Selected Tables of Atomic Spectra

Atomic Energy Levels and Multiplet Tables

H I, D, T
U.S. EPARTMENT OF COMMERCE

National
QC
100
.0573
no. 3
$\sec \cdot 6$
1972
c. 2

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ${ }^{1}$ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system. (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Measurement Services and the following divisions:

Applied Mathematics-Electricity-Heat-Mechanics-Optical Physics-Linac Radiation ${ }^{2}$ - Nuclear Radiation ${ }^{2}$-Applied Radiation ${ }^{2}$-Quantum Electronics ${ }^{3}$ Electromagnetics ${ }^{3}$-Time and Frequency ${ }^{3}$-Laboratory Astrophysics ${ }^{3}$ - Cryogenics ${ }^{3}$.
THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions:

Analytical Chemistry-Polymers-Metallurgy-Inorganic Materials-Reactor Radiation-Physical Chemistry.
THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute also monitors NBS engineering standards activities and provides liaison between NBS and national and international engineering standards bodies. The Institute consists of a Center for Building Technology and the following divisions and offices:

Engineering Standards Services-Weights and Measures-Invention and Inno-vation-Product Evaluation Technology-Electronic Technology-Technical Analysis-Measurement Engineering-Fire Technology-Housing Technology ${ }^{4}$ -Federal Building Technology - Building Standards and Codes Services ${ }^{4}$ Building Environment ${ }^{4}$-Structures, Materials and Life Safety ${ }^{4}$-Technical Evaluation and Application ${ }^{4}$.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards-Computer Information-Computer Services -Systems Development-Information Processing Technology.
THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world, and directs the public information activities of the Bureau. The Office consists of the following organizational units:

Office of Standard Reference Data-Office of Technical Information and Publications-Library-Office of International Relations.

[^0]
Selected Tables of Atomic Spectra
 A Atomic Energy Levels - Second Edition
 B Multiplet Tables
 H I, D, T

Data Derived from the Analyses of Optical Spectra

Charlotte E. Moore
Office of Standard Reference Data
National Bureau of Standards
Washington, D.C. 20234
E. O. Hulburt Center for Space Research
U.S. Naval Research Laboratory
Washington, D.C. 20390
tnalinal standard reterence data series,

U.S. DEPARTMENT OF COMMERCE, Peter G. Peterson, Secretary national bureau of standards,

Library of Congress Catalog Card Number: 64-60074

NSRDS-NBS 3, Section 6

Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 3, Sec. 6, 36 pages (Sept. 1972)
CODEN: NSRDAP
(C) $\mathbf{1 9 7 2}$ by the Secretary of Commerce on Behalf of the United States Government

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. Cl3.48:3/Sec. 6). Price 40 cents.

Stock Number 0303-0998

Abstract

The present publication is the sixth Section of a series being prepared in response to the persistent need for a current revision of two sets of tables containing data on atomic spectra as derived from analyses of optical spectra. As in the previous sections, Part A contains the atomic energy levels and Part B the multiplet tables. The spectra of hydrogen and of the isotopes deuterium and tritium are included. The form of presentation is described in detail in the text to Section 1.

Key words: Atomic energy levels, H i, D, T; hydrogen spectra, H i, D, T; multiplet tables, H I, D, T; spectra H I, D, T; wavelengths, hydrogen spectra H I, D, T.

Foreword

The National Standard Reference Data System provides effective access to the quantitative data of physical science, critically evaluated and compiled for convenience, and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President's Office of Science and Technology and the Federal Council for Science and Technology, with responsibility to administer it assigned to the National Bureau of Standards.

The System now comprises a complex of data centers and other activities, carried on in academic institutions and other laboratories both in and out of government. The independent operational status of existing critical data projects is maintained and encouraged. Data centers that are components of the NSRDS produce compilations of critically evaluated data, critical reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. In addition, the centers and projects establish criteria for evaluation and compilation of data and make recommendations on needed improvements in experimental techniques. They are normally closely associated with active research in the relevant field.

The technical scope of the NSRDS is indicated by the principal categories of data compilation projects now active or being planned: nuclear properties, atomic and molecular properties, solid state properties, thermodynamic and transport properties, chemical kinetics, and colloid and surface properties and mechanical properties.

The NSRDS receives advice and planning assistance from the National Research Council of the National Academy of Sciences-National Academy of Engineering. An overall Review Committee considers the program as a whole and makes recommendations on policy, long-term planning, and international collaboration. Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users' needs, the present state of knowledge, and existing data resources, as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities.

The NSRDS-NBS series of publications is intended primarily to include evaluated reference data and critical reviews of long-term interest to the scientific and technical community.

Lawrence M. Kushner, Acting Director

Preface

The present publication is the sixth Section of a series that is being prepared in response to the increasing demand for a current revision of two sets of tables containing data on atomic spectra as derived from analyses of optical spectra.

The first set, Atomic Energy Levels, NBS Circular 467, consists of three Volumes published, respectively, in 1949, 1952, and 1958, and a fourth one on rare-earth spectra, still in course of preparation. This Circular has been reprinted as NSRDS-NBS 35, Volumes I, II, and III.

The second set consists of two Multiplet Tables; one published in 1945 by the Princeton University Observatory containing multiplets having wavelengths longer than $3000 \AA$; the other, An Ultra-Violet Multiplet Table, NBS Circular 488, appearing in five Sections, the first in 1950, the second in 1952, and the others in 1962. The 1945 Princeton Multiplet Table has been reprinted as NSRDS-NBS 40.

The present series includes both sets of data, the energy levels and multiplet tables, as parts A and B, respectively, for selected spectra contained in Volume I of "Atomic Energy Levels." The Sections are being published at irregular intervals as revised analyses become available. A flexible paging system permits the arrangement of the various Sections by atomic number, regardless of the order in which the separate spectra are published. Section 1 includes three spectra of silicon, $Z=14$: Si iI, Si III, Si IV. Section 2 contains similar data for Si I. Section 3 covers all the spectra of carbon, $Z=6$: С i, C iI, C iII, C iv, C v, C vi. Section 4 includes four spectra of nitrogen, $Z=7$: Niv, $\mathrm{N} v, \mathrm{~N}$ vi, N vir. Section 5 is scheduled to include the remaining spectra of nitrogen: $\mathrm{N}_{\text {I }}, \mathrm{N}_{\text {II }}, \mathrm{N}_{\text {iII }}$. The form of presentation of the data is described in detail in the text of Section 1 . All Sections are arranged identically and the same conversion factor, cm^{-1} to $\mathrm{eV}, 0.000123981$ is used throughout.

The manuscript has been prepared by Charlotte E. Moore who has published the earlier tables. She appreciates the cordial cooperation of numerous atomic spectroscopists. She is particularly indebted to J. D. Garcia and the late J. E. Mack, who carried out the extensive calculations on hydrogen-like spectra, especially for inclusion in this Series. W. C. Martin and his colleagues in the Spectroscopy Section of the National Bureau of Standards have provided valuable suggestions regarding details in the text and tables. Special thanks are due Isabel D. Murray for her meticulous care in preparing the tabular data. The splendid work of Barbara N. Somerville in typing the press copy of this difficult tabular material is, also, gratefully acknowledged.

Washington, D.C., March 24, 1972.

Contents

Page
Abstract III
Foreword IV
Preface V
Part A-Atomic Energy Levels
Element: $Z \quad$ Spectrum
Hydrogen $1 \quad \mathrm{H}_{1}$ Al Il to Al I^{-3}
Deuterium D. Al D, T-l to Al D, T-2
TritiumT.Al D, T-l to Al D, T-2
Part B-Multiplet Tables
Element: $Z \quad$ Spectrum
Hydrogen $1 \quad \mathrm{H}_{1}$ Blil to Bl I-8
Deuterium D Bl D-1
TritiumT.Bl T-1

NSRDS--NBS 3, SECTION 6

HYDROGEN $Z=1$

A Hi Atomic Energy Levels

B Hi Multiplet Table

HYDROGEN

Part A

H I

1 electron

$$
Z=1
$$

Ground state $1 s^{2} S_{01 / 2}$
$1 s^{2} S_{01 / 2} \mathbf{1 0 9 6 7 8 . 7 6 4} \mathrm{~cm}^{-1}, 911.754 \AA(\mathrm{Vac})$
I P 13.598 eV
The data quoted here refer to the light isotope of hydrogen ${ }_{1}^{1} \mathrm{H}$ I. Deuterium and tritium are being handled separately.

The energy levels of the spectra of the hydrogen isoelectronic sequence Hito Caxx have been calculated by Garcia and Mack and reported in a paper entitled "Energy Level and Line Tables for One-Electron Atomic Spectra." For Hithe level values are derived to six decimal places to $n=50$, with $R=109677.576 \mathrm{~cm}^{-1}$.

In the present table the calculated values have been rounded off to three decimals. Intervals are quoted to four places only in cases of resolved levels. For further details users should consult the original paper.

For unresolved groups the term designations in Part B have no real significance. The center of gravity of all levels having a given value of n has been used to derive the quoted wavelength, regardless of the arbitrary designation entered with "etc." throughout.

Since the publication of "Atomic Energy Levels," Humphreys has reported the observation of the first member of the Sixth Series of H I at 12.37μ, the second line of the Pfund Series and the third, fourth and fifth lines of the Brackett Series.

The Lamb shift and both fine and hyperfine structure of H I have been widely discussed in the literature. In 1964 Edlén and Svensson derived accurate "centre-of-gravity" wavelengths of the Lyman lines, $1 s-n p, n=2$ to 7 , and discussed "the various factors pertinent to their use as standards."

Observations of H_{I} in the radiofrequency range have been of far-reaching significance. For example, the transition between the two hyperfine structure levels $\mathrm{F}=0$ and $\mathrm{F}=1$ of the ground term $1 s^{2} S_{01 / 2}, 0.0475 \mathrm{~cm}^{-1}$, is well known as the $21-\mathrm{cm}$ line whose observed frequency is $1420 \mathrm{Mc} / \mathrm{s}$. The presence of ground state hydrogen atoms in the interstellar medium was first established by the detection of this line.

A limited bibliography of work on H I was published by the writer in 1968. Many other papers could be quoted, as for example, the recent work by Shyn and his associates on the measurement of the $2 s^{2} \mathrm{~S}_{01 / 2}-2 p^{2} \mathrm{P}_{11 / 2}{ }^{\circ}$ energy separation as $9911.250 \pm 0.063 \mathrm{MHz}$, as determined by an atomicbeam radiofrequency method.

A more recent paper by Hänsch and his co-workers on Laser Saturation Spectroscopy is of far-reaching importance. These authors have succeeded for the first time in resolving the single fine structure components of $\mathrm{H} \alpha$, and have observed the Lamb shift directly in the optical absorption spectrum.

