
Applied and

Computational

Mathematics

Division

Computing and Applied Mathematics Laboratory

A Merit Function for Inequality

Constrained Nonlinear

Programming Problems

P.T. Boggs, J.W. Tolle, A.J. Kearsley

October 1991

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

Gaithersburg, MD 20899

A Merit Function for

Inequaiity Constrained
Noniinear Programming
Probiems

P. T. Boggs
J. W. Tone
A. J. Kearsley

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards

and Technology

Computing and Applied

Mathematics Laboratory

Applied and Computational
Mathematics Division

Gaithersburg, MD 20899

October 1991

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
John W. Lyons, Director

V-- t»H» .1* ,

m

it. 'M:-

t. "£i^f^*^., „• j . ';«.,

'ff’njSv

A Merit Function for Inequality

Constrained Nonlinear Programming
Problems *

Paul T. Boggs 1 Jon W. Tolle + Anthony J. Kearsley ^

September 20, 1991

Abstract

We consider the use of the sequential quadratic programming (SQP)

technique for solving the inequality constrained minimization problem

mhix f{x) subject to: gt{x) < 0, i = SQP methods require the

use of an auxihary function, called a merit function or hne-search function,

for assessing the steps that are generated. We derive a merit function by

adding slack variables to create an equality constrained problem and then

using the merit function developed earlier by the authors for the equality

constrained case. We stress that we do not solve the slack variable problem,

but only use it to construct the merit function. The resulting function is

simphfied in a certain way that leads to an effective procedure for updating

the squares of the slack variables. The final form of the merit function has

many desirable properties, and is demonstrated to be effective in practice.

’Contribution of the National Institute of Standards and Technology and not subject to

copyright in the United States. This research partially supported by AFOSR Contract #88-

0267

^Applied and Computational Mathematics Division, National Institute of Standards and

Technology, Gaithersburg, MD 20899

^Mathematics Department, University of North Carolina, Chapel Hill, NC 27599

^Department of Mathematical Sciences, Rice University, Houston, Te.xas 77251

‘ym<

e-

'

""1

mi.»ji .

u v!]
^ - .1^

•
• pi

v'Jj''!

.m-v-.

. -jVhu! ! .i-. ’l).ii. ;iK«sm.,i?

iryii.'um'i imuL I, 'k.c ^. ?»# .<
'^il^

' M ! «A. ’^> sii:'

••'K i?.i^iVr!f>Sf$m^8.asW ;‘uv6
’

I • ('r ^
_

v^ v|UM. k?0fA4||ji<^ovjt)
.
d i M

'* *• ‘^' ^T.-
.

lirt, ..Sfc.

s,v

'

'V
,

'• - ~
ii. it'

o /' '

' ;• *! . '

v,V..5 ^ 54*1.‘A

",
'

a;.,'- aMi;
.

'

'

,

''
i'' f ‘4

' - '^^?;‘' .i^^.
.'

'M'' :'^>.
: '# rf'

'"4

^ '..‘ :iS»*i.
'

•.'It.liyiaii*-:*''

m !;3
V '

;y^i

Introduction 1

1. Introduction

We consider the inequality-constrained minimization problem,

subject to: g{x) <0 i •)

where x € 3?”, and / :
3?” —> U, and : 'If" —> ,If"* are smooth func-

tions. One of the most successful methods for solving (1.1) is the sequen-

tial quadratic programming (SQP) method in which at each iteration a

quadratic program is solved to obtain the step direction toward the next

iterate. In particular, given a current approximation, x^, to the solution,

X*, one forms the quadratic program

mills V fix^)'^ 6 + ^
subject to: V^(x‘^)'^<5 -|- y(x^) < 0

where is usually taken to be a current approximation to the Hessian of

the Lagrangian of (1.1). Let be the solution of (1.2). Then the next

approximation, x +
,
is calculated by

x'^ — x*^ + aS^ (1.3)

where a is a scalar steplength. This procedure is repeated until convergence.

Actual algorithms based on the above have been formulated and coded,

and have performed well in practice on a wide variety of problems. Certain

aspects of the general SQP scheme are still the subject of much current

research, and the theory that explains the performance is stiU incomplete.

In this paper we address one issue that has not yet been satisfactorily

resolved; namely, a means of chooosing an appropriate steplength, a, so as

to guarantee global convergence. In particular, we propose a merit function

for the inequality-constrained problem (1.1). The approach we take is based

on our earlier work, [BogT84] and [BogT89], in which a merit function was

provided for equality-constrained problems.

By a merit function we mean a function that can be used as a test to

assure that the potential step given by (1.3) will make x + a better approx-

imation to the solution than x^. For unconstrained optimization problems,

the objective function serves this purpose; one simply chooses a such that

f{^^) <

(with appropriate restrictions on a to assure a sufficient decrease is

achieved). For constrained optimization, the possible decrease in the ob-

jective value must be weighed against the requirement that feasibility must

Introduction 2

also be achieved — at least in the limit. Therefore, if one is using a method,

such as an SQP algorithm, that does not maintain feasibility at each step,

the objective function by itself is not an acceptable merit function.

Numerous papers have been published that set forth suggested merit

functions; the reader is referred to [BogT89] for a survey of some of the

more recent research. Most of the work that has appeared has been directed

towards the equality-constrained problem; straightforward generalizations

to the inequality-constrained problem are made difficult by the complicated

nature and, in many cases, the nondifferentiabhhty of the merit function

on the boundary of the feasible region. Work that has been directed to, or

encompasses, the inequality-constrained problem includes that of [Han77],

[ChaLLP82], [Sch83], and [GilMS86]. Han, in his initial papers on the SQP
methods employed an lx penalty function for his merit function. Chamber-

lain et ah developed their “watchdog” technique to correct a deficiency in

Han’s merit function that permitted a step length of one to be rejected near

the solution, thereby possibly precluding superlinear convergence. Schit-

tkowski used an augmented Lagrangian penalty function that seems to work

well on liighly nonlinear problems but does not perform so well on prob-

lems where the active constraint gradients at optimality are nearly linearly

dependent. Gill et al. have incorporated a version of Schittowski’s merit

function into their NPSOL program.

The merit function proposed here differs from most, if not all, others in

that it does not have an unconstrained local minimum at x* but, rather,

a constrained minimum at {x*,z*) where the variables ^ are nonnegatively

constrained slsick variables. The implementation of the SQP algorithm pro-

posed for this merit function will assure that these slack variables never

become negative so that, practically speaking, the constraints are of no

conseciuence in the computation. This merit function has excellent theo-

retical properties; it is smooth in its variables and exact. Moreover, locally

the SQP step will always be a descent direction for this function and the

length of the step will not be so restricted as to prevent superlinear conver-

gence, i.e., the Maratos effect [ChaLPP82] will not occur. As in [BogT89]

the algorithm given herein will use the merit function in a modified form

that makes it computationally attractive without sacrificing its central the-

oretical properties and, in addition, yields global convergence.

