compute the initial sum
of the squared errors 5(/3, and to obtain function and derivative values within its main

iterative procedure, but also when setting the default value for the number of good digits

in the function results, when performing derivative checking, and when constructing the

covariance matrix and standard deviations of the estimated parameters When the

time required for hnding the solution is dominated by the evaluation of FCN, the user

will want to make judicious use of these options in light of their “cost.” Let p be the

number of unfixed parameters P, and let y? = 1 if the fit is by orthogonal distance

regression and y? = 0 if the fit is by ordinary least squares. Then the number of times

the function and derivatives are evaluated in each of these instances is summcirized as

follows:

Computation Function Derivative Controlling

Evaluations Evaluations^ Variable

• Initial S{P,6): 1 0 —
• Per Iteration: > 1 1 —
• Default number of

good digits in function results: 4 0 NDIGIT

• Derivative checking: > q{p + (pm) 1 JOB

• Default covariance matrix: 0 1 JOB

Users with a very time consuming subroutine FCN should also be aware of two of ODR-
PACK’s options that are specifically designed for such problems. The most importeint

of these is the restart facility. The other is the option of constructing the covariance

matrix without recomputing the derivative matrices at the solution. This second option

is discussed in §2.Bii, under the description of subroutine argument JOB, and also in

§4.B. The remainder of this section describes how ODRPACK ’s restart facility can be

used to minimize the risk of losing important results because system imposed time limits

are reached before the solution is found.

forward finite difference approximation to the derivative requires 9(p + ^m) function evaluations,

and a central finite difference approximation requires 2q{p + fm) function evaluations. (See §4.A.)

67

68 When the Model Is Very Time Consuming

The restart facility enables the user to step through the solution procedure one or more

iterations at a time without incurring any additional function or derivative evaluations

over what would be required if the procedure were allowed to run to convergence. Figure

3.1 shows an example of how the restart facility can be employed. This example allows

up to a total of 30 iterations, and writes the contents of arrays BETA, WORK and IWORK

to a file between every iteration, alternating between two files. This minimizes the

chance of losing significant amounts of important information due to system imposed

limits: if such a limit is reached before convergence, arrays BETA, WORK and IWORK can

be restored using the saved data and the computations restarted. In this example,

the initial computation report is only generated at the first iteration, while the final

computation report is generated after every iteration. The options selected include

constructing the covariance matrix using the derivative matrices from the last iteration,

and thus no additional calls to subroutine FCN are incurred in order to provide the

standard deviations of the parameters printed in each of the reports.

Users with very time consuming problems should be aware that, depending on which

options are selected, ODRPACK will make at least one and possibly more calls to

subroutine FCN before attempting to generate any computation reports. Also, on many
systems the output generated by a program is not written directly in a file but rather

is stored in a “buffer” until the buffer is full, and is only written to the file at that

point. If a run is aborted prematurely, either by the user or because a system imposed

limit is reached, then the content of these buffers might not be emptied into the files

associated with them. Thus, the files associated with the logical units specified by

arguments LUNERR and LUNRPT might not include all information actually generated by

ODRPACK at the time it stopped. When the user is not getting the expected reports

from ODRPACK, it may be necessary to have ODRPACK generate reports directly to

“standard output,” which is usually not buffered, in order to determine exactly where

the computations are stopping. (See §2.B.ii, subroutine arguments IPRINT, LUNERR and

LUNRPT.)

When the Model Is Very Time Consuming 69

Figure 3.1: Using ODRPACK’s Restart Facility

I

c set up riles to ssts cosqnitatioiis for fntnre restarts

lanl B 11

OPEI (onitBlnnl ,file^ ’savel .dat ’

)

lim2 12

OPEI (uiitBlaii2,file<°’saTe2.dat’)

c set the maximi nraber of iterations for each call to ODBPACK to one

c so results can be stored beteeen iterations

Mzit 1

c set argnaent appropriately, Mking sure for first iteration that

c fit is not a restart and

c covariance natriz is constructed sithont reconpating derivatives

job * 00100

c set iprint to indicate a long initial report,

c a short iteration report, and

c a long final report

iprint - 2112

c step throngh up to 30 iterations

DO 100 niter « 1 , 30

CALL dodrc(fcn, ... ,info)

c save the contents of beta, eork and isork for future reference

IF (od(niter,2) .eq.l) THEl

lun lunl

ELSE
lun B lnn2

EID IF

OPEI (UIIT-lun)

WRITE (Inn,*) (beta(k) ,kBl,np)

WRITE (Inn,*) (Bork(i),isi,luork)

WRITE (lun,*) (ivork(i) ,iBl,liBork)

CLOSE (UlIT-lun)

IF (info.ge. 10000 .or. od(info,10) .le.3) then

c stop because either a fatal error uas detected, or the problem converged

stop

ELSE

c set job to indicate the next iteration is a restart and

c set iprint to suppress the initial report for future iterations,

job B 10100

iprint * 0112

EID IF

100 COITIIUE

c

I

70 When the Model Is Very Time Consuming

4. Computational Details

4.A. Computing the Jacobian Matrices

As was noted in §1.A, the matrices of first partial derivatives, i.e., the Jacobian matrices

k=l p, &/ = l

j = &/=!,. .., 9 ,

(4.1)

are required at every iteration. These can be provided by the user as described for

subroutine argument FCN in §2.B.ii, or can be approximated automatically by ODR-
PACK. User supplied derivatives are generally either “hand coded” as is done in the

example program shown in §2.C.i, or are the product of an “automatic differentiation”

tool. ODRPACK’s approximations cire formed using either forward or central finite

differences.

4.A.i. “Hand Coded” Derivatives

Hand coded derivatives are those produced by the user without the aid of a differenti-

ation tool. Because coding errors axe a common problem with hand coded derivatives,

ODRPACK has an option to check the validity of the user supplied derivative code by

comparing its results to finite difference values for the derivative. The derivative check-

ing procedure examines the unfixed variables at only one row of the Jacobian matrix,

and is therefore quite efficient. Checking only one row is reasonable for regression mod-

els since the same code is frequently used to compute the model function and derivatives

for each row, as is the case for each of the examples shown in §2.C.

When the value of the user supplied derivative disagrees with the corresponding finite

difference value, the checking procedure attempts to determine whether the disagree-

ment is due to an error in the user’s code, or is due to the inaccuracy of the finite

difference approximation. The checking procedure generates an error report when one

or more of the derivatives are found to be questionable. This information is also returned

to the user in subroutine argument IWORK. (See §5.B.)

71

72 Computational Details

Questionable derivatives can occur when the derivative is exactly zero or when the nu-

merical derivative used in the checking procedure is believed to be inaccurate because

of the properties of the function. Zero valued derivatives are questionable because they

could indicate that the initial values of the function parameters might be hiding an

error in the derivative, such as could occur if the initial value of one of the parameters

was zero. Users should examine the ODRPACK error reports, or the encoded values in

subroutine argument IWORK as described in §5.B, to determine the cause of the ques-

tionable results, and then examine subroutine FCN to insure that there is not an error in

the user supplied derivatives that could be adversely affecting the least squares results.