An excellent general summary of the astrophysical importance of "The Spectra of Hydrogen" is contained in the Presidential Address to the Royal Society of Canada given by Herzberg in 1967.

Atomic Energy Levels

Hi-Continued

REFERENCES

C. J. Humphreys, J. Research Nat. Bur. Std. 50, No. l, l-6, RP 2380 (1953). T, C L
B. Edlén and L. A. Svensson, Ark. Fys. (Stockholm) 28, No. 36, 427-446 (1964). C L
J. D. Garcia and J. E.Mack, J. Opt. Soc. Am. 55, No. 6, 654-685 (1965). I P, T, C L
G. Herzberg, Trans. Roy. Soc. Canada [IV] 5, 3-36 (1967). T, C L, G D, Fine structure, hfs.
C. E. Moore, Nat. Bur. Std. Special Publ. 306, Section 1, 1-2 (1968). Bibliography
T. W. Shyn, T. Rebane, R. T. Robiscoe, and W. L. Williams, Phys. Rev. A3, No. 1, 116-122 (1971). Fine structure.
T. W. Hänsch, I. S. Shahin, A. L. Schawlow, Nature Phys. Sci. 235, No. 56, 63-66 (1972). Fine structure.
L. Hagan and W. C. Martin, Nat. Bur. Std. Special Publ. 363, 103 pp. (1972). Bibliography.

H I

Config.	Desig.	J	Level	Interval	Config.	Desig.	J	Level	Interval
$1 s$	$1 s^{2} \mathrm{~S}$	$0 \frac{1}{2}$	0.000		$9 s, 9 p$ etc.	$\begin{aligned} & 9 s{ }^{2} \mathrm{~S} \quad 9 p{ }^{2} \mathrm{P}^{\circ} \\ & 9 l^{2} \mathrm{~L} \end{aligned}$	to $8 \frac{1}{2}$	$\begin{array}{r} 108324.713 \\ \text { to } .720 \end{array}$	0.007
$2 p$	$2 p{ }^{2} \mathrm{P}^{\circ}$	$0 \frac{1}{2}$	82258.913						
$2 s$	$2 s{ }^{2} \mathrm{~S}$	$0 \frac{1}{2}$	82258.949		$10 s, 10 p$	$10 s{ }^{2} \mathrm{~S} 10 p{ }^{2} \mathrm{P}^{\circ}$	$0 \frac{1}{2}$	108581.983	
$2 p$	$2 p{ }^{2} \mathrm{P}^{\circ}$	$1 \frac{1}{2}$	82259.279	0.3306	etc.	$10 \mathrm{~m}{ }^{2} \mathrm{M}^{\circ}$	to $9 \frac{1}{2}$	to 988	0.005
$3 p$	$3 p{ }^{2} \mathrm{P}^{\circ}$	$0 \frac{1}{2}$	97492.205		$11 s, 11 p$	$11 s{ }^{2} \mathrm{~S} 11 p{ }^{2} \mathrm{P}^{\circ}$	$0 \frac{1}{2}$	108772.334	
$3 s$	$3 s^{2} \mathrm{~S}$	$0 \frac{1}{2}$	97492.215	0.0105 0.098	etc.	$11 n^{2} \mathrm{~N}$	to $10 \frac{1}{2}$	to .338	0.004
$3 p, 3 d$	$3 d^{2} \mathrm{D} 3 p^{2} \mathrm{P}^{\circ}$	$1 \frac{1}{2}$	97492.313						
$3 d$	$3 d^{2} \mathrm{D}$	$2 \frac{1}{2}$	97492.349	0.036	$12 s, 12 p$ etc.	$12 s{ }^{2} \mathrm{~S} 12 p{ }^{2} \mathrm{P}^{\circ}$	$\begin{array}{r} 0 \frac{1}{2} \\ \text { to } 11 \frac{1}{2} \end{array}$	$\begin{array}{r} 108917.111 \\ \text { to } .114 \end{array}$	0.003
$4 p$	$4 p^{2} \mathrm{P}^{\circ}$	0_{2}^{1}	102823.842						
$4 s$	$4 s{ }^{2} \mathrm{~S}$	$0 \frac{1}{2}$	102823.846	0.0044	$13 s, 13 p$	$13 s^{2} \mathrm{~S} 13 p{ }^{2} \mathrm{P}^{\circ}$	$0 \frac{1}{2}$	109029.782	
$4 p, 4 d$	$4 d^{2} \mathrm{D} \quad 4 p{ }^{2} \mathrm{P}^{\circ}$	$1 \frac{1}{2}$	102823.887	0.041 0.015	etc.		$\text { to } 12 \frac{1}{2}$	$\text { to } .784$	0.002
$4 d, 4 f$	$4 d^{2} \mathrm{D} \quad 4 f^{2} \mathrm{~F}^{\circ}$	$2 \frac{1}{2}$	102823.902	0.015 0.008					
$4 f$	$4 f^{2} \mathrm{~F}^{\circ}$	$3 \frac{1}{2}$	102823.910		$14 s, 14 p$ etc.	$14 s{ }^{2} \mathrm{~S} 14 p{ }^{2} \mathrm{P}^{\circ}$	$\begin{array}{r} 0 \frac{1}{2} \\ \text { to } 13 \frac{1}{2} \end{array}$	$\begin{array}{r} 109119.183 \\ \text { to } .185 \end{array}$	0.002
$5 p$	$5 p^{2} \mathrm{P}^{\circ}$	$0 \frac{1}{2}$	105291.621						
$5 s$	$5 s^{2} \mathrm{~S}$	$0 \frac{1}{2}$	105291.624	$\begin{aligned} & 0.0023 \\ & 0.021 \end{aligned}$	$15 s, 15 p$	$15 s^{2} \mathrm{~S} 15 p^{2} \mathrm{P}^{\circ}$		$\begin{array}{r} 109191.307 \\ \text { to } .308 \end{array}$	0.001
$5 p, 5 d$	$5 d^{2} \mathrm{D} 5 p^{2} \mathrm{P}^{\circ}$	$1 \frac{1}{2}$	105291.645		etc.				
$5 d, 5 f$	$5 d^{2} \mathrm{D} \quad 5 f^{2} \mathrm{~F}^{\circ}$	$2 \frac{1}{2}$	105291.653	0.008					
5 g	$5 g{ }^{2} \mathrm{G}$	$3 \frac{1}{2}$	105291.656	0.003	$16 s, 16 p$	$16 s{ }^{2} \mathrm{~S} 16 p{ }^{2} \mathrm{P}^{\circ}$		109250.335	0.001
$5 f$	$5 f^{2} \mathrm{~F}^{\circ}$	$3 \frac{1}{2}$	105291.657	0.0000	etc.		to $15 \frac{1}{2}$	to .336	
$5 g$	$5{ }^{2} \mathrm{G}$	$4 \frac{1}{2}$	105291.659	0.0023	$17 s, 17 p$ etc.	$17 s{ }^{2} \mathrm{~S} 17 p{ }^{2} \mathrm{P}^{\circ}$		109299.256 to 257	0.001
$6 p$	$6 p^{2} \mathrm{P}^{\circ}$	$0 \frac{1}{2}$	106632.141				to $16 \frac{1}{2}$	to . 257	
$6 s$	$6 s{ }^{2} \mathrm{~S}$	$0 \frac{1}{2}$	106632.143		$18 s, 18 p$	$18 s{ }^{2} \mathrm{~S} 18 p{ }^{2} \mathrm{P}^{\circ}$		109340.252	
$6 p, 6 d$	$6 d^{2} \mathrm{D} 6 p{ }^{2} \mathrm{P}^{\circ}$	$1 \frac{1}{2}$	106632.155	0.012 0.004	etc.	$18 s^{2} \mathrm{~S} 18 p^{2}$	$\text { to } 17 \frac{1}{2}$	$\text { to } .253$	0.001
$6 d, 6 f$	$6 d^{2} \mathrm{D} \quad 6 f^{2} \mathrm{~F}^{\circ}$	$2 \frac{1}{2}$	106632.159	$\begin{aligned} & 0.004 \\ & 0.002 \end{aligned}$			to 172	to . 253	
6 g	$6 g^{2} \mathrm{G}$	$3 \frac{1}{2}$	106632.161	$\begin{aligned} & 0.002 \\ & 0.0000 \end{aligned}$	19s, 19p	$19 s{ }^{2} \mathrm{~S} 19 p{ }^{2} \mathrm{P}^{\circ}$			
$6 f$	$6 f^{2} \mathrm{~F}^{\circ}$	$3 \frac{1}{2}$	106632.162	0.0000 0.001	etc.		$\text { to } 18 \frac{1}{2}$	$\text { to } .948$	0.001
$6 \mathrm{~g}, 6 \mathrm{~h}$	$6 g^{2} \mathrm{G} \quad 6 h^{2} \mathrm{H}^{\circ}$	$4 \frac{1}{2}$	106632.163	0.001			to 182	10.948	
$6 h$	$6 h^{2} \mathrm{H}^{\circ}$	$5 \frac{1}{2}$	106632.164	0.001	$20 s, 20 p$	$20 s{ }^{2} \mathrm{~S} 20 p{ }^{2} \mathrm{P}^{\circ}$	$0 \frac{1}{2}$	109404.570	
$7 p$	$7 p^{2} \mathrm{P}^{\circ}$	$0 \frac{1}{2}$	107440.431				to $19 \frac{1}{2}$. 570	
$7 s$	$7 s^{2} \mathrm{~S}$	$0 \frac{1}{2}$	107440.432	0.0008	$21 s, 21 p$	$21 s^{2} \mathrm{~S} 21 p{ }^{2} \mathrm{P}^{\circ}$	$0 \frac{1}{2}$	109430.062	
etc.	$7 i^{2} \mathrm{I}$	to $6 \frac{1}{2}$	to 446	0.015	etc.		to $20 \frac{1}{2}$. 062	
$\begin{aligned} & 8 s, 8 p \\ & \text { etc. } \end{aligned}$	$\begin{array}{cc}8 s & \\ \\ \\ S & 8 p^{2} \\ \\ & 8 k^{2} \mathrm{P}^{\circ} \mathrm{K}^{\circ}\end{array}$	to $\begin{array}{r}0 \frac{1}{2} \\ 7 \frac{1}{2}\end{array}$	$\begin{array}{r} 107965.042 \\ \text { to } .052 \end{array}$	0.010	$22 s, 22 p$ etc.	$22 s{ }^{2} \mathrm{~S} 22 p{ }^{2} \mathrm{P}^{\circ}$	$\begin{array}{r} 0 \frac{1}{2} \\ \text { to } 2 \frac{1}{2} \end{array}$	$\begin{array}{r} 109452.157 \\ \text { to } .158 \end{array}$	0.001

HI-Continued
HI-Continued

Multiplet Table

HYDROGEN

Part B

$$
H_{I}(Z=1)
$$

I P $13.598 \mathrm{eV} \quad$ Limit $109678.764 \mathrm{~cm}^{-1} \quad 911.754 \AA(\mathrm{Vac})$

Anal A List B August 1971

The data given here refer to the light isotope of hydrogen ${ }_{1}^{1} \mathrm{H}$ I.