An outline of the paper is as follows. In §2 we motivate our proposed

merit function and establish its basic properties. In §3 we suggest a modifi-

cation of the function to overcome certain deficiencies, and we incorporate

these ideas in a somewhat detailed algorithm. §3 also contains the results

of numerical experiments and comments on their significance.

A Merit Function 3

Because the structure and spirit of this paper is similar to that of

[BogT89] we neither give complete proofs of every proposition nor do we
give detailed statements of convergence theorems. These omissions can be

filled in; but only at some cost in simplicity of exposition and with no com-

pensating increase in clarity and insight. Where these omissions occur the

reader is directed to our earlier work.

2. A Merit Function for the Inequality Con-
strained Problem

In [BogT84] the authors introduced a merit function for use in solving

equality-constrained nonlinear programs by an SQP method. While pos-

sessing several desirable properties this merit function suffered, in practice,

from two major deficiencies: it did not yield global convergence and it was

expensive to evaluate. A procedure employing a modified version of this

merit function that overcame these difficulties was introduced in [BogT89].

This strategy was shown to be competitive in [ShaP89].

In this section we present a merit function for use with an SQP method

for solving inequality-constrained problems. This new merit function is

motivated by introducing squared slack variables and applying our earlier

merit function to the resulting equality-constrained problem. It should be

stressed, however, that the result is not simply an extension of our earher

work to the problem with these squared slack variables; there are several sig-

nificant changes that are required. First, we do not solve the slack variable

equality-constrained problem; we solve (1.1) by solving the approximat-

ing inequality-constrained quadratic subproblems (1.2). Second, our merit

function does not update the slack variables themselves but, rather, their

squares. Finally, the solution to the original problem corresponds to a con-

strained minimum of the merit function. A version of this approach was

first outlined in [BogT88]; here a revised and more complete development

is given.

As suggested, we motivate our merit function by first converting (1.1)
to

an equality-constrained problem by the addition of squared slack variables,

yielding

min^,^/(x)

subject to: g{x) -f = 0

where

5 = diag{si,. ..,.s„J .

A Merit Function 4

Here, as elsewhere in this paper, e represents a vector of ones. (The constant

4 is chosen for convenience.

)

It is weU-known that if x* is a solution to (1.1) then (x*, 5 *) with s*

defined to be is a solution to (2.1) and conversely. Most re-

searchers consider the actual solution of (2.1) rather than (1.1) to be imprac-

tical, for both computational and theoretical reasons. However, following

[BogT84], we can construct a merit function for (2.1) of the form

0rf(.r,5) = f{x) A(x,5)'''c(x, 5) + ic(x,3)'''A(a:,5)~^c(x,5)
a

where
1 „

c(x,5) = g[x) + -5 e,
4

and

A(x, .s) Vc(x, 5)'*'Vc(x, 5
)

A(x, 5
)

-.4(i,s)-‘Vc(a:,s)

^ j

-A(x,5)~^V^(x)''’v/(x).

The small scalar parameter d is chosen to penalize infeasibihty. Observe

that A(x, 5
)
is the least squares estimate of the multipher vector that solves

the first order optimality conditions for (2.1):

V /(x) -I- A^c(x,5) = 0 .

Here, and in the remainder of the paper, the symbol Vh(n,u) refers

to the differentiation of the function h with respect to all of its variables.

Differentiation with respect to a subset of the variables is denoted by a

subscript, e.g., V^h{u,v) means the vector of partial derivatives of h with

respect to the variables in the vector u. A similar convention holds for

second order derivatives.

The observation that (pdix^s) depends only on the squared components

of 5 leads us to replace the term ^5? by the vector Zj and to consider the

resulting function:

A Merit Function 5

where

c{x, z) — g{x) + Ze

A(x,z) = Vg(x)'^Vg(x) + Z

\{x,z) = -A{x,z)-'^^g{x)'^'v f(x)

and

Z = diag{zi,. . .

It is important to note that -il^dix.z) is not the function that would

result from constructing the merit function for (2.1) after replacing by

Zi . This observation notwithstanding we consider the Zi as nonnegative

slack variables for (1.1), and, as a consequence, we have the constrained

minimization of 0^:

subject to: z > 0.

Our strategy for using the merit function always maintains 2- > 0 so that

the nonnegativity constraints create neither theoretical nor computational

difficulties.

In the following we develop the theoretical properties of the merit func-

tion ipd{x,z) and relate the solutions of the problems (1.1) and (2.2). We
use the term “strong local solution” to mean an optimal point, together

with a multiplier vector, of a constrained optimization problem at which

the following hold.

Al: The active constraint gradients are hnearly independent.

A2: Strict complementary slackness holds.

A3: The second order sufficient conditions hold.

It is well known that such a strong solution is isolated and is stable with

respect to small perturbations in the data of the problem. It can also be in-

ferred, following the lines of argument in [Rob74] that if is a sequence

converging to x*, a strong local solution to (1.1), and {B^} is a sequence

of uniformly bounded positive definite matrices, then the active constraints

of (1.1) at X* and the active constraints of (1.2) at x^ will coincide for k

sufficiently large. This is an essential result for the theoretical justification

of our proposed algorithm, as well as for most other SQP algorithms. In

particular it means that the necessary and sufficient conditions for superlin-

ear convergence of an SQP method for equality-constrained problems given

in [BogTW82] can be carried over to the inequality-constrained problem in

A Merit Function 6

a straightforward inanner by using the projection onto the null space of the

active constraint gradients.

In order to employ the merit function z) we must be sure that it

is well-defined, i.e., that the matrix A(a;,r) is nonsingular. To formulate

this condition in a convenient manner we partition the index set of the

constraints into two subsets a and u. Accordingly, we can write, without

loss of generality,

and, in a corresponding manner.

Usually the index subset a corresponds to the set of active constraints for

either (1.1) or (1.2). For example, we could set a = {i : g i{x) = 0} and

hence u = {i : gi{x) / 0}. We now introduce the additional assumption in

terms of a particular partition.

A4: The set {V5rj(x) : i G a} is linearly independent and z^ > 0.

With this assumption the following proposition can be proven.

Proposition 1. Assume that either A4 holds at (x, z) for some partition

(a, u) or z > 0. Then ^ci(x, z) is well-defined in a neighborhood of (x, z).

If X* is a strong solution for (1.1) and 2:* = —g(x*), then A4 holds at

{x*,z*) and by Proposition 1 xpdix,z) is well-defined in a neighborhood

of (x*, 2 *). We can now show that the solutions to (1.1) lead to special

solutions of (2.2) and vice versa.

Proposition 2. Let x*be a strong local solution to (1.1) having multiplier

vector A*. Then if z* = —g{x*) and d is sufficiently small it is the case that

(x*,z*) is a strong loccd solution to (2.2) with multiplier X(x*,z*) = A*.