4.A.ii. Automatic Differentiation

Automatic differentiation tools produce code to calculate a function’s derivatives di-

rectly from the code used to compute the function values. Such tools enable the user to

generate the derivatives required by ODRPACK without the tedium and errors associ-

ated with hand coded derivatives. An overview of automatic differentiation is presented

in [Griewank, 1989], and a survey of automatic differentiation software is provided in

[Juedes, 1991]. We have found tools such as ADIFOR [Bischof et ai, 1991] and DAPRE
[Stephens and Pryce, 1991], which are precompilers that transform a Fortran subroutine

that evaluates the function into a Fortran subroutine that evaluates both the function

and its derivatives, especially suitable for use with ODRPACK.

Currently, most differentiation tools, including ADIFOR and DAPRE, generate code to

evaluate the function and derivative values simultaneously. Least squares procedures,

however, need the derivatives only after determining that a satisfactory new point has

been found, and this determination requires at least one and possibly more function

evaluations. Thus, when using a differentiation tool, one has two choices: either the

function and derivatives can be always evaluated together using the code generated by

the differentiation tool; or the hand coded function can be evaluated by itself until a

satisfactory new point has been found, at which time the derivative code generated

by the differentiation tool code can be evaluated. The first choice has the drawback

that sometimes the computed derivative values will not be used. If the second option

is selected, the function values produced by the differentiation tool generated code are

used only for the evaluation of the Jacobian matrices and not within the least squares

procedure.

For the differentiation tools and problems examined by the authors, the time required

to evaluate the derivative and function together using code generated by automatic

differentiation is frequently significantly more than that required to evaluate only the

hand coded function. We thus believe that in most cases it will be more cost effective

for users to employ the second of the two choices mentioned above. Users must also

Computational Details 73

be aware that ODRPACK never asks that both the function and its derivatives be

computed in a single call to subroutine FCN, and that it is possible that an invocation

of FCN for evaluating the derivative will not be immediately preceded with a call to FCN

to evaluate the function for the same parameter values. Thus, if the first of the two

options is employed, the user will need to construct a mechanism for saving the computed

derivatives until ODRPACK actually requests them, possibly using the Fortran COMMON

facility, and also a mechanism for determining whether the saved derivative values were

in fact those evaluated at the selected parameter values.

4.A.iii. Finite Difference Derivatives

Finite difference derivatives are automatically constructed by ODRPACK to approx-

imate the JacobicLn matrices when the user does not supply code within subroutine

FCN to compute them. Either forward or central finite differences can be employed for

the approximation. (See §2.B.ii, subroutine argument JOB.) A central finite difference

derivative gives a more accurate approximation than the corresponding forward finite

difference derivative, but at the expense of an additional call to subroutine FCN for each

partial derivative computed. The interested reader is referred to [Dennis and Schnabel,

1983] and [Gill et aL, 1981] for a more complete discussion of forward and central finite

difference approximations.

4.A.iii.a. Forward Finite Difference Derivatives

The forward finite difference derivative with respect to /3 for response I of observation t

is computed using

fujxj -H Sj; 0 + h0^Uk)- fujxj + 6i;P)

hu
i = 1,. . .,n, k = 1, . . .,p, and / = 1, . . .,g, where u* is the kth. unit vector, i.e., the kth

column of a p X p identity matrix, eind where is the finite difference step size,

hk = A: = 1, . . .,p, (4.2)

with the relative step size for parameter 0k specified by subroutine argument STPB.

(See §2.B.ii.) The default value for the relative step for a forward finite difference

derivative is

where V’ indicates the number of good digits in the results of the user supplied subroutine

FCN. (See §2.B.ii, subroutine argument NDIGIT.) This default value is selected based on

empirical evidence that indicates it generally outperforms the commonly recommended

74 Computational Details

value h = (See, e.g., [Dennis and Schnabel, 1983].) Procedures for selecting

near optimal relative step sizes are discussed in [Gill et al, 1981] and [Schnabel, 1982].)

The step must be large enough so that approximately half of the good di^ts of

faixi + P + h^^Uk) and fa{xi + Si; P) will be the same. The forward finite difference

approximation to the derivative can then be expected to have roughly half the number
of good digits as are in the computed value of fa{xi + Si;^). When the computation of

/t/(®» + ^»»/5) has sufficient precision, then forward finite difference derivatives will cause

very little change in the results from those that would be obtained using hand coded or

automatic differentiation derivatives.

The forward finite difference derivatives with respect to A are formed analogously to

those with respect to (3. (See §2.B.ii, subroutine argument STPD, for specification of the

relative stepsize.)

4.A.iii.b. Central Finite Difference Derivatives

When the user suspects that the forward finite difference approximation will not provide

sufficient precision, then a central finite difference approximation can be used. (See

§2.B.ii, subroutine argument JOB.) The central finite difference approximation to the

partial derivative with respect to /S* for response I of observation t is given by

fujxi + 6i;P + hkUk) - fiijxj -\-Si;(3- hkUk)

hk

t = 1, . . .,n, fc = 1, . . .,p, and I = The step hk is formed as in (4.2), where the

default value for the relative step for a central finite difference derivative is

h = 10"^/^
.

The central finite difference derivatives with respect to A are again formed analogously.

4.B. Covariance Matrix

The linearized confidence regions and intervals for the unknowns and A estimated

by orthogonal distance regression are the same as the linearized regions and intervals

that would be obtained if the orthogonal distance regression problem were solved as a

p+nm parameter nonlinear ordinary least squares problem. If we express the orthogonal

distance regression problem defined by (1.8) or (1.9) as such a nonlinear ordinary least

squares problem with nq + nm observations and p + nm unknowns, and we designate

Computational Details 75

the unknowns of this ordinary least squares problem as rj'^ = (/?’', SJ , . .
.

,

6^), then the

sum of squares to be minimized is

S{v) = G{vr!lG(r,)

where G{ti) is the vector valued function whose ith “element” is defined by

/ \ / /t(®» 0) ~ Vi i = 1, . .
.

,

Tl,

i = n+l 2n.

and n 6 ^{rui+nm)x{nq+nm)
jg block diagonal weighting matrix given by

n

^1

We.

The ordinary least squares representation of (1.8) or (1.9) is thus

2n

min5(»7) = min 5^^.(77)’^n.i(7,(7/)
V V

t=l

(4.3)

where flu denotes the (t,i)th “element” of fl.

Let G'{Tj) 6 denote the Jacobian matrix with {u,k)th. element equal

to dg„{T})fdTik evaluated at K we assume that G'{r}) and ft are full rank, so that

[G'{‘q)'^flG'{‘q)] is nonsingiilar, then the linearized covariance matrix for the estimators

fj is the (p + nm) X (p + nm) matrix

V = a^[G\vyflG'm-\

where a = S{‘q)ffi = S{0,6)lfi is the estimated residual variance with p degrees of

freedom. (The degrees of freedom is the number of observations with nonzero weights

minus the number of parameters actually being estimated, i.e., fi = n — p.) This

covariance matrix V can be partitioned

V = % %6
1

V60 Vs
J

where G is the covariance matrix for the estimators 0, Vs E is the

covariance matrix for the estimators A, and V^s = Vg^ 6 gives covariances be-

tween 0 and A. It is the covariance matrix V^ of the estimators 0 that is automatically

76 Computational Details

provided by ODRPACK. The actual computational technique used by ODRPACK to

compute Vp is described in detail in [Boggs and Rogers, 1990b].