REFERENCES

B. Edlén and L. A. Svensson, Ark. Fys. (Stockholm) 28, No. 36, 427-446 (1964). C L; W L $930.7483 \AA$ to $1215.6701 \AA$
C. J. Humphreys, J. Research Nat. Bur. Std. 50, No. 1, 1-6, RP2380 (1953). C L; W L $4861 \AA$ to $123684 \AA$

A Wavelengths calculated from term values derived by J. D. Garcia and J. E. Mack, J. Opt. Soc. Am. 55, No. 6, 654-685 (1965). I P, T, C L; W L $914.0386 \AA$ to $887313.171 \AA$. For higher values of n where the terms are unresolved, the wavelength derived from the statistical mean of the components is quoted.

P Predicted wavelength for series members having $n>20$, i.e., for series carried further than in reference A. In calculating these wavelengths the following mean values have been used for the lower level:

$$
\begin{aligned}
& 2 p^{2} \mathrm{P}^{\circ} \text { etc. } 82259.102 \mathrm{~cm}^{-1} \\
& 3 d^{2} \mathrm{D} \text { etc. } 97492.296 \mathrm{~cm}^{-1} \\
& 4 f^{2} \mathrm{~F}^{\circ} \text { etc. } 102823.890 \mathrm{~cm}^{-1} \\
& 5 g^{2} \mathrm{G} \text { etc. } 105291.649 \mathrm{~cm}^{-1} \\
& 6 h^{2} \mathrm{H}^{\circ} \text { etc. } 106632.159 \mathrm{~cm}^{-1}
\end{aligned}
$$

New UV Multiplet Numbers start with UV 18. The Multiplet Numbers in the 1945 Multiplet Table ($\lambda>3000 \AA$) have been replaced. The newly-assigned numbers are printed in bold face type through number 14 to distinguish them from the older ones.

\ddagger Raie Ultime

HI

HI-Continued

I A	Ref	Int	E P		J	Multiplet No.	I A	Ref	Int	E P		J	Multiplet No.
			Low	High						Low	High		
Vac							Vac						
923.1504	A		0.00	13.43	$0 \frac{1}{2}-$	$\begin{gathered} 1 s^{2} \mathrm{~S}-9 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 8 \end{gathered}$	913.006	P		0.00	13.58	$0 \frac{1}{2}-$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-27 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 26 \end{gathered}$
920.9631	A		0.00	13.46	$0 \frac{1}{2}$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-10 p{ }^{2} \mathrm{P}^{\circ} \\ \text { UV } 9 \end{gathered}$	912.918	P		0.00	13.58	$0 \frac{1}{2}-$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-28 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 27 \end{gathered}$
919.3514	A		0.00	13.49	$0 \frac{1}{2}-$	$\begin{gathered} 1 s^{2} \mathrm{~S}-\mathrm{ll} p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 10 \end{gathered}$	912.839	P		0.00	13.58	$0{ }^{1}-$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-29 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 28 \end{gathered}$
918.1294	A		0.00	13.50	$0 \frac{1}{2}-$	$1 s^{2} \mathrm{~S}-12 p^{2} \mathrm{P}^{\circ}$ $\text { UV } 11$	912.768	P		0.00	13.58	$0 \frac{1}{2}-$	$\begin{gathered} 1 s^{2} \mathrm{~S}-30 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 29 \end{gathered}$
917.1806	A		0.00	13.52	$0 \frac{1}{2}$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-13 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 12 \end{gathered}$	912.703	P		0.00	13.58	$0 \frac{1}{2}-$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-31 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 30 \end{gathered}$
916.4291	A		0.00	13.53	$0 \frac{1}{2}-$	$1 s^{2} \mathrm{~S}-14 p^{2} \mathrm{P}^{\circ}$ UV 13	912.645	P		0.00	13.58	$0 \frac{1}{2}-$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-32 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 31 \end{gathered}$
915.8238	A		0.00	13.54	$0 \frac{1}{2}-$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-15 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 14 \end{gathered}$	912.592	P		0.00	13.59	$0 \frac{1}{2}-$	$1 s{ }^{2} \mathrm{~S}-33 p{ }^{2} \mathrm{P}^{\circ}$ UV 32
915.3290	A		0.00	13.54	$0{ }^{1}-$	$\begin{gathered} 1 s^{2} \mathrm{~S}-16 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 15 \end{gathered}$	912.543	P		0.00	13.59	$0 \frac{1}{2}-$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-34 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 33 \end{gathered}$
914.9193	A		0.00	13.55	$0{ }^{\frac{1}{2}}$	$\begin{gathered} 1 s^{2} \mathrm{~S}-17 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 16 \end{gathered}$	912.498	P		0.00	13.59	$0{ }^{\frac{1}{2}-}$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-35 p{ }^{2} \mathrm{P} \text { © } \\ \mathrm{UV} 34 \end{gathered}$
914.5763	A		0.00	13.56	$0{ }^{\frac{1}{2}}$	$\begin{gathered} 1 s^{2} \mathrm{~S}-18 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 17 \end{gathered}$	912.458	P		0.00	13.59	$0{ }^{1}-$	$\begin{gathered} 1 s^{2} \mathrm{~S}-36 p^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 35 \end{gathered}$
914.2862	A		0.00	13.56	$0{ }^{1}-$	$\begin{gathered} 1 s^{2} \mathrm{~S}-19 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 18 \end{gathered}$	912.420	P		0.00	13.59	$0 \frac{1}{2}-$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-37 p{ }^{2} \mathrm{P} 0 \\ \mathrm{UV} 36 \end{gathered}$
914.0386	A		0.00	13.56	$0_{2}^{1}-$	$\begin{gathered} 1 s^{2} \mathrm{~S}-20 p^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 19 \end{gathered}$	912.385	P		0.00	13.59	$0 \frac{1}{2}-$	$1 s{ }^{2} \mathrm{~S}-38 p{ }^{2} \mathrm{P}^{\circ}$ $\text { UV } 37$
913.826	P		0.00	13.57	$0^{1}-$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-21 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 20 \end{gathered}$	912.353	P		0.00	13.59	$0 \frac{1}{2}-$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-39 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 38 \end{gathered}$
913.641	P		0.00	13.57	$0{ }^{1}-$	$\begin{gathered} 1 s^{2} \mathrm{~S}-22 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 21 \end{gathered}$	912.324	P		0.00	13.59	$0{ }^{1}-$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-40 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 39 \end{gathered}$
913.480	P		0.00	13.57	$0 \frac{1}{2}$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-23 p{ }^{2} \mathrm{P}^{\mathrm{o}} \\ \mathrm{UV} 22 \end{gathered}$	912.296	P		0.00	13.59	$0 \frac{1}{2}$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-41 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 40 \end{gathered}$
913.339	P		0.00	13.57	$0 \frac{1}{2}$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-24 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 23 \end{gathered}$	912.271	P		0.00	13.59	$0 \frac{1}{2}-$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-42 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 41 \end{gathered}$
913.215	P		0.00	13.58	$0 \frac{1}{2}$	$\begin{gathered} 1 s^{2} \mathrm{~S}-25 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 24 \end{gathered}$	912.247	P		0.00	13.59	$0 \frac{1}{2}-$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-43 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 42 \end{gathered}$
913.104	P		0.00	13.58	$0{ }^{1}-$	$\begin{gathered} 1 s^{2} \mathrm{~S}-26 p^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 25 \end{gathered}$	912.225	P		0.00	13.59	$0 \frac{1}{2}-$	$\begin{gathered} 1 s{ }^{2} \mathrm{~S}-44 p{ }^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 43 \end{gathered}$