Proof: We note that the conditions on x* and 2* assure that A4 is satisfied

at (x*,z*) and hence that 'ipdix.,z) is well-defined in a neighborhood of

(x*, 2 *). Also c(x*,z*) = 0. Thus

V^0d(x*,2’) = V/(x*) + V^(x*)A(x*, 2*)

and

V^xpdix\z*) = A(x*,2*).

A Merit Function /

From its definition, X{x, z) is seen to be the least squares solution of

(2.3)

But from the properties of x* and the definition of z* it follows that z*X“ = 0

for each i. Thus A* is an exact solution of (2.3) at (x*,^*), and so A(x*,.;*)

must be A*. It now follows that
,
-*) = 0, V ,ipci{x* ,

z*) = A*, and

strict complementary slackness holds. Therefore (x*, A*) is a solution to

(2.2). The proof that A3 holds for this problem is straightforward.

The proof of the converse follows essentially the same argument.

Proposition 3. Let (x*,^*) be a strong optimal solution to (2.2) having

multiplier X*and satisfying g(x*) z* = 0 and z* > 0. Then x* is a strong

optimal solution to (1.1) with multiplier A* and A* = X(x*,z*).

The fundamental part of the algorithm described in the next section

determines the direction of the step for changes in the current iterates x

and r. Given the current values x, x, and positive definite Hessian approx-

imation B, the step direction S is obtained as the solution of (1.2) and the

step direction for z is taken to be q where

[V^(x)'''(5 + g{x) + z (2.4)

Thus the new iterates will be (x + Q'<5, z + aq) for some o: > 0. It is easily

seen from the constraints of (1.2) that if the initial value of z is nonnegative

then all succeeding values of z will also be nonnegative provided that a is

not greater than one.

The choice of q given in (2.4) can be motivated by considering the slack

variable problem

min^:,, f(x)

u- 4. 4. 9i^) + ~ = 0
subject to: ^ ^

z > 0

The structured quadratic programming approximation to this problem can

be seen, after some algebra, to have the form

min,5,q V/(x)'^(5 + BS

q+z > 0.

A Merit Function 8

The equality constraint gives the relation (2.4) while the fact that the lin-

earized constraint in (1.2) is always satisfied implies that ([+ z will always

be nonnegative.

Before going further we give some formulas that will be useful in estab-

lisliing later results. We assume in the following that A[x,z) is nonsingular.

Since

and, from (2.4),

c{x,z) = c/(x)+ ^ = -(yg{x)^b + g), (2.5)

we have

Vc(x, 2)''’

^ j

= {y9{x)^b + q)
= -c[x,z). (2.6)

Two useful formulas that can be derived from the expression for A(x, z) are

Vj.A(x, x) = -W(x, VxT(x, A(x, x))) - VxxL(x, A(x, z))Vg{x)A(x, z)-'^

(2.7)

and

VsA(x, r) = -AA(x, ^)~l
(2.8)

where L(x, v) — f(x) + g{x)'^v is the Lagrangian function, lT'(x, y) = 0{y)
uniformly in x, and A = diag(Ai, . .

. ,
A^). Also we note that if A is the

multiplier for (1.2) then the KKT condition for (1.2) is

^xL{x, X) = Vf(x) + Vg{x)X = —B6. (2.9)

This formula together with the complementary slackness conditions for (1.2)

and the definitions of A(x, z) and q imply

A(x, x) - A = A{x, z)~^'^g{x)^B6 - A(x, z)~^Aq. (2.10)

We now identify some of the properties enjoyed by the merit function

relative to the step direction (b,q). An additional assumption that will hold

throughout the remainder of this paper is required.

A5: The matrices B appearing in (1.2) are uniformly positive definite.

First we observe that the step potentially decreases the (x,x)-

infeasibility as measured by

r(x,x) = |c(x,x)|2.

Indeed, as a result of (2.6) we have

A Merit Function 9

Proposition 4. Let A1 and A4 hold at (x^z) and let S and q he defined

as above. Then

Thus, unless c{x,z) = 0 the step is always a descent step for r{x,z).

The next proposition shows that when c{x,z) is close enough to zero the

direction is also one of descent for ^)-

Proposition 5. Let (x.z) satisfy c{x,z) = 0 with g(x) < 0. Let G he any

compact subset containing {x, z) and satisfying:

i) A1 and A4 hold for all (x, z) E G with c(x, z) — 0;

ii) there is no (x, z) E G with c(x, z) = 0 such that x is a solution to (1.1).

Then for each d > 0 there exits an €(d) > 0 such that for all (x,z) E G with

r(x,z) < e(d),

Proof: Let (x,z) E G with c(x,z) = 0. Then

From (2.5) and (2.9), it follows that

where A is the multiplier vector for (1.2). But if A
^

is positive then it is the

case that (V^(x)'*'6 + g{x))j = 0 and, since gj(x) < 0,

A'*'V5r(x)'*'^ > 0.

Thus

unless <5 0 (which implies that x is a solution to (1.1)). The result now

follows by a continuity argument.

A Merit Function 10

The preceding proposition shows that the direction of the step in (x, 2
)

is a descent direction for our merit function when c(x,z) is close to zero

except possibly in a neighborhood of (x’‘,z*) where x* is a solution to (1.1)

and 2:* = —g(x*). We now patch that gap by showing that if x* is a strong

solution then the step is a descent direction for tl^dix^z). First we recall

that if X is close enought to x* then the active constraints of (1.2) at x are

the same as the active constraints of (1.1) at x*. Thus for x sufficiently

close to X*, (1.2) is equivalent to

min^ 'v f{x)'^S + BS

subject to; 'vga{x)'^6 + ga{x) = 0
(
2 . 11

)

where (ga^Su) denotes the partition into active and inactive constraints at

x”*. It follows from the theory for equality-constrained SQP methods (see,

for example, [BogTW82]) that for x sufficiently close to x * there is a positive

constant K such that the solution of (2.11) satisfies

|(5| < A'|x — X*

If, in addition, 2 is close to 2 * = —g{x*) and q is given by (2.4) then using

the partition above we obtain

so

a

Since z* = -gu{x*),

qu\ = \^gu{x)^S + gu{x) - gu{x*) - z* + Zu

< A'i|x - X*| + A'2 |x - X*| +
|

2u - 2*1

for some constants Ki and A'2 . Thus S and q are both of order (|x — x*| +
\z — 2*1). We can now prove the following.

Proposition 6. Let x*be a strong solution to (1.1) with naultiplier vector

A*. Let 2 * = —g{x*) and assume that A5 holds. Then there exist positive

constants rj and ^ such that

whenever 0 < |(x, 2
)
— (x*, 2 *)| < g and 0 < d < ^.