By default, ODRPACK will recompute the Jacobian matrices at the Anal solution before

constructing the covariance matrix. However, ODRPACK also provides the option of

constructing the covariance matrix using the Jacobian matrices from the last iteration.

(See §2.B.ii, subroutine argument JOB.) The option of using the Jacobian matrices

from the last iteration to construct the covariance matrix is especially useful when the

evaluation of user supplied subroutine FCN is very time consuming. Assuming that the

algorithm has actually converged, using the Jacobian matrices from the last iteration

should give essentially the same covariance matrix as that which would be obtained

using the Jacobian matrices recomputed at the solution. Once the user conArms that

the solution is satisfactory, the covariance matrix can easily be computed at the actual

solution by calling ODRPACK with the Anal values of (3 and A as input, and with

argument MAXIT = 0 and the third digit of argument JOB set to 0.

The steindard deviations, dp, of the function parameters listed in the ODRPACK Anal

report are the square roots of the diagonal elements of Vp, i.e.,

% = V^^\k,k) .

The 95% conAdence intervals are computed using

Pk ± <.975,/i^/3*

where <.975,^ is the appropriate value for constructing a two-sided 95% conAdence interval

using the Student’s t value for
fj,

degrees of freedom. When p. > 20, t.975 ,^ « 2; when

p < 5, <.975,/I > 2.5 .

K necessary, the full covariance matrix V for all of the estimators rj can be computed

using the equations given in [Boggs and Rogers, 1990b], or can be “automatically”

obtained from most ordinary least squares software (including ODRPACK) by solving

the orthogonal distance regression problem as the ordinary least squares problem deAned

by (4.3).

Note that for nonlinear ordinary least squares, the linearized conAdence regions and

intervals are asymptotically correct as n —> 00 [Jennrich, 1969]. For the orthogonal

distance regression problem, they have been shown to be asymptotically correct as c* —

0 [Fuller, 1987]. The difference between the conditions of asymptotic correctness can be

explained by the fact that, as the number of observations increases in the orthogonal

distance regression problem one does not obtain additional information for A. Note also

that V is dependent upon the weight matrix D, which must be assumed to be correct,

and cannot be conArmed from the orthogonal distance regression results. Errors in the

Computational Details 77

values of and ujy,. that form Cl will have an adverse affect on the accuracy of V and

its component parts. The results of a Monte Carlo experiment examining the accuracy

of the linearized confidence intervals for four different measurement error models is

presented in [Boggs and Rogers, 1990b]. Those results indicate that the confidence

regions and intervals for A are not as accurate as those for p.

Despite its potential inaccuracy, the covariance matrix is frequently used to construct

confidence regions and intervals for both nonlinear ordinary least squares and mea-

surement error models because the resulting regions and intervals are inexpensive to

compute, often adequate, and familiar to practitioners. Caution must be exercised when

using such regions and intervals, however, since the validity of the approximation will

depend on the nonlinearity of the model, the variance and distribution of the errors,

and the data itself. When more reliable intervals and regions are required, other more

accurate methods should be used. (See, e.g., [Bates and Watts, 1988], [Donaldson and

Schnabel, 1987], and [Efron, 1985].)

4.C. Condition Number

For a linear least squares system of equations

AP=2Y , (4.4)

with A € assumed to have full column rank and =2 meaning “equals in the least

squares sense,” the condition number of A is defined as

K(A) ^ ||44|1 A^

where A^ = {A'^A)~^A'^ is known as the pseudo inverse of A. From this definition, we

can show that «(>!) > 1, and that k{A) — 00 as the columns of A become dependent.

Using /c(>l), bounds can be constructed on the relative error in the true least squares

solution P* = A^Y due to a perturbation Ey of Y

,

or to a perturbation Ea of A.

While the actual bounds, discussed in detail in [Stewart, 1973], are quite complicated,

we can roughly approximate them as follows. Let py and Pa denote the solutions to

the perturbed systems, py = A^{Y + Ey) and Pa = {A + Ea)^Y, respectively, and let

R = AP* — Y denote the residual at P*. Then

\\P*-Py\\ <

m\ ""

\\p*

(A)
^ llrll

(4.5)

HA) H'l 11^4111
(4.6)

and

78 Computational Details

For (4.5) we thus observe that the relative error in the solution could be as much as /c(i4)

larger than the relative error in Y. Similarly, for (4.6) we observe that if the residual

R is small, then the relative error in A is multiplied by ^(^4), whereas if the residual is

not small, then the second term in (4.6) will dominate and the relative error in A could

be multiplied by as much as k^{A).

If we express the condition number k{A) as a power of 10, i.e., k{A) = 10^, then (4.5)

implies that the elements of the least squares solution could have K. fewer significant

digits of accuracy than the elements of Y", while (4.6) implies that the least squares

solution could have as many as 2K, fewer significant digits of accuracy than the elements

of A. Therefore, k{A) sufficiently large could indicate that the least squares solution has

no significant digits. For the condition number to provide a meaningful estimate of ill-

conditioning, however, the user’s problem must be formulated so that the errors in the

columns ofA are equilibrated. This requires an intimate knowledge of the problem, and

cannot be done as part ofODRPACK’s automatic scaling procedure. If this equilibration

has not been done by the user, the condition number returned by ODRPACK may not

reflect the true conditioning of the problem.

ODRPACK returns an approximation to the inverse of the condition number k(M^ J^),

where is the Jacobian matrix of partial derivatives with respect to fi, and Ms is a

block diagonal matrix formed using the partial derivatives with respect to A as described

in [Boggs et al., 1987]. The matrix MsJp is used by ODRPACK to form a linearization

of the user’s problem at the solution, and can thus be substituted for the matrix A in

in the above discussions. The approximate inverse condition number is calculated as

described in the Linpack Users’ Guide [Dongarra et al., 1980].

4.D. Scaling Algorithms

Poorly scaled problems, i.e., problems in which the unknowns fi and A vary over several

orders of magnitude, can cause difficulty for least squares procedures. ODRPACK’s
scaling algorithms (discussed below) attempt to overcome these difficulties automati-

cally, although it is preferable for the user to choose the units of fi and A so that their

estimated values will have roughly the same magnitude. (See, e.g., [Dennis and Schn-

abel, 1983].) When the variables have roughly the same magnitude, the ODRPACK
scaling algorithm will select scale values that are roughly equal, and the resulting com-

putations will be the same (except for the effect of finite precision arithmetic) as an

unsealed analysis, i.e., an analysis in which all of the scale values are set to one. If the

user does not do this, the ODRPACK scaling algorithm will select varying scale values.