HI-Continued
HI-Continued

Multiplet Table

HI-Continued
HI-Continued

I A	Ref	Int	E P		J	Multiplet No.	I A	Ref	Int	E P		J	Maltiplet No.
			Low	High						Low	High		
Air							Air						
3682.808	A		10.20	13.56		$\begin{array}{ll} 2 p^{2} \mathrm{P}^{\circ}-20 d^{2} \mathrm{D} \\ \text { etc. } \quad 18 & \text { etc. } \end{array}$	3651.822	P		10.20	13.59		$\begin{aligned} & 2 p^{2} \mathrm{P}^{\circ}-50 d^{2} \mathrm{D} \\ & \text { etc. } \quad 37 \quad \text { etc. } \end{aligned}$
3679.352	P		10.20	13.57		$\begin{aligned} & 2 p^{2} \mathrm{P}^{\circ}-21 d^{2} \mathrm{D} \\ & \text { etc. } \quad 19 \quad \text { etc. } \end{aligned}$							
3676.363	P		10.20	13.57		$\begin{aligned} & 2 p^{2} \mathrm{P}^{\circ}-22 d^{2} \mathrm{D} \\ & \text { etc. } \quad 20 \quad \text { etc. } \end{aligned}$	3645.979	A		10.20	13.60		$\begin{aligned} & 2 p^{2} \mathrm{P}^{\circ}-\text { Limit } \\ & \text { etc. } \quad 38 \end{aligned}$
3673.758	P		10.20	13.57		$2 p^{2} \mathrm{P}^{\infty}-23 d^{2} \mathrm{D}$ $\text { etc. } 21 \text { etc. }$							
							18751.210	A		12.09	12.75	$1 \frac{1}{2}-0 \frac{1}{2}$	$3 p^{2} \mathrm{P}^{\circ}-4 s^{2} \mathrm{~S}$
3671.476	P		10.20	13.57		$\begin{aligned} & 2 p{ }^{2} \mathrm{P}^{\circ}-24 d^{2} \mathrm{D} \\ & \text { etc. } \quad 22 \quad \text { etc. } \end{aligned}$	18750.830	A		12.09	12.75	012-012	39.01
							18750.724	A		12.09	12.75	$0 \frac{1}{2}-1 \frac{1}{2}$	$3 s{ }^{2} \mathrm{~S}-4 p{ }^{2} \mathrm{P}^{\circ}$
3669.464	P		10.20	13.58		$\begin{aligned} & 2 p^{2} \mathrm{P}^{\circ}-25 d^{2} \mathrm{D} \\ & \text { etc. } \quad 23 \text { etc. } \end{aligned}$	18750.883	A		12.09	12.75	$0 \frac{1}{2}-0 \frac{1}{2}$	39.02
3667.682	P		10.20	13.58		$\begin{aligned} & 2 p{ }^{2} \mathrm{P}^{\circ}-26 d^{2} \mathrm{D} \\ & \text { etc. } \quad 24 \quad \text { etc. } \end{aligned}$	18751.015	A		12.09	12.75		$3 d^{2} \mathrm{D}-4 f^{2} \mathrm{~F}^{\circ}$ etc. 39 etc.
							12818.140	A		12.09	13.05	$1 \frac{1}{2}-0 \frac{1}{2}$	$3 p^{2} \mathrm{P}^{\circ}-5 s{ }^{2} \mathrm{~S}$
3666.095	P		10.20	13.58		$\begin{aligned} & 2 p{ }^{2} \mathrm{P}^{\infty}-27 d{ }^{2} \mathrm{D} \\ & \text { etc. } \quad 25 \quad \text { etc. } \end{aligned}$	12817.962	A		12.09	13.05	O2, $0 \frac{1}{2}$	40.01
							12817.945	A		12.09	13.05	020 ${ }^{\frac{1}{2}} 1 \frac{1}{2}$	$3 s{ }^{2} \mathrm{~S}-5 p{ }^{2} \mathrm{P}^{\circ}$
3664.677	P		10.20	13.58		$\begin{aligned} & 2 p{ }^{2} \mathrm{P}^{\circ}-28 d^{2} \mathrm{D} \\ & \text { etc. } \quad 26 \quad \text { etc. } \end{aligned}$	12817.983	A		12.09	13.05	0, ${ }^{\frac{1}{2}-0 \frac{1}{2}}$	40.02
							12818.082	A		12.09	13.05		$3 d^{2} \mathrm{D}-5 f^{2} \mathrm{~F}^{\circ}$
3663.403	P		10.20	13.58		$2 p^{2} \mathrm{P}^{\circ}-29 d^{2} \mathrm{D}$ $\text { etc. } 27 \text { etc. }$							etc. 40 etc.
							10938.126	A		12.09	13.22	$1 \frac{1}{2}-0 \frac{1}{2}$	$3 p^{2} \mathrm{P}^{\circ}-6 s{ }^{2} \mathrm{~S}$
3662.256	P		10.20	13.58		$\begin{aligned} & 2 p^{2} \mathrm{P}^{\circ}-30 d{ }^{2} \mathrm{D} \\ & \text { etc. } \quad 28 \quad \text { etc. } \end{aligned}$	10937.998	A		12.09	13.22	02-0 ${ }^{\frac{1}{2}}$	41.01
							10937.995	A		12.09	13.22	02 ${ }^{\frac{1}{2}-1 \frac{1}{2}}$	$3 s^{2} \mathrm{~S}-6 p^{2} \mathrm{P}^{\circ}$
3661.219	P		10.20	13.58		$\begin{aligned} & 2 p{ }^{2} \mathrm{P}^{\circ}-31 d^{2} \mathrm{D} \\ & \text { etc. } \quad 29 \quad \text { etc. } \end{aligned}$	10938.012	A		12.09	13.22	02 ${ }^{\frac{1}{2}-0 \frac{1}{2}}$	41.02
3660.277	P		10.20	13.58		$\begin{aligned} & 2 p{ }^{2} \mathrm{P}^{\circ}-32 d^{2} \mathrm{D} \\ & \text { etc. } \quad 30 \quad \text { etc. } \end{aligned}$	10938.095	A		12.09	13.22		$\begin{array}{ll} 3 d^{2} \mathrm{D}-6 f^{2} \mathrm{~F}^{\circ} \\ \text { etc. } 41 & \text { etc. } \end{array}$
3659.420	P		10.20	13.59		$\begin{aligned} & 2 p^{2} \mathrm{P}^{\circ}-33 d^{2} \mathrm{D} \\ & \text { etc. } \quad 31 \quad \text { etc. } \end{aligned}$	10049.374	A		12.09	13.32		$3 d^{2} \mathrm{D}-7 f{ }^{2} \mathrm{~F}^{\circ}$ etc. 42 etc.
3658.639	P		10.20	13.59		$\begin{aligned} & 2 p^{2} \mathrm{P}^{\circ}-34 d^{2} \mathrm{D} \\ & \text { etc. } \quad 32 \quad \text { etc. } \end{aligned}$	9545.972	A		12.09	13.39	-	$3 d^{2} \mathrm{D}-8 f^{2} \mathrm{~F}^{\circ}$ $\text { etc. } 43 \text { etc. }$
3657.923	P		10.20	13.59		$\begin{aligned} & 2 p^{2} \mathrm{P}^{\circ}-35 d^{2} \mathrm{D} \\ & \text { etc. } \quad 33 \text { etc. } \end{aligned}$	9229.015	A		12.09	13.43		$3 d^{2} \mathrm{D}-9 f^{2} \mathrm{~F}^{\circ}$ $\text { etc. } 44 \text { etc. }$
3657.267	P		10.20	13.59		$\begin{aligned} & 2 p{ }^{2} \mathrm{P}^{\circ}-36 d^{2} \mathrm{D} \\ & \text { etc. } \quad 34 \text { etc. } \end{aligned}$	9014.911	A		12.09	13.46		$3 d^{2} \mathrm{D}-10 f^{2} \mathrm{~F}^{\circ}$ etc. 45 etc.
3656.663	P		10.20	13.59		$\begin{array}{lll} 2 p & { }^{2} \mathrm{P}^{\circ}-37 d & { }^{2} \mathrm{D} \\ \text { etc. } & 35 & \text { etc. } \end{array}$	8862.784	A		12.09	13.49		$\begin{array}{ll} 3 d^{2} \mathrm{D}-11 f & { }^{2} \mathrm{~F}^{\circ} \\ \text { etc. } \quad 46 & \text { etc. } \end{array}$
3656.107	P		10.20	13.59		$\begin{aligned} & 2 p{ }^{2} \mathrm{P}^{\circ}-38 d^{2} \mathrm{D} \\ & \text { etc. } \quad 36 \quad \text { et } c . \end{aligned}$	8750.473	A		12.09	13.50		$3 d^{2} \mathrm{D}-12 f^{2} \mathbf{F}^{\circ}$ etc. 47 etc.

B1 I-4

HI-Continued
H I-Continued

B1 I-5

HII-Continued
HI-Continued

I A	Ref	Int	E P		J	Multiplet No.	I A	Ref	Int	E P		J	Multiplet No.
			Low	High						Low	High		
Air							Air						
19445.564	A		12.75	13.39		$\begin{aligned} & 4 f^{2} \mathrm{~F}^{\circ}-8 g^{2} \mathrm{G} \\ & \text { etc. } \quad 79 \quad \text { etc. } \end{aligned}$	14888.010	P		12.75	13.58		$4 f^{2} \mathrm{~F}^{\circ}-28 g^{2} \mathrm{G}$ etc. 99 etc.
18174.123	A		12.75	13.43		$\begin{aligned} & 4 f^{2} \mathrm{~F}^{\circ}-9 g^{2} \mathrm{G} \\ & \text { etc. } \quad 80 \quad \text { etc. } \end{aligned}$	14867.017	P		12.75	13.58		$\begin{aligned} & 4 f^{2} \mathrm{~F}^{\circ}-29 g^{2} \mathrm{G} \\ & \text { etc. } \quad 100 \quad \text { etc. } \end{aligned}$
17362.110	A		12.75	13.46		$\begin{aligned} & 4 f^{2}{ }^{\circ} \mathrm{F}^{\circ}-10 g^{2} \mathrm{G} \\ & \text { etc. } 81 \\ & \text { etc. } \end{aligned}$	14848.142	P		12.75	13.58		$\begin{aligned} & 4 f^{2} \mathrm{~F}^{\circ}-30 g{ }^{2} \mathrm{G} \\ & \text { etc. } \quad 101 \text { etc. } \end{aligned}$
16806.522	A		12.75	13.49		$\begin{aligned} & 4 f^{2} \mathrm{~F}^{\circ}-11 g^{2} \mathrm{G} \\ & \text { etc. } 82 \quad \text { etc. } \end{aligned}$	14678.114	P		12.75	13.59		$\begin{aligned} & 4 f^{2} \mathrm{~F}^{0}-50 g^{2} \mathrm{G} \\ & \text { etc. } \quad 102 \text { etc. } \end{aligned}$
16407.193	A		12.75	13.50		$\begin{aligned} & 4 f^{2} \mathrm{~F}^{\circ}-12 g^{2} \mathrm{G} \\ & \text { etc. } 83 \quad \text { etc. } \end{aligned}$							
16109.314	A		12.75	13.52		$4 f{ }^{2} \mathrm{~F}^{\circ}-13 g^{2} \mathrm{G}$	74578.80	A		13.05	13.22	$1 \frac{1}{2}-0 \frac{1}{2}$	$\begin{gathered} 5 p^{2} \mathrm{P}^{0}-6 s^{2} \mathrm{~S} \\ 103.01 \end{gathered}$
15880.543	A		12.75	13.53		$\begin{aligned} & 4 f^{2} \mathrm{~F}^{\circ}-14 g^{2} \mathrm{G} \\ & \text { etc. } 85 \quad \text { etc. } \end{aligned}$	74578.250	A		13.05	13.22		$5 g^{2} \mathrm{G}-6 h_{10}^{2} \mathrm{H}^{\circ}$
15700.663	A		12.75	13.54		$\begin{aligned} & 4 f^{2} \mathrm{~F}^{\circ}-15 g^{2} \mathrm{G} \\ & \text { etc. } 86 \text { etc. } \end{aligned}$	46525.098	A		13.05	13.32		$\begin{aligned} & 5 g^{2} \mathrm{G}-7 h^{2} \mathrm{H}^{\circ} \\ & \text { etc. } 104 \quad \text { etc. } \end{aligned}$
15556.450	A		12.75	13.54		$\begin{aligned} & 4 f^{2} \mathrm{~F}^{\circ}-16 \mathrm{~g}{ }^{2} \mathrm{G} \\ & \text { etc. } \quad 87 \quad \text { etc. } \end{aligned}$	37395.370	A		13.05	13.39		$\begin{aligned} & 5 g^{2} \mathrm{G}-8 h^{2} \mathrm{H}^{\circ} \\ & \text { etc. } \quad 105 \text { etc. } \end{aligned}$
15438.922	A		12.75	13.55		$\begin{aligned} & 4 f^{2} \mathrm{~F}^{\circ}-17 \mathrm{~g}{ }^{2} \mathrm{G} \\ & \text { etc. } 88 \quad \text { etc. } \end{aligned}$	32960.929	A		13.05	13.43		$5 g^{2} \mathrm{G}-9 h^{2} \mathrm{H}^{\circ}$
15341.791	A		12.75	13.56		$4 f{ }^{2} \mathrm{~F}^{\circ}-18 g^{2} \mathrm{G}$ etc. 89 etc.	30383.737	A		13.05	13.46		etc. 106 etc. $5 g^{2} \mathrm{G}-10{ }^{2} \mathrm{H}^{\circ}$
15260.539	A		12.75	13.56		$4 f^{2} \mathbf{F}^{\circ}-19 g^{2} G$ etc. 90 etc.	28722.126	A		13.05	13.49		etc. 107 etc. $5 g^{2} \mathrm{G}-11 h^{2} \mathrm{H}^{\circ}$
15191.845	A		12.75	13.56		$4 f{ }^{2} \mathrm{~F}^{\circ}-20 g{ }^{2} \mathrm{G}$							etc. 108 etc.
							27575.156	A		13.05	13.50		$5 g^{2} \mathrm{G}^{\circ}-12 h^{2} \mathrm{H}^{\circ}$
15133.225	P		12.75	13.57		$4 f{ }^{2} \mathrm{~F}^{\circ}-21 g^{2} \mathrm{G}$ etc. 92 etc.	26744.018	A		13.05	13.52		etc. 109 etc. $5 g^{2} \mathrm{G}^{\circ}-13 h^{2} \mathrm{H}^{\circ}$
15082.777	P		12.75	13.57		$\begin{aligned} & 4 f^{2} \mathrm{~F}^{\circ}-22 g^{2} \mathrm{G} \\ & \text { etc. } \quad 93 \quad \text { etc. } \end{aligned}$							etc. 110 etc.
15039.040	P		12.75	13.57		4f ${ }^{2} \mathbf{F}^{0}-23 g^{2} \mathrm{G}$ etc. 94 etc.	26119.352	A		13.05	13.53		$\begin{aligned} & 5 g^{2} \mathrm{G}-14 h^{2} \mathrm{H}^{\circ} \\ & \text { etc. } 111 \text { etc. } \end{aligned}$
15000.862	P		12.75	13.57		$4 f^{2} \mathrm{~F}^{\circ}-24 g^{2} \mathrm{G}$ etc. 95 etc.	25636.276	A		13.05	13.54		$\begin{aligned} & 5 g^{2} \mathrm{G}-15 h^{2} \mathrm{H}^{\circ} \\ & \text { etc. } 112 \text { etc. } \end{aligned}$
14967.131	P		12.75	13.58		$4 f^{2} \mathbf{F}^{\circ}-25 g^{2} \mathrm{G}$ etc. 96 etc.	25254.015	A		13.05	13.54		$\begin{aligned} & 5 g^{2} \mathrm{G}-16 h^{2} \mathrm{H}^{\circ} \\ & \text { etc. } 113 \text { etc. } \end{aligned}$
14937.730	P		12.75	13.58		$4 f{ }^{2} \mathrm{~F}^{\circ}-26 g^{2} \mathrm{G}$ etc. 97 etc.	24945.738	A		13.05	13.55		$\begin{aligned} & 5 g^{2} \mathrm{G}-17 h^{2} \mathrm{H}^{\circ} \\ & \text { etc. } 114 \text { etc. } \end{aligned}$
14911.447	P		12.75	13.58		$4 f{ }^{2} \mathrm{~F}^{\circ}-27 g^{2} \mathrm{G}$ etc. 98 etc.	24693.137	A		13.05	13.56		$\begin{aligned} & 5 g^{2} \mathrm{G}-18 h^{2} \mathrm{H}^{\circ} \\ & \text { etc. } 115 \text { etc. } \end{aligned}$