A Merit Function 11

Proof: We assume rj is sufficiently small that the bounds on 6 and q pre-

ceding the statement of the proposition are valid. By the remarks following

Proposition 1 it is seen that A(a;, 2:)"^ is well-defined and uniformly positive

definite for q small. From (2.5) - (2.8),

V f(x)'^S + A(a:, ;r)'^u; - -wA{x,
a

+ 0(p|u;|) + ^0{p\w\^)

where p = min{|6|, |^|} and w — ^V5r(x)'^^ + . Letting A be the multiplier

vector for (1.2), using (2.9) and (2.10), and simplifying gives

Vxpdix, z
T

Vi/>d(z,
2)''' BS + q'^ X — - wA{x, z)

a

+0{p\w\)+^0(p\w\^).

Now ^JAu = 0 and qj Xa = — ^Ja^ < 0, so using the uniform positive

definiteness properties of the B and A(x, .r)“^ we have that there are positive

constants 71,72,73, and 74 such that

V^d(x, z)^

^ ^

It can be seen that for q and d sufficiently small that the right-hand side is

negative and the proposition is proven.

1 1
< -7iP + 72Pkl - j73|a;| + j74P|w

d d

A final important property of the merit function is that it doesn’t im-

pede the progress of superlinear convergence. That is, if the sequence is

converging superlinearly then a steplength of one is acceptable near the

solution. Since, as stated above, the quadratic program will identify the

correct active constraints near the solution, the value of 6 in that area will

be given as the solution of (2.11). If we denote by Pa the projection onto

the space orthogonal to the gradients of the active constraints at x* then

the characterization of the superlinear convergence of the sequence

generated by the SQP algorithm is ([BogTW82]),

(2 . 12
)

A Merit Function 12

where {S^
,
X^) is the optimal solutioii-multipUer pair for the quadratic pro-

gram (2.11).

Proposition 7. Let the hypotheses of Proposition 6 hold. Assume that

at least one step with steplength one is taken after the correct active set

is identified for the sequence {x^} generated by the SQP and that {.r^}

converges to x* superline arly. Then there exists a d > 0 such that for each

d £ (0, d) there is a positive integer J(d) satisfying

for k > J[d).

Proof: For ease of notation we drop the superscript k henceforth. Defining

p and w as in the proof of Proposition 6 and using equations (2.5) - (2.10)

it follows from the Taylor Series that

A = ihdix + ^.z A q) - i^d{x,z)

= -(^'^5(5 + A)(5 + a'''^

—q^AA{x., z)~^w + BXJg{x)A{x, z)~^w (2.13)

-\w'^A{x,z)~^w +(l+3)0(p^).
d d

If X is close enough to the solution that the active set has been identified

at each iterate (V^a(a;)'^^ = 0) then

Za + qa = -{'^9a(x)^S + g^) = 0

and hence after one step of unit length Za = qa — 0. Since A^ = 0 we

conclude that X'^ q = 0 and Aq = 0. Now letting Qa = I — Pa and adding

and subtracting BS on the right-hand side of (2.13) we obtain

A = -\sBSA^b^Pa[V,,L[x,X)-B)b

A — b^Qa[^xiL[x.i A) — B)8

— \w^A{x, z)~^w A BVg{x)A{x, z)~^w
d

+(l + i)0(p3).

(2.14)

An Algorithm 13

Since qa = 0, and hence

Qa^ = (yga{x)'^Vga{x)'j ^ga{x)^ 6 = 0{ Wa]

Thus letting e — |u;|/|^| in (2.14) and using A5, we can write

A 1 „ 1

1 \Pa{^.xL{x,\)- B)S\

+ 2

‘

1-51

+ {l + -pO{p).

From (2.12) it can be seen that for d sufficiently small the right-hand side

can be made negative provided p is small, thus proving the result.

3. An Algorithm

From the basic theorems presented in the preceding section a global con-

vergence theory can be constructed using the merit function 0c/(x, z). This

theoretical development will not be pursued here as it does not differ signif-

icantly from that presented for the equality-constrained case considered in

[BogT89] (§3). From a practical point of view the implementation of the al-

gorithm is more important. Below we present details of our implementation

along with results of some numerical experimentation.

Because the merit function is relatively difficult to evaluate at

points other than iterates and such evaluations are necessary when carry-

ing out a line search, a modified version of the merit function is used in

our implementation. We define our approximate merit function at the A:th

iteration to be

= /(x) + {g{x) + 2)''’a^’ + z)

where

Afc = Vg{x^)^Vg{x^) + Z^

and

Note that the use of z) as a merit function requires only the evaluation

of / and g to test a prospective new iterate. While it is cheap to evaluate.

All Algorithm 14

however, it is not a single merit function, and thus needs to be combined

with a strategy that wiU ensure global convergence.

The relevant properties of z) are identical to those of pi'o-

vided in the preceding section except that the descent property of z)

is stronger than that for ^)- fact, is always a descent direc-

tion for 0j(.r, z), for d sufficiently small, as is a conseciuence of the following

proposition.

Proposition 8. Let C be a. compact subset not containing a solution

of
(
1 . 1) and in which is nonsingular. There exists a d sufficiently small

such that if (x^, z'^) is a point of C at which z^) 7^ 0 then

< 0

provided d < d.

Proof: It is seen that

A
S'^

r.k

= Vf(X^)^S^

^g{x^\

I

6^

r.k

A7^
Vg{x^]

I

T

r.k

Using (2.9) and (2.10) yields, after some cancellation,

1 /

Vgix'^]

I
4-' b'^

-{q’^)^AA))^
b^
^k

T
Wg(x^]

I
4^ Vg(x^]

I

b^

r,k

As in the proof of Proposition 6, \ ^ q^ < 0. Defining w as in the same proof

it follows that there exist a constant K such that

A < -(b^)^ B'^b^ + A'|u;| - ^|u;|

An Algorithm 15

Using assumption A5 it is seen that the right hand side of the above in-

equality has a negative maximum for all d sufficiently small.

The proof for the case when is in a neighborhood of a solution to

(1.1) is nearly identical to that of Proposition 6 and is not given here.

Similarly the proof that if the algorithm is converging q-superlinearly, then

a steplength of one is acceptable for 'tpj(x, z) near the solution parallels the

proof of Proposition 7.

Our strategy for global convergence, as developed in [BogT89], depends

on the fact that there is a positive constant rj such that if |^(x) + z\ < i] then

both the function ^.nd ipjix, z) are reduced in the direction [b,q).

For a given rj, if z\ < i] then our strategy is to insist that ipj{x, z)

be reduced. In most cases, ipd{^,z) wiU then be reduced also. If not, then

the current value of rj is too large and it is reduced. Generally, we prefer

Tj not to be too small initially so that the constraints are not followed too

closely. If \g{x) + z\ > T] our procedures call for both z) and \g(x) + z\

to be reduced. This is possible because of the stronger descent property of

ip^ix^z). The details are given in the algorithm description below. Tliis

description assumes that we have an appropriate value of d; we comment

on this problem later.

ALGORITHM
1. Given d > 0, x°,

Calculate f{x^), V/(x°), ^(x*^), V^flx®) and c(x°,x°).