This will not change the optimal solution, but it may affect the number of iterations

required, or, in some cases, whether the algorithm is or is not successful.

Computational Details 79

The scale value times the corresponding absolute value of the expected solution should

be approximately one. For example, if /3k is expected to be of order 10'° then scale{/3k}

should be set to 10”'°, while if /3k is expected to lie between —10”^ and —10”^ then

scale{/3k} should be set to 10^. Scaling should not be confused with the weighting

matrices and wsi specified by subroutine arguments WE and WD. (See also §1,A cind

§1-F.)

80 Computational Details

4.D.i. Scaling P

ODRPACK chooses the default scale values for the estimated values of as follows.

If some of the values of 0 are nonzero then

Let Prnax = the largest nonzero absolute value in 0, and

Let /Jniin = the smallest nonzero absolute value in 0.

For K = 1, ... ,p do

If = 0 then

SCALE{/3k} = lOfPmm

Else if log(/3xnax) - log(/3inin) > 1 then

scale{/3k} = 1/\0k\

Else

SCALE{/3k} = l/0nuix

Else if all of the values of 0 are zero then

For K = 1, . . .,p do

scale{;3k} = 1

Users may also substitute their own scaling values for 0. (See §2.B.ii, subroutine argu-

ment SCLB.)

Computational Details 81

4.D.ii. Scaling A

ODRPACK chooses default scale values for the estimated errors Au in the explanatory

variables as follows.

For J = 1, ... ,m do

If some values in column J of X are nonzero then

Let Xniax = the largest nonzero absolute value in column J

Let Xnun = the smallest nonzero absolute value in column J

For I = l,...,n do

If Xu = 0 then

SCALE{Au} = lO/Xxnin

Else if log(XnM«) - log(Xnun) > 1 then

scale{Au} = l/|Xu|

Else

scale{Au} =

Else if all values in column J of X are zero then

For I = 1, . . .,n do

scale{Au} = 1

Users may also substitute their own scaling values for A. (See §2.B.ii, subroutine argu-

ment SOLD.)

82 Computational Details

5. Work Vectors

5.A. Extracting Information from Vector WORK

Upon return from a call to ODRPACK, array WORK contains values that may be of inter-

est to the user. To extract information from WORK, the following declaration statement

must be added to the user’s program:

LOGICAL

+ ISODR

INTEGER

+ DELTAI ,EPSI , XPLUSI , FNI , SDI ,VCVI

,

+ RVARI , WSSI , WSSDEI .WSSEPI .RCONDI ,ETAI

,

+ OLMAVI ,TAUI ,ALPHAI , ACTRSI , PNORMI , RNORSI ,PRERSI

,

+ PARTLI , SSTOLI ,TAUFCI ,EPSMAI

,

+ BETAOI , BETACI ,BETASI ,BETANI . SI , SSI , SSFI , QRAUXI ,UI

,

+ FSI,FJACBI,WE1I,DIFFI,

+ DELTSI ,DELTNI ,TI .ITI , OMEGAI .FJACDI

,

+ WRKII .WRK2I , WRK3I ,WRK4I ,WRK5I , WRK6I , WRK7I

,

+ LWKMN

where DELTAI through WRK7I are variables that indicate the starting locations within

WORK of the stored values, and LWKMN is the minimum acceptable length of array WORK.

The appropriate values of DELTAI through HRK7I are obtained by invoking subroutine

SWINF when using either of the single precision ODRPACK subroutines SODR or SODRC,

and by invoking DWINF when using either of the double precision subroutines DODR or

DODRC. The call statements for SWINF and DWINF have the same argument lists. To

invoke either subroutine, use

CALL <winf>

+ (N,M,NP,NQ,LDWE,LD2WE, ISODR,

+ DELTAI , EPSI , XPLUSI , FNI , SDI , VCVI

,

+ RVARI , WSSI , WSSDEI ,WSSEPI ,RCONDI ,ETAI

,

83

84 Work Vectors

+ OLMAVI ,TAUI ,ALPHAI ,ACTRSI , PNORMI ,RNORSI ,PRERSI

,

+ PARTLI , SSTOLI ,TAUFCI , EPSMAI

,

+ BETAOI , BETACI , BETASI , BETANI , SI . SSI , SSFI , QRAUXI ,UI

.

+ FSI,FJACBI,WE1I.DIFFI,

+ DELTSI .DELTNI ,TI ,TTI , OMEGAI , FJACDI

,

+ WRKII , WRK2I , WRK3I ,WRK4I ,WRK5I , WRK6I ,WRK7I

,

+ LWKMN)

where SWINF should be substituted for <winf> when using SODR and SODRC, and DWINF

should be substituted for <winf > when using DODR and DODRC. The variables N, M NP,

NQ, LDWE, and LD2WE must be input to SIWINF and DIWINF with exactly the same values

as were used in the original call to ODRPACK, and ISODR must be input set to true if

the ht was by orthogonal distance regression, and be input set to false if the fit was by

ordinary least squares. Note that when ISODR is false, the locations that are specified by

DELTASI through WRKII are the same as the location specified by DELTAI.

In the following descriptions of the information returned in WORK, > indicates values

that are most likely to be of interest.

> WORK (DELTAI) is the first element of an n xm array DELTA containing the estimated

errors A in the explanatory variables at the solution, where

W0RK(DELTAI-1+I+(J-1)*N) = DELTA(I,J) = Au
for I = 1, . .

.
,n, and J = 1, . . .,m.

DELTAI = 1 .

> WORK(EPSI) is the first element of an n x q array EPS containing the estimated

errors E in the response variables at the solution, where

W0RK(EPSI-1+I+(L-1)*N) = EPSCI.L) =

for I = 1, . .
. ,
n, and L = 1, . .

. , q.

EPSI = nm + 1 .

> WORK(XPLUSI) is the first element of an n x m array XPLUSD containing the final

estimates of the explanatory variable X, where

W0RK(XPLUSI-1+I+(J-1)*N) = XPLUSDCI, J) = Xu = Xu + Au
for I = 1, . .

. ,
n, and J = 1, . .

. ,
m.

XPLUSI = nm + nq + 1 .

Work Vectors 85

> WORK(FNI) is the iirst element of an n X 9 array FN containing the final estimates

of the response variable V, where

WORK(FNI-l+I+a-l)*N) = FNCI.L) = Fn, = /ilC®! +
for I = 1, . .

. ,
n, and L = 1, . .

. , g.

FNI = 2nm + ng + 1 .

> WORK(SDI) is the first element of a p X 1 array SD containing the standard

deviations of the function parameters /?, i.e., the square roots

of the diagonal entries of the covariance matrix, where

W0RK(SDI-1+K) = SD(K) =

for K = 1, . .
. ,p. The standard deviations are only computed when

the third digit of JOB is less than or equal to 1. (See §2.6.ii, subrou-

tine argument JOB, and §4.B.) Rows of SD corresponding to fixed

elements of and to elements dropped because they induced rank

deficiency, are set to zero.