Multiplet Table

H I - Continued
H I-Continued

I A	Ref	Int	E P		J	Multiplet No.	1 A	Ref	Int	EP		J	Multiplet No.
			Low	High						L.ow	1lijh		
Air							Air						
24483.323	A		13.05	13.56		$\begin{aligned} & 5 g^{2} \mathrm{G}-19 h^{2} \mathrm{H}^{\circ} \\ & \text { etc. } 116 \text { etc. } \end{aligned}$	113056.141	A		13.32	13.43		$\begin{aligned} & 7 i^{2}{ }^{2}-9 k^{2} \mathrm{~K}^{\circ} \\ & \text { etc. } 13.5 \text { etc. } \end{aligned}$
24306.989	A		13.05	13.56		$\begin{aligned} & 5 g^{2} \mathrm{G}-20 h^{2} \mathrm{H}^{\circ} \\ & \text { etc. } 117 \text { etc. } \end{aligned}$	87576.773	A		13.32	13.46		$\begin{aligned} & 7 i{ }^{2} 1-10 k^{2} \mathrm{~K}^{\circ} \\ & \text { etc. } 136 \text { etc. } \end{aligned}$
23017.983	P		13.05	13.59		$\begin{aligned} & 5 g^{2} \mathrm{G}-50 h^{2} \mathrm{H}^{\circ} \\ & \text { etc. } 118 \text { etc. } \end{aligned}$	75060.591	A		13.32	13.49		$\begin{aligned} & 7 i^{2} \mathrm{I}-11 k^{2} \mathrm{~K}^{\circ} \\ & \text { etc. } 137 \text { etc. } \end{aligned}$
							67701.453	A		13.32	13.50		$\begin{aligned} & 7 i{ }^{2} \mathrm{I}-12 k^{2} \mathrm{~K}^{\circ} \\ & \text { etc. } 138 \text { etc. } \end{aligned}$
123685.270	A		13.22	13.32		$\begin{aligned} & 6 h^{2} \mathrm{H}^{\circ}-7 i^{2} \mathrm{I} \\ & \text { etc. } \quad 119 \text { etc. } \end{aligned}$	62902.015	A		13.32	13.52		$7 i^{2} \mathrm{I}-13 k^{2} \mathrm{~K}^{\circ}$
75004.488	A		13.22	13.39		$\begin{aligned} & 6 h^{2} \mathrm{H}^{\circ}-8 i^{2} \mathrm{I} \\ & \text { etc. } \quad 120 \text { etc. } \end{aligned}$	59552.203	A		13.32	13.53		$7 i{ }^{2} \mathrm{I}-14 k{ }^{2} \mathrm{~K}$ etc. 140 etc
59066.034	A		13.22	13.43		$\begin{aligned} & 6 h^{2} \mathrm{H}^{\circ}-9 i^{2} \mathrm{I} \\ & \text { etc. } \quad 121 \quad \text { etc. } \end{aligned}$	57099.058	A		13.32	13.54		$\begin{aligned} & 7 i{ }^{2} \mathrm{I}-15 k{ }^{2}{ }^{2}{ }^{\circ} \\ & \text { etc. } 141 \text { etc. } \end{aligned}$
51272.598	A		13.22	13.46		$\begin{aligned} & 6 h^{2} \mathbf{H}^{\circ}-10 i^{2} \mathbf{I} \\ & \text { etc. } \quad 122 \text { etc. } \end{aligned}$	55236.826	A		13.32	13.54		$\begin{aligned} & 7 i{ }^{2} \mathrm{I}-16 k \\ & \text { etc. } 142{ }^{2} \mathrm{~K}^{\circ} \\ & \text { etc. } \end{aligned}$
46712.353	A		13.22	13.49		$\begin{aligned} & 6 h^{2} \mathrm{H}^{\circ}-11 i^{2} \mathrm{I} \\ & \text { etc. } 123 \text { etc. } \end{aligned}$	53783.083	A		13.32	13.55		$\begin{aligned} & 7 i{ }^{2} \mathrm{I}-17 k k^{2}{ }^{2}{ }^{\circ} \\ & \text { etc. } 143 \text { etc. } \end{aligned}$
43752.617	A		13.22	13.50		$6 h^{2} \mathrm{H}^{\circ}-12 i^{2} \mathrm{I}$ etc. 124 etc.	52622.492	A		13.32	13.56		$7 i{ }^{2} \mathrm{I}-18 k \cdot{ }^{2} \mathrm{~K}^{\circ}$ $\text { etc. } 144 \text { etc. }$
41696.572	A		13.22	13.52		$\begin{aligned} & 6 h^{2} \mathrm{H}^{\circ}-13 i^{2} \mathrm{I} \\ & \text { etc. } \quad 125 \text { etc. } \end{aligned}$	51678.714	A		13.32	13.56		$\begin{array}{ll} 7 i & { }^{2} \mathrm{I} \\ \text { etc. } 19 k^{2}{ }^{2} \mathrm{~K}^{\circ} \\ \text { etc. } \end{array}$
40197.716	A		13.22	13.53		$\begin{aligned} & 6 h^{2} \mathrm{H}^{\circ}-14 i i^{2} \mathrm{I} \\ & \text { etc. } \quad 126 \text { etc. } \end{aligned}$	50899.318	A		13.32	13.56		$7 i{ }^{2} \mathrm{I}-20 k^{2} \mathrm{~K}^{\circ}$ etc. 146 etc.
39064.836	A		13.22	13.54		$6 h^{2} \mathrm{H}^{\circ}-15 i^{2} \mathrm{I}$ $\text { etc. } 127 \text { etc. }$							
38184.101	A		13.22	13.54		$6 h^{2} \mathrm{H}^{\circ}-16 i^{2} \mathrm{I}$ $\text { etc. } 128 \text { etc. }$	277958.040	A		13.39	13.43		$\begin{aligned} & 8 k{ }^{2} \mathrm{~K}^{\circ}-9 l^{2} \mathrm{~L} \\ & \text { etc. } 147 \text { etc. } \end{aligned}$
37483.714	A		13.22	13.55		$6 h^{2} H^{\circ}-17 i^{2} \mathrm{I}$ etc. 129 etc.	162046.877	A		13.39	13.46		$8 k{ }^{2} \mathrm{~K}^{\circ}-10{ }^{2} \mathrm{~L}$ etc. 148 etc
36916.270	A		13.22	13.56		$\begin{aligned} & 6 h^{2} \mathrm{H}^{\circ}-18 i^{2} \mathrm{I} \\ & \text { etc. } \quad 130 \text { etc. } \end{aligned}$	123837.927	A		13.39	13.49		etc. 149 etc.
36449.295	A		13.22	13.56		$6 h^{2} H^{\circ}-19 i^{2} \mathrm{I}$ etc. 131 etc.	105006.373	A		13.39	13.50		$8 k * K^{\circ}-1 \geqslant 1=\mathrm{L}$ etc. 150 etc.
36059.849	A		13.22	13.56		$6 h^{2} \mathrm{H}^{\circ}-20 i^{2} \mathrm{I}$ etc. 132 etc.	93894.586	A		13.39	13.52		$8 k{ }^{2} \mathrm{~K}^{\circ}-131=\mathrm{L}$ etc. 151 etc.
33293.900	P		13.22	13.59		$\begin{gathered} 6 h^{2} \mathrm{H}^{\circ}-50 i^{2} 1 \\ 133 \end{gathered}$	86621.417	A		13.39	13.53		$\begin{aligned} & 8 k=K=1+1=1 \\ & \text { etc. } 152 \text { ctc. } \end{aligned}$
190567.045	A		13.32	13.39		$\begin{aligned} & 7 i{ }^{2} \mathrm{I}-8 k^{2}{ }^{2} \mathrm{~K}^{\circ} \\ & \text { etc. } 134 \text { etc. } \end{aligned}$	81526.684	A		13.39	13.54		$\begin{aligned} & 8 \mathrm{~h}: \mathrm{KC}-1.5 /=1 \\ & \text { etc. } 153 \text { etc. } \end{aligned}$