Initialize x®* = — for all g, < 0 and z^i = 1 otherwise, and set

77 = 2 |5(x0)|^

Calculate A® and '0(;/(x°, x°), and set k — 0.

2. Solve

6

subject to: Vgix'^)^ S + g{x^) < 0

to obtain

3. Set + g(x^) + x^'j.

4. Compute < 1 such that

+ a^q^) < 'i/’J(x^', z^).

(If this fails numerically, then choose q^’ < 1 to reduce |c(x, x)| .)

An Algorithm 16

5. If \c{x^ + + a^q^') > c(x^
,
z^)

reduce until c(.r^' + ,
z^ + a"

q

k ^,k

and

<

c(a'^', z^)

c{x^,z^)

> h,

6. If + a^S^,z^ + Q^V/') > 2:^')

set rj

7.

Set

c(x^, z^)

x*-'+i :=

,^-+1 _ .A; ^ ^k^k

8. Update .

9. If convergence criteria are met, stop.

10.

Set k := k 1; goto 2.

The algorithm described in this paper was implemented in Fortran and

tested on a selection of problems from [HocSSl] and [Sch87]. The problems

chosen were the higher dimensional ones with a large number of nonlin-

ear inequahty constraints. (The low dimensional problems converged too

quickly to be of much interest.) Because equality constraints can be han-

dled in a straightforward manner [BogT89], no problems with equality con-

straints were chosen. A variety of starting points were used, the first of

which was the one suggested in the reference. The tests were run on a

Sparc 3333 station in double precision arithmetic (16 decimal digits). The

quadratic subproblem was solved using the Nag subroutine E04NAF. We
found it important to update the approximation of the Hessian of the La-

grangian at each iteration, while still maintaining positive definiteness. Ac-

cordingly we used the numerically proven damped BFGS update of [Pow78],

defined as follows. In the standard BFGS one uses the vectors

y = V,T(x^'+\A^'+')- V,T(x^A^•+l)

in the update formula. Since y need not be positive, Powell recommends

replacing y by
yP = Oy [I - e)BkS

where the parameter ^ G (0, 1] is chosen as

^
f 1 if y > B^s

[
{1 — Bks/{s^BkS - y) otherwise

An Algorithm 17

and the value of (was chosen to be .1. More theoretically justified updating

schemes exist, e.g., [Tap88], but because of their local nature, they were not

employed here.

A pre-update scaling strategy suggested for unconstrained optimization

[OreS76] was used. This pre-update scaling was only performed on the

initial iteration as suggested by [ShaP78]. is set to / and the first step

is computed; 5 and y are calculated. Before the above updating procedure

is used, however, is set to tI where

T — y/s^s if y > 0

1 otherwise

A dynamic scheme for decreasing the parameter d was devised and em-

ployed in [BogT89]. It was noticed in testing that the parameter was de-

creased infrequently and that an initial fixed value of d would, in most cases,

yield adequate convergence. A procedure that decreases d frivolously can

be very costly, as it wiU usually lead to smaller steps. For these reasons,

the updating of the parameter d was not included in the algorithm tested

here; rather, several different values of the parameter were tested for each

problem. (See Remark 5 below.)

The convergence criteria used are those that are standard in the liter-

ature. We first insist that the constraints be satisfied to a close tolerance;

specifically we require

9v(x < 10
'

where v E {i ' gi{x^) > 0}. We also require that either

\f{x^)\
< 10

“'
(3.1)

or

< 10“®(1 + (3.2)

As noted above, the test problems are taken from [HocS81] and [Sch83].

In Table 1 we give the problem number from these references, some relevant

information about the problem, and the performance of the algorithm on

that problem. In particular, we show the dimension, n, of the problem;

the number of constraints, m; the number of those constraints that are

simple bounds, 6; and the number of active constraints at the solution.

For each problem we consider several starting values and several values

of the parameter d. Then for each of these runs we report the number of

An Algorithm 18

iterations (which is equal to the number of evaluations of V/(x
)
and. V^(x

));

the number of function and constraint evaluations; the iteration, iteracti a.t

which the correct active set was identified; the number of iterations where
Q^' was equal to 1; the number of times that rj had to be reduced (see Step

6); the number of times that 'ip^{x,z) could not be reduced (see Step 4);

and the convergence criteria satisfied where 1 implies that test (3.1) was

satisfied, 2 imphes that (3.2) was satisfied, 3 implies that both were, 7

implies numerical overflow in a function evaluation, and 8 signifies that an

inconsistent QP was detected.

We make several observations concerning these results.

1. No attempt was made to optimize the code. For example, simple

bounds should be handled separately and not be included in the merit

function since they will always be satisfied. In the same spirit, the

gradients of hnear constraints should only be computed once. Finally,

a more sophisticated line search should be used, and a procedure for

reducing constraint infeasibilities when the QP is inconsistent should

be included.

2. In light of the above remark, we did not attempt a detailed comparison

with other methods. Direct comparisons are confounded by the host of

other factors such as the updating strategy, line search, and differences

in the machine on which the codes were run. We note, however, that

our results on the “standard” starting values are similar to those of

[HocSSl] and [Sch83] even though they did not use the same stopping

criteria.

3. The merit function performs well. Most of the steps have = 1,

so no other merit function would do substantially better. The worst

performance occurred in the examples where there was a significant

amount of linear dependency in the active constraint gradients (i.e.,

half or more of the gradients are dependent). We think that these

problems, however, are unreahstic, especially in the large scale case.

In problems like No. 101 where only 9 of 64 steps have = 1, we

observed that almost all of these steps occurred after the correct active

set was identified.

4. Our procedure for t] caused no apparent problems; the code performed

as in the equality constrained case reported in [BogT89].

5. The algorithm does not appear to be overly sensitive to the “arbi-

trary” parameter d. Occasionally smaller values of d help, sometimes

not, and often there is little difference. We think that this is due to

References 19

the fact that most of the problems are well scaled. To test this, we

multiphed the objective function by 1000. Occasionally tliis did cause

some significant differences. Moreover, we note that there are several

instances where the line search in Step 4 failed and the procedure for

reducing |c(.r, 2:)| was invoked. While this procedure was successful,

we think that this and the above observation suggest the need to dy-

namically reduce d to ensure that (S,q) is a. good descent direction for

^d-

In conclusion, we beheve that the merit function and the algorithm de-

scribed here are competitive procedures for solving general nonlinear pro-

gramming problems.

REFERENCES

[BogT84] Boggs, P., ToUe, J., A family of descent functions for con-

strained optimization, SIAM J. Numer. Anal. 21 (1984), pp. 1146-1161.

[BogT88] Boggs, P., ToUe, J., Merit functions and nonlinear program-

ming, in Operational Research ’87, G. K. Rand, ed., Elsevier Science Pub-

lishers B.V., North Holland, 1988.