SDI = 2nm -|- 2ng -|- 1 .

> WORK(VCVI) is the first element of a p x p array VCV containing the values of

the covariance matrix of the parameters prior to scaling by the

residucd variance, where

W0RK(VCVI-1+I+(J-1)*(NP)) = VCV(I.J) =

for I = l,...,p and J = l,...,p. The covariance matrix is only

computed when the third digit of JOB is less than or equal to 1. (See

§2.Bii, subroutine argument JOB, and §4.B.) Rows and columns of

VCV corresponding to fixed elements of /?, and to elements dropped

because they induced rank deficiency, are set to zero.

VCVI = 2nm H- 2ng -f- p -f 1 .

> WORK(RVARI) is the estimated residual variance = 30,6)1^1. (See §4.B.)

RVARI = 2nm + 2nq -f p + p^ + 1 •

> WORK(WSSI) is 30 ,
6). (See §1.A.)

WSSI = 2nm -f- 2ng -|- p -|- p^ -f 2 .

> WORK(WSSDEI) is 360,6). (See §1.A.)

WSSDEI = 2nm -H 2ng -1- p + p^ -f 3 .

86 Work Vectors

> WORK(WSSEPI)

> WORK(RCONDI)

> WORK(ETAI)

WORK(OLMAVI)

WORK(TAUI)

WORK(ALPHAI)

WORK(ACTRSI)

WORK(PNROMI)

WORK(RNORSI)

WORK(PRERSI)

WORK(PARTLI)

WORK(SSTOLI)

WORK(TAUFCI)

WORK(EPSMAI)

WORK(BETAOI)

is Se0,6). (See §1.A.)

WSSEPI = 2nm + 2nq + p + + 4 .

is K~^{MsJp) at the solution. (See §4.C.)

RCONDI = 2nm + 2nq + p + p^ + 5 .

is the relative error in the function values computed within FCN.

ETAI = 2nm + 2nq + p + p* + 6 .

is the average number of steps required to obtain the Levenberg-

Marquardt parameter.

is the trust region radius at the time the computations stopped.

is the Levenberg-Marquardt parameter at the time the computa-

tions stopped.

is the actual relative reduction in 5(/3, 6) from the last iteration,

is the norm of the scaled values of and S.

is

is the predicted relative reduction in 5(/3,^) from the last iteration.

is the stopping tolerance used to detect parameter convergence.

is the stopping tolerance used to detect sum of squares convergence.

is the factor used to compute the initial trust region radius.

is machine precision, i.e., the smallest value ^ such that 1 -1- ^ > 1 .

is the first element of a p x 1 array BETAO containing the initial

estimates of the function parameters /3°, where

WORK(BETAIO-1+K) = BETAO (K) =

Work Vectors 87

WORK(BETACI)

WORK(BETASI)

WORK(BETANI)

WORK(SI)

WORK(SSI)

WORK(SSFI)

WORK(QRAUXI)

for K = 1, . .
. ,p. For implicit models, BETAO is the initial value used

for the last value of the penalty parameter.

is the first element of a p x 1 array BETAC containing the current

working estimates of the p unfixed function parameters where

W0RK(BETACI-1+K) = BETAC (K) =

for K = 1, . .
. ,p.

is the first element of a p x 1 array BETAS containing the saved

working estimates of the p unfixed function parameters where

W0RK(BETASI-1+K) = BETAS (K) =

for K = 1, . .
. ,p.

is the first element of a px 1 axray BETAN containing the new working

estimates of the p unfixed function parameters where

W0RK(BETANI-1+K) = BETAN(K) =

for K = 1, . .
. ,p.

is the first element of a p x 1 array S containing the step in the p
unfixed function parameters at the last iteration, where

W0RK(SI-1+K) = S(K)

for K = 1, . .
. ,p.

is the first element of a p x 1 array SS containing the scale of the p
unfixed function parameters where

W0RK(SSI-1+K) = SS(K) = SCALE{4k}

for K = 1, . .
. ,p.

is the first element of a p X 1 array SSF containing the scale of all

of the function parameters /3, where

W0RK(SSFI-1+K) = SSF(K) = SCALE{/3k}

for K = 1, . .
. ,p.

is the first element of a p X 1 array QRAUX used during the compu-

tations, where

W0RK(QRAUXI-1+I) = QRAUX(I)

88 Work Vectors

for I = 1, . .
. ,p.

WORK(U) is the first element of a p X 1 array U used during the computations,

where

W0RK(UI-1+I) = U(I)

for I = 1, . .
. ,p.

WORK(FSI) is the first element of an n X g array FS containing the saved esti-

mated errors E* m the response variable, where

W0RK(FSI-1+I+L*N) = FS(I,L) =

for I = 1, . .
. ,
n, and L = 1, . .

. , 9.

WORK(FJACBI) is the first element of an nxpxq array FJACB containing the weighted

partial derivative with respect to the p unfixed function parameters

P, where

WORK(FJACBI- 1+1+ (K-l)*N+a-l)*N*NP)

= FJACB(I,K,L) =

for I = 1, ...,n, K = 1, ...,p, L = and Wi'^Wi = rtfej.

The derivatives are the values evaluated at the beginning of the last

iteration unless the user requested that the covariance matrix be

computed using the final solution, in which case they are the values

obtained at the final solution. (See §2.BJi, subroutine argument

JOB.)

WORK(WEII) is the first element of an LDWE X LD2WE X g array WEI containing the

Cholesky factorizations for the weights Wc specified in WE, where

W0RK(WE1I-1+I+(L1-1)*LDWE+(L2-1)*LDWE*LD2WE)

= WE1I(I,L1,L2)

for I = 1,...,LDWE, LI = 1,...,LD2WE, and L2 = l,...,g. WEII

specifies the factorization in the same manner that subroutine ar-

gument WE is used to specify We. (See §2.B.ii.)

WORK(DIFFI) is the first element of an g X (p -|- m) array DIFF containing the

relative differences between the user supplied derivatives and the

finite difference values they were checked against, where

W0RK(DIFFI-1+L+(J-1)+NQ) = DIFFCL.J)

Work Vectors 89

for L = 1, . .
. , g, and J = 1, . .

. , (p + m).

WORK(DELTSI) is the first element of an n x m array DELTAS containing the saved

working estimates of the errors A' in the explanatory variables,

where

WORK(DELTSI- 1+1+ (J-1)*N) = DELTASCl, J) = Aj;,

for I = 1, . .
. ,
n, and J = 1, . .

. ,
m. If ISODR is false, then this array

is equivalenced to the array DELTA beginning in WORK(DELTAI).

WORK(DELTNI) is the first element of an n x m array DELTAN containing the new
working estimates of the errors A” in the explanatory variables,

where

W0RK(DELTNI-1+I+(J-1)*N) = DELTAN(I,J) = AJJ

for I = 1, . .
. ,
n, and J = 1, . .

. ,
m. If ISODR is false, then this array

is equivalenced to the array DELTA beginning in WORK(DELTAI).