H I - Continued

HI-Continued

I A	Ref	Int	E P		J	Multiplet No.	1 A	Ref	Int	E P		J	Multiplet No.
			Low	High						Low	High		
Air							Air						
388592.763	A		13.43	13.46		$\begin{aligned} & 9 l^{2} \mathrm{~L}-10 \mathrm{~m}^{2}{ }^{2} \mathrm{M}^{\circ} \\ & \text { etc. } 154 \text { etc. } \end{aligned}$	141792.199	A		13.43	13.52		$\begin{aligned} & 9 l^{2} \mathrm{~L}-13 m^{2} \mathrm{M}^{\circ} \\ & \text { etc. } 157 \text { etc. } \end{aligned}$
223343.698	A		13.43	13.49		$\begin{aligned} & 9 l^{2} \mathrm{~L}-11 \mathrm{~m}^{2}{ }^{2} \mathrm{M}^{\circ} \\ & \text { etc. } 155 \text { etc. } \end{aligned}$	125836.471	A		13.43	13.53		$\begin{aligned} & 9 l^{2} \mathrm{~L}-14 m^{2} \mathrm{M}^{\circ} \\ & \text { etc. } 158 \text { etc. } \end{aligned}$
168760.287	A		13.43	13.50		$\begin{aligned} & 9 l^{2} \mathrm{~L}-12 \mathrm{~m}^{2}{ }^{2} \mathrm{M}^{\circ} \\ & \text { etc. } 156 \text { etc. } \end{aligned}$	115363.473	A		13.43	13.54		$\begin{aligned} & 9 l^{2} \mathrm{~L}-15 m^{2} \mathrm{M}^{\circ} \\ & \text { etc. } \quad 159 \text { etc. } \end{aligned}$

NSRDS-NBS 3, SECTION 6

DEUTERIUM AND TRITIUM $\mathrm{Z}=\mathbf{1}$

A D and T Atomic Energy Levels
B D Multiplet Table
B T
Multiplet Table

DEUTERIUM AND TRITIUM

Part A

D AND T

1 electron

$$
Z=1
$$

Ground state $1 s^{2} \mathrm{~S}_{01 / 2}$

$1 s^{2} \mathrm{~S}_{01 / 2} \mathrm{D}\left({ }_{1}^{2} \mathrm{H}_{\mathrm{I}}\right)$	$\mathbf{1 0 9 7 0 8 . 6 0 8} \mathrm{cm}^{-1}, 911.500 \AA(\mathrm{Vac})$	I P (D) 13.602 eV
$1 s^{2} \mathrm{~S}_{01 / 2} \mathrm{~T}\left({ }_{1}^{3} \mathrm{H}_{\mathrm{I}}\right)$	$\mathbf{1 0 9 7 1 8 . 5 3 8} \mathrm{cm}^{-1}, 911.423 \AA(\mathrm{Vac})$	I P (T) 13.603 eV

The energy levels are quoted from the paper by Garcia and Mack, who calculated "Energy Levels and Line Tables for One-Electron Atomic Spectra" for the spectra of the hydrogen isoelectronic sequence Hi to Caxx . For D and T the level values are determined to six decimal places to $n=50$, with $\mathrm{R}=109707.420$ (D) and $109717.350(\mathrm{~T})$, respectively.

In the present table the calculated values have been rounded off to three decimals. Intervals are given to four places only in cases of resolved levels. For further details users should consult the original paper, in which the formulas and constants are fully described.

REFERENCE

J. D. Garcia and J. E. Mack, J. Opt. Soc. Am. 55, No. 6, 654-685 (1965). I P, T, C L.

> Al D. T-1

Atomic Energy Levels

D and T-Continued

Config.	Desig.	J	Level	Level	Interval	Config.	Desig.	J	Level	Level	Interval
$9 p$	$9 p{ }^{2} \mathrm{P}^{\circ}$	$0 \frac{1}{2}$	108354.188	108363.995		$10 p$	$10 p{ }^{2}{ }^{\circ}$	$0 \frac{1}{2}$	108611.528	108621.359	
$9 s$	$9 s{ }^{2} \mathrm{~S}$	$0 \frac{1}{2}$	108354.188	108363.995		10 s	$10{ }^{2} \mathrm{~S}$	$0{ }^{2}$	108611.529	108621.359	0.0003
$9 p, \quad 9 d$	$9 d^{2} \mathrm{D} \quad 9 p{ }^{2} \mathrm{P}^{\circ}$	${ }^{\frac{1}{2}}$	108354.192	$\overline{108363.999}$	0.0013	$10 p, 10 d$	$10 d^{2} \mathrm{D} 10 p{ }^{2} \mathrm{P}^{\circ}$	$1 \frac{1}{2}$	108611.531	108621.362	0.0010
$9 d, 9 f$	$9 d^{2} \mathrm{D} \quad 9 f^{2} \mathrm{~F}^{\circ}$	$2 \frac{1}{2}$	108354.193	108364.000	0.0007	$10 d, 10 f$	$10 d^{2} \mathrm{D} 10{ }^{2} \mathrm{~F}^{\circ}$	$2 \frac{1}{2}$	108611.532	108621.363	0.0005
$9 f, \quad 9 \mathrm{~g}$	$9 \mathrm{~g}{ }^{2} \mathrm{G} \quad 9 f{ }^{2} \mathrm{~F}^{\circ}$	$3 \frac{1}{2}$	108354.194	108364.001	0.0004	$10 f, 10 g$	$10 g{ }^{2} \mathrm{G} 10 f^{2} \mathrm{~F}^{\circ}$	$3 \frac{1}{2}$	108611.533	108621.363	0.0003
$9 \mathrm{~g}, \quad 9 \mathrm{~h}$	$9 \mathrm{~g}{ }^{2} \mathrm{G} \quad 9 \mathrm{~h}{ }^{2} \mathrm{H}^{\circ}$	$4 \frac{1}{2}$	108354.194	108364.001	0.0003	10g, 10h	$10 g^{2} \mathrm{G} 10 h^{2} \mathrm{H}^{\circ}$	$4 \frac{1}{2}$	108611.533	108621.363	0.0002
$9 h, 9 i$	$9 i^{2} \mathrm{I} \quad 9 h^{2} \mathrm{H}^{\circ}$	$5 \frac{1}{2}$	108354.195	108364.002	0.0002	10h, $10 i$	$10 i{ }^{2} \mathrm{I} 10 h^{2} \mathrm{H}^{\circ}$	$5 \frac{1}{2}$	108611.533	108621.364	0.0001
9i, 9k	$9{ }^{9}{ }^{2} \mathrm{I} \quad 9 k{ }^{2} \mathrm{~K}^{\circ}$	$6 \frac{1}{2}$	108354.195	108364.002	0.0001	10i, 10k	$10 i^{2} \mathrm{I} 10 k^{2} \mathrm{~K}^{\circ}$	$6 \frac{1}{2}$	108611.533	108621.364	0.0001
9k, 9l	$9{ }^{2}{ }^{2} \mathrm{~L} \quad 9 k{ }^{2} \mathrm{~K}^{\circ}$	$7 \frac{1}{2}$	108354.195	108364.002	0.0001	$10 k, 10 l$	$10 l^{2} \mathrm{~L} 10 k^{2} \mathrm{~K}^{\circ}$	$7 \frac{1}{2}$	108611.533	108621.364	0.0001
91	$9 l^{2} \mathrm{~L}$	$8 \frac{1}{2}$	108354.195	108364.002		$10 l, 10 \mathrm{~m}$	$10 l^{2} \mathrm{~L} 10 \mathrm{~m}^{2} \mathrm{M}^{\circ}$	$8 \frac{1}{2}$	108611.534	108621.364	
						10 m	$10 \mathrm{~m}^{2} \mathrm{M}^{\circ}$	$9 \frac{1}{2}$	108611.534	108621.364	
							Limit		109708.608	109718.538	

February 1972.

Al D, T-2

Multiplet Table

DEUTERIUM

D($\left.{ }_{1}^{2} \mathrm{H}_{\mathrm{I}}\right)$

I P $13.602 \mathrm{eV} \quad$ Limit $109708.608 \mathrm{~cm}^{-1} \quad 911.506 \AA(\mathrm{Vac})$
Anal A List C February 1972

REFERENCE

A J. D. Garcia and J. E. Mack, J. Opt. Soc. Am. 55, No. 6, 654-685 (1965). I P, T, C L; W L $925.9737 \AA$ to $123652.691 \AA$.
For higher values of n where the terms are unresolved, the wavelength derived from the statistical mean of the components is quoted.

New Multiplet Numbers have been assigned.