[BogT89] Boggs, P., ToUe, .J., A strategy for global convergence in a

sequential quadratic programming algorithm, SIAM J. Numer. Anal. 26

(1989), pp. 600-623.

[BogTW82] Boggs, P., ToUe, J., Wang, P., On the local convergence of

quasi-Newton methods for constrained optimization, SIAM J. Control Op-

tim. 20 (1982), pp. 161-171.

[ChaLLP82] Chamberlain, R., Lemarechal, C., Pedersen, H. C., and

PoweU, M., The watchdog technique for forcing convergence in algorithms

for constrained optimization, Math. Programming Stud. 16 (1982), pp.

1-17.

[GilMSW86] GiU, P., Murray, W., Saunders, M., and Wright, M., Some
theoretical properties of an augmented Lagrangian merit function. Technical

Report 86-6, Stanford University, Dept. Operations Research, 1986.

[Han77] Han, S., A globally convergent method for nonlinear program-

ming, J. Optim. Theory Appl. 22 (1977), pp. 297-309.

References 20

[HocSSl] Hock, W., Schittkowski. K., Test examples for nonlinear pro-

gramming codes^ in Lecture Notes in Economics and Mathematical Systems

187, Springer- Verlag, Berlin, 1981.

[OreS76] Oren, S., Spedicato, Yi. .Optimal conditioning of self-scaling

variable metric algorithms, Math. Programming. 10 (1976), pp. 70-90.

[Pow78] Powell, M. J. D., A fast algorithm for nonlinearly constrained

optimization calculation, in Numerical Analysis Proceedings Dundee 1977,

G. A. Watson, editor, Springer-Verlag, 1978.

[Pow84] Powell, M. .J. D., The performance of two subroutines for con-

strained optimization on some difficult test problems, in Numerical Opti-

mization 1984, P. T. Boggs, R. H. Byrd, and R. Schnabel, editors. SIAM,

1984.

[Rob74] Robinson, S., Perturbed Kuhn-Tucker points and rates of con-

vergence for a class of nonlinear-programming algorithms. Math. Program-

ming 7 (1974), pp. 1-16.

[Sch83] Schittkowski, K., On the convergence of a sequential quadratic

programming method with an augmented Lagrangian line search function,

Math. Operatioiisforsch. Statist. Ser. Optim. 14(1983), pp. 197-216.

[Sch87] Schittkowski, K., More test examples for nonlinear program-

ming codes, in Lecture Notes in Economics and Mathematical Systems 282,

Springer-Verlag, Berlin, 1987.

[ShaP78] Shanno, D., Phua, K., Matrix conditioning and nonlinear op-

timization. Math. Programming 14 (1978), pp. 145-160.

[ShaP89] Shanno, D., and Phua, K., Numerical experience with sequen-

tial quadratic programming algorithms for equality constrained nonlinear

programming, acm Trans. Math. Soft. 15 (1989), pp. 49 - 63.

[Tap77] Tapia, R., Diagonalized multiplier methods and quasi-Newton

methods for constrained optimization. J. Optim. Theory Appl. 22 (1977),

pp. 13.5-194.

References 21

[Tap88] Tapia, R., On secant updates for use in general constrained op-

timization, Math. Comp. 51 (1988), pp. 181-202.

TABLE 1

TABLE 1

Problem 72, n = 4, m = 2, 6 = 8; 2 active constraints

Starting

value d iter No. / No. g ltd Q

(

conv.

No. rj

reductions

No.

not reduced

Standard 1.0 17 141 141 1 2 7 5

0.1 17 130 130 1 2 7 4

0.01 17 120 120 1 2 7 3

0.001 17 120 120 1 2 7 3

iVIedium 1.0 16 135 135 1 2 6 5

0.1 16 115 115 1 2 6 3

0.01 16 115 115 1 6 3

0.001 16 115 115 1 2 6 3

Far 1.0 19 195 195 14 2 11 9

0.1 20 175 175 13 2 11 7

0.01 20 165 165 13 2 11 6

0.001 20 165 165 13 2 11 6

/ X 1000 1.0 25 290 290 19 2 15 16

0.1 25 290 290 19 2 15 16

0.01 25 290 290 19 2 14 16

0.001 18 158 290 2 2 8 6

Problem 84, n = 5, ni — 6
,

6 = 10; 5 active constraints

Starting No. 1
}

No.

value d iter No. / No. g itd'dQl conv. reductions not reduced

Standard 1.0 2 28 28 1 1 0 1

0.1 2 28 28 1 1 0 1

0.01 2 28 28 1 1 0 1

0.001 2 28 28 1 1 0 1

Medium 1.0 4 40 40 2 3 0 1

0.1 4 30 30 2 3 0 0

0.01 4 30 30 2 3 0 0

0.001 4 31 31 2 3 1 0

Far 1.0 3 24 24 3 1 0 0

0.1 3 24 24 3 1 0 0

0.01 4 51 51 2 2 0 2

0.001 4 41 41 2 2 0 1

/ X 1000 1.0 2 28 28 1 1 0 1

0.1 2 28 28 1 1 0 1

0.01 2 28 28 1 1 0 1

0.001 2 28 28 1 1 0 1

TABLE 1 23

Problem 93, n — 6, m = 2, 6 = 6; 2 active constraints

Starting

value d iter No. / No. g itci'act conv.

No. g

reductions

No.

not reduced

Standard 1.0 24 188 188 1 1 0 1

0.1 24 188 188 1 1 1 1

0.01 20 151 151 1 2 1 0

0.001 18 138 138 1 2 0 0

Medium 1.0 20 159 159 4 2 2 1

0.1 20 159 159 4 2 1 1

0.01 23 171 171 4 2 0 0

0.001 23 171 171 4 2 0 0

Far 1.0 34 406 406 31 2 17 16

0.1 26 231 231 2 1 3 4

0.01 26 202 202 2 1 0 1

0.001 24 179 179 2 1 0 0

/ X 1000 1.0 > 100 8

0.1 > 100 8

0.01 > 100 8

0.001 > 100 8

Problem 100, ii = 7, rn = 4, 6 = 0; 2 active constraints

Starting

value d iter No. / .
No. g itCVact conv.

No. g

reductions

No. 0^(.r.c)

not reduced

Standard 1.0 19 196 197 2 1 3 3

0.1 19 196 197 2 1 3 3

0.01 10 93 93 2 1 0 0

0.001 12 112 112 3 1 0 0

Medium 1.0 41 365 365 20 2 4 2

0.1 41 374 375 20 2 2 3

0.01 41 364 365 20 2 3 2

0.001 42 386 388 20 1 4 2

Far 1.0 24 236 236 6 1 3 3

0.1 26 255 255 9 1
*>

3

0.01 26 245 245 9 1 4 2

0.001 31 294 294 12 1 4 3

/ X 1000 1.0 7

0.1 7

0.01 7

0.001 7

TABLE 1 24

Problem 101, n = / . ni = 22, b = l(i: 3 active constraints’

Starting

value d iter No. / No. g iteract conv.