WORK(TI) is the first element of am n X m array T used in the computations,

where

WORK (TI- 1+1+ (J-1)*N) = TCI.J)

for I = 1, . .
. ,
n, and J = 1, , .

. ,
m. If ISODR is false, then this array

is equivalenced to the array DELTA beginning in WORK(DELTAI).

WORK(TTI) is the first element of an n x m array TT containing the scale of each

the estimated errors A in the explanatory variable, where

W0RK(TTI-1+I+(J-1)*N) = TT(I,J) = scale{Au}

for I = 1, . .
. ,
n, and J = 1, . .

. ,
m. If ISODR is false, then this array

is equivalenced to the array DELTA beginning in WORK(DELTAI).

WORK(OMEGAI) is the first element of a q x q array OMEGA used during the compu-

tations, where

W0RK(0MEGAI-l+Ll+a2-l)*NQ) = 0MEGAai,L2)

for LI = 1, . .
. , q, and L2 = 1, . .

. , q. If ISODR is false, then this array

is equivalenced to the array DELTA beginning in WORK(DELTAI).

WORK(FJACDI) is the first element of an n X m X g array FJACD containing the

weighted partial derivative with respect to A, where

90 Work Vectors

WORK(FJACDI-l+I+(J-l)*N+a-l)*N*M)

= FJACD(I,J,L) =

for I = J = L = and Wi'^Wi = uti-

The derivatives are the values evaluated at the beginning of the last

iteration unless the user requested that the covariance matrix be

computed using the final solution, in which case they are the values

obtained at the final solution. (See §2.Bii, subroutine argument

JOB.) If ISODR is false, then this array is eqidvalenced to the array

DELTA beginning in WORK(DELTAI).

WORK(WRKII) is the first element of an n X m X g array WRKl required for work

space, where

WORK(WRKlI-l+I+(J-l)*N+a-l)*N*NQ) = WRK1(I,J,L)

for I = 1, . .
. ,
n, J = 1, . .

. ,
m, and L = 1, . .

. , g. If ISODR is false,

then this array is equivalenced to the array DELTA beginning in

WORK(DELTAI).

W0RK(WRK2I) is the first element of an n x g array WRK2 required for work space,

where

W0RK(WRK2I-1+I+(L-1)*N) = WRK2(I,L)

for I = 1, . ..,71, and L = 1,. ..,g.

W0RK(WRK3) is the first element of a p x 1 array WRK3 required for work space,

where

W0RK(WRK3-1+K) = WRK3(K)

for K = 1, . .
. ,p.

W0RK(WRK4I) is the first element of an m x m array WRK4 required for work space,

where

W0RK(WRK4I-1+J1+(J2-1)*M) = WRK4(J1,J2)

for J1 = 1, ... ,771, and J2 = 1, . . .,7n.

W0RK(WRK5I) is the first element of an tti array WRK5 required for work space,

where

W0RK(WRK5I-1+J) = WRK5(J)

for J = 1, ... ,771.

Work Vectors 91

W0RK(WRK6I) is the first element of an n x p X g array WRK6 required for work

space, where

W0RK(WRK6I-1+I+(K-1)*N+(L-1)*N*NQ) = WRK6(I,K,L)

for I = 1, K = and L =

W0RK(WRK7I) is the first element of an 5g array WRK7 required for work space,

where

W0RK(WIIK7I-1+J) = WRK7(J)

for J =

5.B. Extracting Information from Vector IWORK

Upon return from a call to ODRPACK, array IWORK contains values that may be of

interest to the user. To extract information from IWORK, the following declaration

statement must be added to the user’s program

INTEGER

+ MSGBI ,MSGDI , IFIX2I , ISTOPI

,

+ NNZWI.NPPI.IDFI,

+ JOBI,IPRINI,LUNERI,LUNRPI,

+ NROWI.NTOLI.NETAI,

+ MAXITI ,NITERI . NFEVI , NJEVI , INT2I ,IRANKI ,LDTTI

,

+ LIWKMN

where MSGBI through LDTTI are variables that indicate the starting locations within

IWORK of the stored values, and LIWKMN is the minimum acceptable length of array IWORK.

The appropriate values of MSGBI through LDTTI are obtained by invoking subroutine

SIWINF when using either of the single precision ODRPACK subroutines SODR or SODRC,

and by invoking DIWINF when using either of the double precision subroutines DODR or

DODRC. The call statements for SIWINF and DIWINF have the Scune argument lists. To

invoke either subroutine, use

CALL <iwinf>

+ (M.NP.NQ,

+ MSGBI, MSGDI, IFIX2I, ISTOPI.

+ NNZWI.NPPI.IDFI,

+ JOBI.IPRINI.LUNERI.LUNRPI,

+ NROWI.NTOLI.NETAI,

92 Work Vectors

+ MAXITI ,NITERI ,NFEVI ,NJEVI , INT2I ,IRANKI ,LDTTI

,

+ LIHKMN)

where SIWINF should be substituted for <ivinf> when using SODR and SODRC, and

DIWINF should be substituted for <iwinf> when using DODR and DODRC. Note that the

values of N, NP, and NQ must be input to SIWINF and DIWINF with exactly the same

values as were used in the original call to ODRPACK.

In the following descriptions of the information returned in IWORK, > indicates values

that are most likely to be of interest.

> IWORK (MSGBI) is the first element of a 1 + (g X p) array MSGB used to indicate

the results of checking the partial derivatives with respect to ^ at

observation NROW. (See IWORK(NROWI) below.)

The value of IWORK (MSGBI) summarizes the results over all 0.

• If IWORK (MSGBI) < 0 then

the partial derivatives with respect to were not checked.

• If IWORK (MSGBI) = 0 then

the partial derivatives with respect to each of the ;9k> K = 1, . .
. , p,

for each of the q responses appear to be correct.

• If IWORK (MSGBI) = 1 then

the partial derivative with respect to at least one of the /?k, K =
1.

.

. .,p, appears to be questionable for at least one of the q re-

sponses.

• K IWORK (MSGBI) = 2 then

the partial derivative with respect to at least one of the /3k. K =
1.. ..,p, appears to be seriously questionable for at least one of

the q responses.

The value ofIWORK(MSGBI+L+(K-l)*NQ), L = 1,...,9, K = l,...,p,

indicates the individual results of checking the partial derivative of

the Lth response with respect to each /3k, where for L =
and K = 1, . .

. ,p :

• If IWORK (MSGBI+L+(K-1)*NQ) = -1 then

the partial derivative of the Lth response with respect to (3^. was

not checked because (3k was fixed.

• If IWORK (MSGBI+L+(K-1)*NQ) = 0 then

the partial derivative of the Lth response with respect to /3k ap-

pears to be correct, i.e., the relative difference between its value

and the finite difference approximation it is checked against is

Work Vectors 93

within the required tolerance.

• If IW0RK(MSGBI+L+(K-1)*NQ) = 1 then

the partial derivative of the Lth response with respect to is

questionable because the user supplied derivative and the finite

difference value it is checked against are both zero.