D
D

I A	Ref	Int			J	Multipiet No.	I A	Ref	Int	E P		J	Multiplet No.
			Low	High						Low	High		
Vac							Air						
1215.3376	A		0.00	10.20		$1 s{ }^{2} \mathrm{~S}-2 p{ }^{2} \mathrm{P}$	6561.0104	A	D α	10.20	12.09		$2 p^{2} \mathrm{P}^{0}-3 d^{2} \mathrm{D}$
1215.3430	A		0.00	10.20	02-0 ${ }^{\frac{1}{2}}$	UV 1							etc. 1 etc.
1025.4429	A		0.00	12.09	02-1 ${ }^{\frac{1}{2}}$	$1 s^{2} \mathrm{~S}-3 p{ }^{2} \mathrm{P}$	4860.0028	A	D β	10.20	12.75		$2 p^{2} \mathrm{P}-4 d^{2} \mathrm{D}$
1025.4401	A		0.00	12.09	012-012	UV 2							etc. 2 etc.
972.2721	A		0.00	12.75	01-1 $\frac{1}{2}$	$1 s^{2} \mathrm{~S}-4 p{ }^{2} \mathrm{P}$	4339.2829	A	D γ	10.20	13.06		$2 p^{2} \mathrm{P}^{\circ}-5 d{ }^{2} \mathrm{D}$
972.2725	A		0.00	12.75	012 $-0 \frac{1}{2}$	UV 3							etc. 3 etc.
949.4846	A		0.00	13.06	01-12	$1 s^{2} \mathrm{~S}-5 p{ }^{2} \mathrm{P}$	4100.6191	A	D δ	10.20	13.22		$2 p^{2} \mathrm{P} 0-6 d^{2} \mathrm{D}$
949.4848	A		0.00	13.06	012 $-0 \frac{1}{2}$	UV 4							etc. 4 etc.
937.5483	A		0.00	13.22	01-1 $\frac{1}{2}$	$1 s^{2} \mathrm{~S}-6 p^{2}{ }^{2}$	3968.9922	A	D ϵ	10.20	13.32		$2 p^{2} \mathrm{P}-7 d^{2} \mathrm{D}$
937.5484	A		0.00	13.22	012-012	UV 5							etc. 5 etc.
930.4951	A		0.00	13.32	$\mathrm{O}_{2}{ }^{-}$	$\begin{gathered} 1 s^{2} \mathrm{~S}-7 p^{2} \mathrm{P}^{\circ} \\ \mathrm{UV} 6 \end{gathered}$	3887.9909	A		10.20	13.39		$\begin{aligned} & 2 p^{2} \mathrm{P}^{0}-8 d^{2} \mathrm{D} \\ & \text { etc. } \quad 6 \quad \text { etc. } \end{aligned}$
925.9737	A		0.00	13.39	02-	$\begin{gathered} 1 s^{2} \mathrm{~S}-8 p \\ \mathrm{UV} 7 \end{gathered}$	18745.914	A		12.09	12.75		$3 d^{2} \mathrm{D}-4 f^{2} \mathrm{~F}^{\circ}$
911.5055	A		0.00	13.60	${ }^{0}-$	$\begin{gathered} 1 s^{2} S-\operatorname{Limit} \\ \text { UV } 8 \end{gathered}$	12814.595	A		12.09	13.06		$\begin{aligned} & 3 d^{2} \mathrm{D}-5 f^{2}{ }^{2} \mathrm{~F} \\ & \text { etc. } 8 \\ & \text { etc. } \end{aligned}$
							10935.120	A		12.09	13.22		$\begin{aligned} & 3 d^{2} \mathrm{D}-6 f^{2} \mathrm{~F}^{\circ} \\ & \text { etc. } \quad 9 \quad \text { etc. } \end{aligned}$
							10046.640	A		12.09	13.32		$\begin{aligned} & 3 d^{2} \mathrm{D}-7 f^{2} \mathrm{~F}^{\circ} \\ & \text { etc. } \quad 10 \text { etc. } \end{aligned}$
							9543.375	A		12.09	13.39		$\begin{aligned} & 3 d^{2} \mathrm{D}-8 f^{2} \mathrm{~F} \\ & \text { etc. } \quad 11 \text { etc. } \end{aligned}$

TRITIUM

Part B

T($\left.{ }_{1}^{3} \mathrm{H}_{\text {I }}\right)$

I P $13.603 \mathrm{eV} \quad$ Limit $109718.538 \mathrm{~cm}^{-1} \quad 911.423 \AA$ (Vac)

Anal A List D February 1972

REFERENCE

A J. D. Garcia and J. E. Mack, J. Opt. Soc. Am. 55, No. 6, 654-685 (1965). I P, T. C L; W L $925.8900 \AA$ to $123641.500 \AA$ For higher values of n where the terms are unresolved, the wavelength derived from the statistical mean of the components is quoted.

T							T						
I A	Ref	Int	E P		J	Multiplet No.	1 A	Ref	Int	E P		J	Multiplet No.
			Low	High						Low	High		
$\begin{gathered} \text { Vac } \\ 1215.2276 \\ 1215.2330 \end{gathered}$	A		0.00	$\begin{aligned} & 10.20 \\ & 10.20 \end{aligned}$	$\begin{aligned} & 0 \frac{1}{2}-1 \frac{1}{2} \\ & 0 \frac{1}{2}-0_{2}^{\frac{1}{2}} \end{aligned}$	$\begin{gathered} 1 s^{2} \mathrm{~S}-2 p{ }^{2} \mathrm{P}^{\circ} \\ \text { UV } 1 \end{gathered}$	$\begin{array}{\|c\|} \text { Air } \\ 6560.4166 \end{array}$	A	T α	10.20	12.09		$\begin{array}{lll} 2 p^{2} \mathrm{P}^{\circ}-3 d & { }^{2} \mathrm{D} \\ \text { etc. } \quad 1 & \text { etc. } \end{array}$
1025.3501	A		0.00	12.09	$0 \frac{1}{2}-1 \frac{1}{2}$	$1 s^{2} \mathrm{~S}-3 p{ }^{2} \mathrm{P}^{\circ}$	4859.5630	A	T β	10.20	12.75		$2 p^{2} \mathrm{P}^{\circ}-4 d^{2} \mathrm{D}$
1025.3512	A		0.00	12.09	0 ${ }_{2}^{2}-0 \frac{1}{2}$	UV 2							etc. 2 etc.
972.1841	A		0.00	12.75	$0^{\frac{1}{2}-1 \frac{1}{2}}$	$1 s^{2} \mathrm{~S}-4 p{ }^{2} \mathrm{P}$	4338.8902	A	T γ	10.20	13.06		$2 p^{2} \mathrm{P} 0-5 d{ }^{2} \mathrm{D}$
972.1845	A		10.00	12.75	0 0 - $0 \frac{1}{2}$	UV 3							etc. 3 etc.
949.3987	A		0.00	13.06	$0_{0} 0 \frac{1}{2}-1 \frac{1}{2}$	$1 s^{2} \mathrm{~S}-5 p{ }^{2} \mathrm{P}^{\circ}$	4100.2479	A	T δ	10.20	13.23		$2 p^{2} \mathrm{P}^{\circ}-6 d^{2} \mathrm{D}$
949.3989	A		0.00	13.06	012-0 ${ }^{\frac{1}{2}}$	UV 4							etc. 4 etc.
937.4635	A		0.00	13.23	$0 \frac{1}{2}-1 \frac{1}{2}$	$1 s^{2} \mathrm{~S}-6 p{ }^{2} \mathrm{P}^{\circ}$	3968.6329	A	T ϵ	10.20	13.33		$2 p^{2} \mathrm{P}^{\circ}-7 d^{2} \mathrm{D}$
937.4636	A		0.00	13.23	$0_{2}^{\frac{1}{2}}-0 \frac{1}{2}$	UV 5							etc. 5 etc.
911.4230	A		0.00	13.60		$\begin{gathered} 1 s^{2} S \text { - Limit } \\ \text { UV } 6 \end{gathered}$							

Publications in the National Standard Reference Data Series National Bureau of Standards

You may use this listing as your order form by checking the proper box of the publication(s) you desire or by providing the full identification of the publication you wish to purchase. The full letter symbols with each publication number and full title of the publication and author must be given in your order, e.g. NSRDS-NBS-21, Kinetic Data on Gas Phase Unimolecular Reactions, by S. W. Benson and H. E. O'Neal.

Pay for publications by check, money order, or Superintendent of Documents coupons or deposit account. Make checks and money orders payable to Superintendent of Documents. Foreign remittances should be
\square NSRDS-NBS 1, National Standard Reference Data System-Plan of Operation, by E. L. Brady and M. B. Wallenstein, 1964 (15 cents), SD Catalog No. C13.48:1.NSRDS-NBS 2 , Thermal Properties of Aqueous Uni-univalent Electrolytes, by V. B. Parker, 1965 (45 cents), SD Catalog No. C13.48:2.NSRDS-NBS 3 , Sec. l, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, Si ii, Si iif, Si iv, by C. E. Moore, 1965 (35 cents), SD Catalog No. C13.48:3/Sec.1.
\square NSRDS-NBS 3, Sec. 2, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, Si I, by C. E. Moore, 1967 (20 cents), SD Catalog No. C13.48:3/Sec.2.NSRDS-NBS 3, Sec. 3, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, $\mathbf{C}_{\text {I }}, \mathbf{C}_{\mathrm{II}}, \mathbf{C}$ iII, $\mathbf{C}_{\text {iv }}, \mathbf{C}$ v, C vi, by C. E. Moore, 1970 (\$1), SD Catalog No. C13.48:3/Sec. 3 .
\square NSRDS-NBS 3, Sec. 4, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, $\mathbf{N}_{\text {iv, }} \mathbf{N} \mathbf{v}, \mathbf{N}_{\mathrm{v}} \mathrm{vi}, \mathbf{N}$ vil, by
made either by international money order or draft on an American bank. Postage stamps are not acceptable.
No charge is made for postage to destinations in the United States and possessions, Canada, Mexico, and certain Central and South American countries. To other countries, payments for documents must cover postage. Therefore, one-fourth of the price of the publication should be added for postage.

Send your order together with remittance to Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.
C. E. Moore, 1971 (55 cents), SD Catalog No. C13.48:3/Sec. 4.NSRDS-NBS 3, Sec. 6, Selected Tables of Atomic Spectra, Atomic Energy Levels and Multiplet Tables, Hi, D, T, by C. E. Moore, 1971 (In press), SD Catalog No. C13.48:3/Sec. 6. \square NSRDS-NBS 4, Atomic Transition Probabilities, Vol. I, Hydrogen Through Neon, by W. L. Wiese, M. W. Smith, and B. M. Glennon, 1966 (\$2.50), SD Catalog No. Cl3.48:4/Vol. I.
\square NSRDS-NBS 5, The Band Spectrum of Car bon Monoxide, by P. H. Krupenie, 1966 (70 cents), SD Catalog No. C13.48:5.
NSRDS-NBS 6, Tables of Molecular Vibrational Frequencies, Part 1, by T. Shimanouchi, 1967 (40 cents), SD Catalog No. C13.48:6/Pt.1. Superseded by NSRDS-NBS 39.
\square NSRDS-NBS 7, High Temperature Proper ties and Decomposition of Inorganic Salts, Part 1. Sulfates, by K. H. Stern and E. L. Weise, 1966 (35 cents), SD Catalog No. C13.48:7/Pt.1.
NSRDS-NBS 8, Thermal Conductivity of Selected Materials, by R. W. Powell, C. Y. Ho,
and P. E. Liley, 1966 (\$3). PB189698*NSRDS-NBS 9, Tables of Bimolecular Gas Reactions, by A. F. Trotman-Dickenson and G. S. Milne, 1967 (\$2), SD Catalog No. C13.48:9. NSRDS-NBS 10, Selected Values of Electric Dipole Moments for Molecules in the Gas Phase, by R. D. Nelson, Jr., D. R. Lide, Jr., and A. A. Maryott, 1967 (40 cents), SD Catalog No. C13.48:10.