No. ij

reductions

No.

not reduced

Standard 1.0 33 458 507 30 3 17 18

0.1 63 916 1023 45 1 35 31

0.01 64 793 907 44 1 19 19

0.001 64 784 907 44 1 14 19

Medium 1.0 7

0.1 7

0.01 7

0.001 7

Far 1.0 7

0.1 7

0.01 7

0.001 7

/ X 1000 1.0 7

0.1 7

0.01 7

0.001 7

Problem 104, n = 8, m = 6, 6 = 16: 4 active constraints

Starting

value d iter No. / No. g itci act conv.

No. t]

reductions

No.

not reduced

Standard 1.0 25 234 234 6 1 0 0

0.1 25 234 234 6 1 1 0

0.01 27 261 261 6 1 1 0

0.001 33 362 362 6 1 3 3

Medium 1.0 16 179 167 5 1 2 0

0.1 17 181 171 5 1 3 0

0.01 17 183 171 5 1 2 0

0.001 18 195 181 5 1 2 0

Far 1.0 24 238 238 9 1 0 1

0.1 27 259 259 9 1 0 0

0.01 33 336 338 9 1 3 1

0.001 40 429 429 9 1 2 1

/ X 1000 1.0 7

0.1 7

0.01 7

0.001 7

TABLE 1 25

Problem 106, n = 8, m = 6, b = 16; 6 active constraints

Starting

value d iter No. / No. g iteract conv.

No.

reductions

No.

not reduced

Standard 1.0 23 270 294 20 2 3 4

0.1 31 373 415 27 2 7 6

0.01 32 382 424 27 2 7 6

0.001 58 830 1038 54 2 29 27

Medium 1.0 12 121 121 8 2 1 0

0.1 10 112 112 7 2 3 1

0.01 10 112 112 7 2 3 1

0.001 10 112 112 7 2 3 1

Far 1.0 23 321 370 21 •>
10 9

0.1 35 473 598 34 2 13 13

0.01 32 435 .542 31 2 12 13

0.001 26 362 440 24 2 10 11

/ X 1000 1.0 21 278 311 16 2 8 8

0.1 19 240 251 12 1 4 6

0.01 15 169 169 8 1 1 2

0.001 14 157 157 8 1 3 1

Problem 108, n = 9, m = 13, 6 = 1; 9 active constraints

Starting

value d iter No. / No. g itci act conv.

No. rj

reductions

No.

not reduced

Standard 1.0 10 150 161 8 1 1 4

0.1 10 120 131 8 1 1 1

0.01 10 120 131 8 1 1 1

0.001 10 120 131 8 1 1 1

Medium 1.0 18 205 205 17 1 0 1

0.1 18 214 214 16 1 0 1

0.01 22 329 365 26 2 5 3

0.001 33 434 491 32 0 5 4

Far 1.0 16 176 176 16 1 0 0

0.1 16 176 176 16 1 0 0

0.01 16 187 187 16 1 0 1

0.001 16 177 177 16 1 0 0

/ X 1000 1.0 10 138 139 5 1 1 2

0.1 10 138 139 5 1 1 2

0.01 10 129 129 5 1 1 1

0.001 10 138 139 5 1 1 2

TABLE 1 2(3

Problem 110, n = 10, m = 0, 6 = 20; 0 active constraints

Starting

value d iter No. / No. g iterad conv.

No. 1
]

reductions

No. ip^{x,z)

not reduced

Standard 1.0 7 89 89 2 1 0 0

0.1 7 89 89 2 1 0 0

0.01 7 89 89 2 1 0 0

0.001 7 89 89 2 1 0 0

Medium 1.0 9 115 115 1 1 0 0

0.1 9 115 115 1 1 0 0

0.01 9 115 115 1 1 0 0

0.001 9 115 115 1 1 0 0

Far 1.0 16 189 189 2 1 0 0

0.1 16 189 189 2 1 0 0

0.01 16 189 189 2 1 0 0

0.001 16 189 189 2 1 0 0

/ X 1000 1.0 7 89 89 2 1 0 0

0.1 7 89 89 2 1 0 0

0.01 7 89 89 2 1 0 0

0.001 7 89 89 2 1 0 0

Problem 113, n — 10, m = 8, 6 = 0; 6 active constraints

Starting

value d iter No. / No. g iterad conv.

No. 1
]

reductions

No. z)

not reduced

Standard 1.0 18 211 211 8 1 0 0

0.1 18 212 212 7 1 0 0

0.01 18 213 213 7 1 0 0

0.001 18 215 215 7 1 1 0

Medium 1.0 14 167 167 8 1 1 0

0.1 14 168 168 8 1 1 0

0.01 16 196 196 9 1 2 0

0.001 16 196 196 9 1 2 0

Far 1.0 17 221 221 11 1 0 2

0.1 17 202 202 11 1 1 0

0.01 17 221 221 11 1 3 2

0.001 17 232 232 10 1 3 3

/ X 1000 1.0 25 367 465 21 2 5 8

0.1 25 367 465 21 2 5 8

0.01 25 367 465 21 2 5 8

0.001 25 367 465 21 2 5 8

TABLE 1

Problem 264, n — 4, m = 3, 6 = 0; 1 active constraint

Starting

value d iter No. / No. g itCl'act conv.

No. TJ

reductions

No.

not reduced

Standard 1.0 11 105 105 2 1 2 3

0.1 12 112 112 2 2 2 3

0.01 17 148 181 14 2 2 4

0.001 15 124 138 15 2 2 2

Medium 1.0 11 91 91 2 1 5 3

0.1 12 97 97 3 1 2 3

0.01 11 63 63 3 1 1 0

0.001 12 67 67 3 1 1 0

Far 1.0 12 106 106 5 1 3 4

0.1 12 88 88 4 1 1 2

0.01 12 67 67 4 1 1 0

0.001 12 68 68 4 1 2 0

/ X 1000 1.0 17 166 177 1 2 5 7

0.1 17 166 177 1 2 5 7

0.01 17 166 177 1 2 5 7

0.001 17 166 177 1 2 5 7

Problem 339, n = 3, m — 1, 6 = 3: 1 active constraint

Starting No. g No.

value d iter No. / No. g itei'act conv. reductions not reduced

Standard 1.0 11 105 105 2 1 2 3

0.1 12 112 112 2 2 2 3

0.01 17 148 181 14 2 2 4

0.001 15 124 138 15 2 0

Medium 1.0 11 91 91 2 1 5 3

0.1 12 97 97 3 1 2 3

0.01 11 63 63 3 1 1 0

0.001 12 67 67 3 1 1 0

Far 1.0 12 106 106 5 1 3 4

0.1 12 88 88 4 1 1 2

0.01 12 67 67 4 1 1 0

0.001 12 68 68 4 1 2 0

/ X 1000 1.0 17 166 177 1 2 5 7

0.1 17 166 177 1 2 5 7

0.01 17 166 177 1 2 5 7

0.001 17 166 177 1 2 5 7

TABLE 1 •28

Problem 346. n = 3, in = 2. 6 = 6; 1 active constraint

Starting

value d iter No. / No. g itci (jQi conv.