• If IW0RK(MSGBI+L+(K-1)*NQ) = 2 then

the partial derivative of the Lth response with respect to ydx is

questionable because either the user supplied derivative is ex-

actly zero and the finite difference value it is checked against is

only approximately zero, or the user supplied derivative only ap-

proximately zero and and the finite difference value it is checked

against is exactly zero.

• If IW0RK(MSGBI+L+(K-1)*NQ) = 3 then

the partial derivative of the Lth response with respect to /3k is

questionable because either the user supplied derivative is exactly

zero and the finite difference value it is checked against is not

even approximately zero, or the user supplied derivative not even

approximately zero and and the finite difference value it is checked

against is exactly zero.

• If IW0RK(MSGBI+L+(K-1)*NQ) = 4 then

the partial derivative of the Lth response with respect to /3k is

questionable because the finite difference value it is being checked

against is questionable due to a high ratio of relative curvature

to relative slope or to an incorrect scale value.

• If IW0RK(MSGBI+L+(K-1)*NQ) = 5 then

the partial derivative of the Lth response with respect to /3k is

questionable because the finite difference value it is being checked

against is questionable due to a high ratio of relative curvature

to relative slope.

• If IW0RK(MSGBI+L+(K-1)*NQ) = 6 then

the partial derivative of the Lth response with respect to /3k

is questionable because it does not agree with the finite dif-

ference value it is being checked against to the required toler-

ance, although the values do agree in their first two digits. (See

IWORK(NTOLI) below.)

• If IW0RK(MSGBI+L+(K-1)*NQ) = 7 then

the partial derivative of the Lth response with respect to /3k is

seriously questionable because it has fewer than two digits agree-

94 Work Vectors

ment with the finite difference value it is being checked against.

MSGBI = 1 .

> IWORK(MSGDI) is the first element of a 1 + (g X m) array MSGD used to indicate

the results of checking the partial derivatives with respect to A,

analagous to MSGB described above. The values in MSGD have the

same meanings as those used to indicate the results of checking

the partial derivatives with respect to /3, except that the value of

IWORK(NSGDI) summarizes the results over all columns of A, and the

values of IW0RK(MSGDI+L+(J-1)*NQ), L = J = l,...,m,

indicates the individual results for checking the partial derivative of

the Lth response with respect to the Jth column of A at observation

NROW. (See IWORK(NROWI) below.)

MSGDI = qp +

2

.

> IW0RK(IFIX2I) is the first element of a p X 1 array IFIX2 containing values used

to indicate whether a given parameter is unfixed, fixed or dropped

because it induced rank deficiency, where

W0RK(IFIX2I-1+K) = IFIX2(K)

for K = 1, . .
. ,p. If

• IFIX2(K) = 1 the parameter was unfixed,

• IFIX2(K) = 0 the parameter was fixed,

• IFIX2(K) = — 1 the parameter was dropped, and

• IFIX2(K) = —2 no parameters were estimated.

IFIX2I = qp + qm + 3 .

> IWORK(ISTOPI) is value of ISTOP returned from the last call to subroutine FCN.

ISTOPI = qp + qm + p + 3 .

IWORK(NNZWI) is the number of nonzero c error weights, tWej, I = 1, . .
. ,

n.

IWORK(NPPI) is the number p of function parameters actually being estimated,

i.e., the number of unfixed parameters.

IWORK(IDFI) is the degrees of freedom, p, of the fit, i.e., the number of observa-

tions with nonzero weights minus the number of parameters actually

Work Vectors 95

IWORK(JOBI)

IWORKCIPRINI)

IWORK(LUNERI)

IWORK(LUNRPI)

IWORK(NROWI)

IWORK(NTOLI)

IWORK(NETAI)

IWORK(MAXITI)

IWORK(NITERI)

IWORK(NFEVI)

IWORK(NJEVI)

IW0RK(INT2I)

IWORK(IRANKI)

IWORK(LDTTI)

being estimated.

is the value used to specify problem initialization and computational

methods.

is the print control value used.

is the logical unit number used for error reports.

is the logical unit number used for computation reports.

is the observation NROW at which the derivatives were checked.

is the number of digits of agreement required between the numerical

derivatives and the user supplied derivatives for the user supplied

derivatives to be considered correct.

is the number of good digits in the function results returned by user

supplied subroutine FCN.

is the maximum number of iterations allowed.

is the number of iterations taken.

is the number of function evaluations made.

is the number of Jacobian matrix evaluations made.

is the number of internal doubling steps taken at the time the com-

putations stopped.

is the rank deficiency at the solution.

is the leading dimension of the n x m array TT. (See §5.A.)

96 Work Vectors

Bibliography

[1] American National Standards Institute (1977), ANS FORTRAN X3. 9-1977, Amer-

ican National Standards Institute, New York, NY.

[2] Bates, D. M., and D. G. Watts (1988), Nonlinear Regression Analysis and its

Applications, John Wiley and Sons, New York, NY.

[3] Belsley, D. A., E. Kuh, and R. E. Welsch (1980), Regression diagnostics, John

Wiley and Sons, New York, NY.

[4] Bement, T. R., and J. S. Williams (1969), “Variance of weighted regression estima-

tors when sampling errors are independent and heteroscedastic,” J. Amer. Statists.

Assoc., 64:1369-1382.

[5] Bischof, C., A. Carle, G. Corliss, A. Griewank, P. Hovleind (1991), “ADIFOR —
generating derivative codes from Fortran programs,” ADIFOR Working Note #1,
MCS-P263-0991, Mathematics and Computer Science Division, Argonne National

Laboratory, Argonne, IL; also available as CRPC-TR91185, Center for Research

on Parallel Computation, Rice University, Houston, TX.

[6] Boggs, P. T., R. H. Byrd, and R. B. Schnabel (1987), “A stable and efficient algo-

rithm for nonlinear orthogonal distance regression,” SIAM J. Sci. Stat. Comput.,

8(6):1052-1078.

[7] Boggs, P. T., R. H. Byrd, J. R. Donaldson, and R. B. Schnabel (1989), “Algorithm

676 — ODRPACK: Software for Weighted Orthogonal Distance Regression,” ACM
Trans. Math. Software, 15(4):348-364.

[8] Boggs, P. T., J. R. Donaldson, R. B. Schnabel, and C. H. Spiegelman (1988), “A

computational examination of orthogonal distance regression,” J. Econometrics,

38(1/2):169-201.

[9] Boggs, P. T., and J. E. Rogers (1990a), “Orthogonal Distance Regression,” Con-

temporary Mathematics, 112:183-194.

97

98 Bibliography

[10] Boggs, P. T., and J. E. Rogers (1990b), “The Computation and Use of the Asymp-
totic Coveuiance Matrix for Measurement Error Models,” Internal Report 89-4102,

Applied and Computational Mathematics Division, National Institute of Standards

and Technology, Gaithersburg, MD.

[11] Cook, D. R. (1977), “Detection of influential observations in linear regression,”

Technometrics, 19:15-18.

