日本放射線技術学会雑誌
Online ISSN : 1881-4883
Print ISSN : 0369-4305
ISSN-L : 0369-4305
臨床技術
超高精細 CT における高精細モードと逐次近似応用再構成を併用した横断面の画質向上に関する検討
酒井 友貴白坂 崇近藤 雅敏濱崎 洋志三賀山 諒司松本 亮二日置 一仁鬼塚 泰裕吉川 英樹
著者情報
ジャーナル フリー

2018 年 74 巻 12 号 p. 1419-1427

詳細
抄録

The purpose of this study is to compare the physical characteristics and visibility of high-resolution and conventional images acquired with the same X-ray dose, and to investigate the superiority of super high-resolution imaging. A Catphan phantom was scanned in the normal resolution (NR), high-resolution (HR), and super high-resolution (SHR) modes of ultra-high-resolution computed tomography at 120 kV and 75 mAs. All images were reconstructed into a 5-mm thick image slices with filtered back-projection (FBP) and hybrid image reconstruction (HIR), which included normal and enhanced adaptive iterative dose reduction 3D (AIDR and eAIDR, respectively). The modulation transfer function (MTF) and noise power spectrum (NPS) were measured using the circular edge method and radial frequency method, respectively. The signal-to-noise ratio (SNR) was then calculated. High-contrast resolution and low-contrast detectability were evaluated visually by five radiological technologists. The MTFs of HReAIDR and HRFBP images were higher than those of NRFBP images. However, the NPSs of HReAIDR and HRFBP images were larger than those of NRFBP images. The SNR of HReAIDR images was higher than that of NRFBP and HRFBP images. The scores of high-contrast resolution of HReAIDR, NRFBP, and HRFBP images were 13, 8, and 13 cycles/cm, respectively, and the scores of low-contrast detectability were 5, 5, and 6 mm, respectively. Hence, an improvement in high-contrast resolution of signal more than 400 HU in the axial section can be achieved without increasing the radiation dose and decreasing low-contrast detectability with 10 HU using the HR mode and eAIDR.

著者関連情報
© 2018 公益社団法人 日本放射線技術学会
前の記事 次の記事
feedback
Top