No. 1
]

reductions

No. ;)

not reduced

Standard 1.0 3 16 16 1 1 0 1

0.1 3 16 16 1 1 1 0

0.01 3 16 16 1 1 1 0

0.001 3 16 16 1 1 1 0

Medium 1.0 7 69 69 6 1 1 3

0.1 12 114 120 10 3 7 6

0.01 12 114 120 10 3 7 5

0.001 12 114 120 10 3 7 3

Far 1.0 6 48 48 2 1 1 2

0.1 6 48 48 2 1 1
')

0.01 6 48 48 2 1 1 2

0.001 6 48 48 2 1 1 2

/ X 1000 1.0 3 26 26 1 1 2 1

0.1 3 26 26 1 1 2 1

0.01 3 26 26 1 1 1 1

0.001 3 26 26 1 1 0 1

Problem 354, n = 4, m = 1, 6 = 4; 1 active constraint

Starting No. rj No. ip^(x,z)

value d iter No. / No. g itCVact conv. reductions not reduced

Standard 1.0 24 130 130 12 2 0 0

0.1 24 130 130 12 2 0 0

0.01 24 130 130 12 2 0 0

0.001 24 130 130 12 0 0 0

Medium 1.0 48 248 248 32 3 0 0

0.1 48 248 248 32 3 0 0

0.01 48 248 248 32 3 0 0

0.001 48 248 248 32 3 0 0

Far 1.0 39 203 203 27 3 0 0

0.1 39 203 203 27 3 0 0

0.01 39 203 203 27 3 0 0

0.001 39 203 203 27 3 0 0

/ X 1000 1.0 24 130 130 12 2 0 0

0.1 24 130 130 12 2 0 0

0.01 24 130 130 12 2 0 0

0.001 24 130 130 12 2 0 0

TABLE 1 29

Problem 387, n — 4, m = 3, b — 0; lU active constraints

Starting

value d iter No. / No. g itei'act conv.

No. 1
]

reductions

No. r)

not reduced

Standard 1.0 54 1140 1152 47 2 19 15

0.1 51 1131 1189 50
')

19 21

0.01 51 1131 1188 50 2 19 20

0.001 51 1131 1191 50 2 19 19

Medium 1.0 25 520 .520 17 1 11 10

0.1 25 520 520 17 1 8 10

0.01 27 511 512 17 1 7 6

0.001 26 457 457 18 1
0 2

Far 1.0 27 .569 570 19 1 13 12

0.1 26 .543 544 19 1 11 11

0.01 26 504 506 19 1 5 7

0.001 28 518 518 19 1 3 5

/ X 1000 1.0 23 494 494 0 13 8 9

0.1 23 494 494 2 13 8 9

0.01 23 494 494 2 13 8 9

0.001 23 494 494 2 13 8 9

4. TITLE AND SUBTITLE

A Merit Function for Inequality Constrained Nonlinear
Programming Problems

5. AUTHOR(S)

Paul T. Boggs and Jon W, Tolle

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 2089B

7. CONTRACT/GRANT NUMBER

a. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, aTY, STATE, ZIP)

NIST-1 14A U.S. DEPARTMENT OF COMMERCE
(REV. 3-90) NATIONAL INSTITLTTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER
NISTIR 4702

2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

October 1991

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORO OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE.)

We consider the use of the sequential quadratic programming (SOP) technique for

solving the inequality constrained minimization problem min^f (x) subject to: g^(x)

0, i = 1, . . .

,

m. SOP methods require the use of an auxiliary function, called a merit

function or line-search function, for assessing the steps that are generated. We derive

a merit function by adding slack variables to create an equality constrained problem and

then using the merit function developed earlier by the authors f^r the equality constrained

case. We stress that we do not solve the slack variable problem^' but only use it to con-

struct the merit function. The resulting function is simplified in a certain way that

leads to an effective procedure for'updating the squares of the slack variables. The

final form of the merit function has many desirable properties^ and is demonstrated to

be effective in practice.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

nonlinear optimization; Inequality constraints; sequential quadratic
programming; merit functions

13. AVAILABILITY

UNLIMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22101.

14. NUMBER OF PRINTED PAGES

33

IS. PRICE

A03

ELECTRONIC FORM

^ _ „„gp,r^ airt- 1
— - -o--***^^-**^ •

'
.i y tirU-

'

mlf '-'-—

‘rr.

virnr _.j

7*’ » '^^fel«i-i»^MM'< "^1 ^'
^ ’

1TJ^. Vr'».T'5>-:.'<»'*r

,
7^

'
'

' 1_
-'"*w-

..._

-.-v

'

.
•= rr/i’^-

' ^?.' ^ '? »'
1

W'swkiiriWiimiS
a.x^v',^ia»j^£SwAT£'''a f ^ ui'

«ii»ds <<;<>

Ei.,y

ms

'Wi^Si^.

'1
1 ,,-.

fc* M t

>>,

;...;>,5.-V

/v-, t -c , luj' i'x'r- ttiu ^4i0.dc-tJ ^clii^.ffi3Jl''?:^.,-ts
, -

_' '

.., _ i' . . ., . .; . .-. /i>ii'». 11. . ,.

' V
, 4 ;-.C. i 4 l9''" i’X'^" iixu

-••n'
,

1
- ^ 7

*
1. ?(.;• 4.

>
*/’

'

tlih- : : lU

. Si 1
y-;. : 7 S .'i ,^qT‘lj)j •!

f, 1-1 • “jXiV V ,1

>V M .-i«jw: .i'*. ','i'.

’i tH<70 '. ?t;i,'C-"j ..>-' X?;!!'. •.:y^* ;v.<f;;

f 1 ' %:•' ’

rii.'? f"''

‘
• <-«r r

'• 'Sl' .'ri -

i '

r 7 '3
.

_“

v‘:r
. . :

'•'
•'. T '

. V. h ‘a’ *tt -^.i: ''•.

; * H

"

• * - "m- f'h

T?;!!',
.^'••.:y^* :y.ii-J IS.fcX'tWS fei§<iC>X®V’f .b ..«5t>l,V' •rtr«'$,- si.’s.fei?) .^^dl gftj{.iwi-|

m “PI
m

: .-i ui'-KP i,:j-t:)'
" ^ •

. 1^ . - _ . „ -V..' jift. *» M. xSa « M'l

— -jf •• '»•'* >
' ^*« •m

a s

, 1^.

•;i#^
, ,, . .

Ul.'fte 4*v
'j?'

Vp,;, ,.,=*;iLjJ

r- a

„iafe‘,

,'.<1 v's:^