[12] Dennis, J. E., and R. B. Schnabel (1983), Numerical Methods for Unconstrained

Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ.

[13] Donaldson, J. R., and Schnabel, R. B. (1987), “Computational Experience with

Confidence Regions and Confidence Intervals for Nonlinear Least Squares,” Tech-

nometrics, 29(l):67-82.

[14] Donaldson, J. R., and P. V. Tryon (1986), “STARPAC - the Standards Time Series

and Regression Package,” Internal Report 86-3448, Computing and Applied Math-

ematics Laboratory, National Institute of Standards and Technology, Boulder, CO.

[15] Dongarra, J. J., C. B. Moler, J. R. Bunch, and G. W. Stewart (1979), LINPACK
Users* Guide, SIAM, Philadelphia, PA.

[16] Efron, B. (1985), The Jackknife, the Bootstrap and Other Resampling Plans, SIAM,
Philadelphia, PA.

[17] Filliben, J. J. (1977), “User’s Guide to the DATAPAC Data Analysis Package,”

(unpublished: available from NIST Statistical Engineering Division, Gaithersburg,

MD).

[18] Fox, P. A., A. D. Hall, and N. L. Schryer (1978), “Algorithm 528 — Framework

for a Portable Library [z],” ACM Trans. Math. Software, 4(2):177-188.

[19] Fuller, W. A. (1987), Measurement Error Models, John Wiley and Sons, New York,

NY.

[20] Gill, P. E., W. Murray, and M. H. Wright (1981), Practical Optimization, Academic

Press, New York, NY.

[21] Griewank, A. (1989), “On automatic differentiation,” in Mathematical Program-

ming: Recent Developments and Applications, M. Iri and K. Tanabe, editors,

Kluwer Academic Publishers, Amsterdam, Holland.

[22] Havriliak, S. Jr., and S. Negcimi (1967), “A Complex Plane Representation of

Dielectric tind Mechanical Relaxation Processes in Some Polymers,” Polymer, 8:

161-205.

Bibliography 99

[23] Himmelblau, D. M. (1970), Process Analysis by Statistical Methods, John Wiley

and Sons, New York, NY.

[24] Hoaglin, D. C., and R. E. Welsch (1978), “The hat matrix in regression and

ANOVA,” American Statistician, 32:17-22.

[25] Jennrich, R. I. (1969), “Asymptotic Properties of Non-linear Least Squares Esti-

mators,” Annals of Mathematical Statistics, 40:633-643.

[26] Juedes, D. (1991) “A taxonomy of automatic differentiation tools,” in Proceedings

of the Workshop on Automatic Differentiation of Algorithms: Theory, Implemen-

tation, and Application, A. Griewank and P. L. Toint, editors, SIAM, Philidelphia,

PA.

[27] Lawson, C., R. Hanson, D. Kincaid, and F. Krogh (1979), “Basic linear algebra

subprograms for FORTRAN usage”, ACM Trans. Math. Software, 5(3):308-371.

[28] Schnabel, R. B. (1982), “Finite difference derivatives - theory and practice,” (un-

published: available from author).

[29] Seber, G. A. F., and C. J. Wild (1989), Nonlinear Regression, John Wiley and

Sons, New York, NY.

[30] Stephens, B. R., and J. D. Pryce (1991), “DAPRE: a differentiation arithmetic sys-

tem for Fortran,” Technical Report ACM-91-3, Royal Military College of Science,

Shrivenham, UK.

[31] Stewart, G. W. (1973), Introduction to Matrix Computations, Academic Press, New
York, NY.

' ''

'

^t<'.

"' ' '
-I"

•'. '

.

'"-'“i®

SM;„,

m:
r y ..^'vjim

M

:'
-•i' '•-

'v'' ''V

S:;. ;: rK:r,;;^%;v^

V'.

NIST-114A U.S. DEPARTMENT OF COMMERCE
(REV. 3-90) NATIONAL INSrmjTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET
i

i

1. PUBUCATION OR REPORT NUMBER

NISTIR 4834
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

JUNE 1992
1. TITIE AND SUBTITLE

User’s Reference Guide for ODRPACK Version 2.01

Software for Wei^ted Orthogonal Distance Regression

i. AUTHOR(S)

Paul T. Boggs, Richard H. Byrd, Janet E. Rogers,

and Robert B. Schnabel

< L PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

UE. DEPARTMENT OF COMMERCE
NATIONAL mSTITVTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MO 20699

7. CONTRACT/ORANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

<10. SUPPtEMENTAIIY NOTES

<11. ABSTRACT (A 20O«WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE.)

ODRPACK is a software package for weighted orthogonal distance regression, i.e.,

for finding the parameters that minimize the sum of the squared weighted orthogonal

!; distances from a set of observations to the curve or surface determined by the para-
: < meters. It can also be used to solve the nonlinear ordinary least squares problem.
’ The procedure has application to curve and surface fitting, and to measurement error
li models in statistics. ODKPAGC can handle both explicit and implicit models, and will

easily accommodate complex and other types of multiresponse data. The algorithm
Implemented is an efficient and stable trust region Levenberg-Marquardt procedure
that exploits the structure of the problem so that the computational cost per itera-

i tion is equal to that for the same type of algorithm applied to the nonlinear ordinary
least squares problem. The package allows a general weighting scheme , provides for

' finite difference derivatives, and contains extensive error checking and report
~ generating facilities.

12. KEYWORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

errors in variables; measurement error models; nonlinear least squares;

j

orthogonal distance regression

13. AVAILABILITY 14. NUMBER OF PRINTED PAGES

114X UNLIMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

15. PRICE

A06

X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGRELD,VA 22161.

ELECTRONIC FORM

,
-,„ ...

-^;|»^S^““':||'

3^v '

: a

BUJm^
.0.S rnm^

I,
- ira» I 1 1 ijjT ~~WI I “^ !'**•** "'* ~ ‘*‘ 'ninai'ir l'-^^^^^^^ it Vm _ . . ., i .. . _ ,

h - .MM '•i1wWV'X«rsWlHn-MM'4»

a' ,

fl
'??*

,

': v;'- •; .‘.j-i'#*'-'
, -m

‘.'I'SArt, ! Hi

%m--

a .m . „ , T,... -, . '.T ,™,v .- M .".Mr - • . — M- T .^yyw ii; M. r

,

1

''

— j
' ^

- ;
: .

•
V

'
'

^-
-i.

^

n> -« ‘X--« ,Kjtfc><-.£0

-.'/»• lii' t-jvy idfc-, .is;;\^;^^ ',:v^:

tr>> a.’i** ; 'o-jrtf
,

visffilrf'3^.^'

-S'-,'.ow!ai ‘'.^

YiSi'-'

P;?%a

' n^'-m

i

dmiia^v^ . •«*^y*fc*

'.'YM

yH

<}^A.

» 4...

’^v. '

'^ -X ' 'V','_“77 w'’'HP!^ :>-,. ,-.;’:i ,-vv»^iSr '\.‘M

• .^1

5 tftviiSaiifc'' • *jsisiifr

I