NSRDS-NBS 11, Tables of Molecular Vibrational Frequencies, Part 2, by T. Shimanouchi, 1967 (30 cents), SD Catalog No. C13.48:11/Pt.2. Superseded by NSRDS-NBS 39.
NSRDS-NBS 12, Tables for the Rigid Asymmetric Rotor: Transformation Coefficients from Symmetric to Asymmetric Bases and Expectation Values of $\mathbf{P}_{z}^{2}, \mathbf{P}_{z}^{4}$, and \mathbf{P}_{z}^{6}, by R. H. Schwendeman, 1968 (60 cents), SD Cata\log No. C13.48:12.NSRDS-NBS 13, Hydrogenation of Ethylene on Metallic Catalysts, by J. Horiuti and K. Miyahara, 1968 (\$1), SD Catalog No. C13.48:13.NSRDS-NBS 14, X-Ray Wavelengths and XRay Atomic Energy Levels, by J. A. Bearden, 1967 (40 cents), SD Catalog No. C13.48:14.NSRDS-NBS 15, Molten Salts: Vol. 1, Electrical Conductance, Density, and Viscosity Data, by G. J. Janz, F. W. Dampier, G. R. Lakshminarayanan, P. K. Lorenz, and R. P. T. Tomkins, 1968 (\$3), SD Catalog No. C13.48:15/Vol.1.NSRDS-NBS 16, Thermal Conductivity of Selected Materials, Part 2, by C. Y. Ho, R. W. Powell, and P. E. Liley, 1968 (\$2), SD Catalog No. C13.48:16/Pt.2.
\square NSRDS-NBS 17, Tables of Molecular Vibrational Frequencies, Part 3, by T. Shimanouchi, 1968 (30 cents), SD Catalog No. C13.48:17/Pt.3. Superseded by NSRDS-NBS 39.NSRDS-NBS 18, Critical Analysis of the HeatCapacity Data of the Literature and Evaluation of Thermodynamic Properties of Copper, Silver, and Gold from 0 to 300 K, by G. T. Furukawa, W. G. Saba, and M. L. Reilly, 1968 (40 cents), SD Catalog No. C13.48:18.NSRDS-NBS 19, Thermodynamic Properties of Ammonia as an Ideal Gas, by L. Haar, 1968 (20 cents), SD Catalog No. C13.48:19.
\square NSRDS-NBS 20, Gas Phase Reaction Kinetics of Neutral Oxygen Species, by H. S.

[^1]Johnston, 1968 (45 cents), SD Catalog No. C13.48:20.
\square NSRDS-NBS 21, Kinetic Data on Gas Phase Unimolecular Reactions, by S. W. Benson and H. E. O’Neal, 1970 (\$7), SD Catalog No. C13.48:21.
\square NSRDS-NBS 22, Atomic Transition Probabilities, Vol. II, Sodium Through Calcium, A Critical Data Compilation, by W. L. Wiese, M. W. Smith, and B. M. Miles, 1969 (\$4.50), SD Catalog No. C13.48:22/Vol.II.
NSRDS-NBS 23, Partial Grotrian Diagrams of Astrophysical Interest, by C. E. Moore and P. W. Merrill, 1968 (55 cents), SD Catalog No. C13.48:23.
\square
NSRDS-NBS 24, Theoretical Mean Activity Coefficients of Strong Electrolytes in Aqueous Solutions from 0 to $100^{\circ} \mathrm{C}$, by Walter J. Hamer, 1968 (\$4.25), SD Catalog No. C13.48:24.NSRDS-NBS 25, Electron Impact Excitation of Atoms, by B. L. Moiseiwitsch and S. J. Smith, 1968 (\$2), SD Catalog No. C13.48:25.
NSRDS-NBS 26, Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions, by J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, 1969 (\$4), SD Catalog No. C13.48:26.
NSRDS-NBS 27, Thermodynamic Properties of Argon from the Triple Point to 300 K at Pressures to 1000 Atmospheres, by A. L. Gosman, R. D. McCarty, and J. G. Hust, 1969 (\$1.25), SD Catalog No. C13.48:27.
\square NSRDS-NBS 28, Molten Salts: Vol. 2, Section 1. Electrochemistry of Molten Salts: Gibbs Free Energies and Excess Free Energies from Equilibrium-Type Cells, by G. J. Janz and C. G. M. Dijkhuis; Section 2. Surface Tension Data, by G. J. Janz, G. R. Lakshminarayanan, R. P. T. Tomkins, and J. Wong, 1969 (\$2.75), SD Catalog No. C13.48:28/Vol.2.
\square NSRDS-NBS 29, Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients from 10 keV to 100 GeV , by J. H. Hubbell, 1969 (75 cents), SD Catalog No. C13.48:29.
\square NSRDS-NBS 30, High Temperature Properties and Decomposition of Inorganic Salts, Part 2. Carbonates, by K. H. Stern and E. L. Weise, 1969 (45 cents), SD Catalog No. C13.48:30/Pt.2.
in Simple Molecules, by B. deB. Darwent, 1970 (55 cents), SD Catalog No. C13.48:31.NSRDS-NBS 32, Phasc Bchavior in Binary and Multicomponent Systems at Elevated Pressures: n-Pentane and Methane-n-Pentane, by V. M. Berry and B. H. Sage, 1970 (70 cents), SD Catalog No. C13.48:32.NSRDS-NBS 33, Electrolytic Conductance and the Conductances of the Halogen Acids in Water, by W. J. Hamer and H. J. DeWane, 1970 (50 cents), SD Catalog No. C13.48:33.NSRDS-NBS 34, Ionization Potentials and Ionization Limits Derived from the Analyses of Optical Spectra, by C. E. Moore, 1970 (75 cents), SD Catalog No. C13.48:34.NSRDS-NBS 35, Atomic Energy Levels as Derived from the Analyses of Optical Spectra, Vol. I, ${ }^{1} \mathrm{H}$ to ${ }^{23} \mathrm{~V}$; Vol. III, ${ }^{24} \mathrm{Cr}$ to ${ }^{41} \mathrm{Nb}$; Vol. III, ${ }^{42}$ Mo to ${ }^{57} \mathrm{La}$, ${ }^{72} \mathrm{Hf}$ to ${ }^{89} \mathrm{Ac}$, by C. E. Moore, 1971 (Vol. I, \$5; Vol. II, \$4.25; Vol. III, $\$ 4.50$), SD Catalog No. C13.48:35/Vols. I, II, and III.NSRDS-NBS 36, Critical Micelle Concentrations of Aqueous Surfactant Systems, by P. Mukerjee and K. J. Mysels, 1971 (\$3.75), SD Catalog No. C13.48:36.
NSRDS-NBS 37, JANAF Thermochemical Tables, 2 d Edition, by D. R. Stull, H. Prophet, et al., 1971 (\$9.75), SD Catalog No. C13.48:37.NSRISS-NBS 38, Critical Review of Ultraviolet Photoabsorption Cross Sections for Molecules of Astrophysical and Aeronomic Interest, by R. D. Hudson, 1971 (\$1), SD) Catalog No. C13.48:38.
NSRDS-NBS 39, Tables of Molecular Vibrational Frequencies, Consolidated Tables, by T. Shimanouchi, 1972 (In press), SD Catalog No. C13.48:39.
NSRDS-NBS 40, A Multiplet Table of Astrophysical Interest (Reprint of 1945 Edition), by C. E. Moore, 1972 (\$2), SD Catalog No. C13.48:40.NSRDS-NBS 41, Crystal Structure Transformations in Binary Halides, by C. N. R. Rao, 1972 (In press), SD Catalog No. C13.48:41.NSRDS-NBS 42, Selected Specific Rates of Reactions of the Solvated Electron in Alcohols, by E. Watson, Jr., and S. Roy, 1972 (In press), SD Catalog No. C13.48:42.
\square NSRDS-NBS 43, Selected Specific Rates of Reactions of Transients from Water in Aqueous Solution, by M. Anbar, M. Bambenek, and A. B. Ross, 1972 (In press), SD Catalog No. Cl3.48:43.
NSRDS-NBS 44, The Radiation Chemistry of Gaseous Ammonia, by D. B. Peterson, 1972 (In press), SD Catalog No. C13.48:44.

Announcement of New Publications in

National Standard Reference Data Series

Superintendent of Documents, Government Printing Office, Washington, D.C. 20402
Dear Sir:
Please add my name to the announcement list of new publications to be issued in the series: National Standard Reference Data Series - National Bureau of Standards.

Name

Company

Address
City
State
Zip Code
(Notification key N -337)

NBS TECHNICAL PUBLICATIONS

PERIoDicals

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and inathematical analyses. Illustrated with photographs, drawings, and charts. Includes listings of other NBS papers as issued.
Published in two sections, available separately:

- Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, $\$ 9.50 ; \$ 2.25$ additional for foreign mailing.

- Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and shemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, $\$ 5.00$; $\$ 1.25$ additional for foreign mailing.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's measurement, research, developmental, cooperative, and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology-for engineers, chemists, physicists, research managers, product-development managers, and company executives. Includes listing of all NBS papers as issued. Annual subscription: Domestic, $\$ 3.00$; $\$ 1.00$ additional for foreign mailing.

Bibliographic Subscription Services

The following current-awareness and literaturesurvey bibliographies are issued periodically by the Bureau: Cryogenic Data Center Current Awareness Service (weekly), Liquefied Natural Gas (quarterly), Superconducting Devices and Materials (quarterly), and Electromagnetic Metrology Current Awareness Service (monthly). Available only from NBS Boulder Laboratories. Ordering and cost information may be obtained from the Program Information Office, National Bureau of Standards, Boulder, Colorado 80302.

HONPERIODICALS

Applied Mathematies Series. Mathematical tables, manuals, and studies.
Building Science Series. Research results, test methode, and performance criteria of building materials, components, systems, and structures.
Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.
Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.
Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.
National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.
Product Standards. Provide requirements for sizes, types, quality, and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.
Technical Notes. This series consists of communications and reports covering both other-agency and NBS-sponsored work) of limited or transitory interest.
Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89-306, and Bureau of the Budget Circular A-86 entitled, Standardization of Data Elements and Codes in Data Systems.
Consumer Information Series. Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

CATALOGS OF NBS PUBLICATIONS

NBS Special Publication 305, Publications of the NBS. 1966-1967. When ordering, include Catalog No. C13.10:30.5. Price $\$ 2.00$; 50 cents additional for foreign mailing.
NBS Special Publication 305, Supplement 1. Publications of the NBS, 1968-1969. When orderings, include Cat.ılog No. (13.110:305/Suppl. 1. Pricu $\$ 4.50$: $\$ 1.25$ additional for forcign mailing.
NBS Special Publication 305. Supplement 2. Publications of the NBS, 1970. When nidering, include Catalou Nio. (:13.10:305/Suppl. ? Price \$3.25: 85 cents additional for forceign mailing.

Order NBS publications (except Bibliographic Subsription Services from: Superintendent of Documbuts. (Botermanent Primtine Office. W, ルhington, D.C. 2040 ?
U.S. DEPARTMENT OF COMMERCE

National Bureau of Standards

Washington, D.C. 20234

OFFICIAL BUSINESS
Penalty for Private Use, $\$ 300$

[^0]: ${ }^{1}$ Ifemlquarters and Lahoratories at Gathershurg, Miryland, unless otherwise noted; malling address
 Washington, 1).C. 202:3t
 ? 1'irt of thie Center for Radiation Research.
 3 Located at Boultler, Colorado 80302 .

 - I'art of the Center for Bullding 'rechnology.

[^1]: *Available from National Technical Information Service, Springfield, Virginia 22151.

