Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:9
  • preuzimanja u poslednjih 30 dana:8

Sadržaj

članak: 1 od 1  
Primena programskog alata ATP/EMTP u analizi atmosferskih prenapona
aUniverzitet u Beogradu, Elektrotehnički institut 'Nikola Tesla', Srbija
bSiemens d.o.o. Beograd, Beograd

e-adresajmrvic@ieent.org
Ključne reči: atmosferski prenaponi; ATP/EMTP; rizik kvara izolacije; Monte Karlo simulacija; koordinacija izolacije; MTBF; metoda progresivnog lidera
Sažetak
U radu je demonstriran postupak procene rizika kvara izolacije usled atmosferskih prenapona. Simulacije su sprovedene primenom programskog alata ATP/EMTP, pri čemu su prikazane prednosti primene Monte Karlo metode u statističkoj analizi koordinacije izolacije. Detaljno je opisan postupak modelovanja svih elemenata značajnih za analizu, u okviru čega su predstavljene mogućnosti programskog jezika MODELS koji omogućava formiranje i implementaciju novih složenih komponenti u sklopu programskog alata ATP.
Reference
*** (1997) IEEE Std 1243: IEEE Guide for improving the lightning performance of transmission lines
*** (2004) Insulation co-ordination: Computational guide to insulation coordination and modelling of electrical networks. IEC Technical report, Part 4, TR 60071-4, Jun
*** ATP - EMTP: Bonneville power administration (BPA) electro magnetic transient program (EMTP): Alternative transient program (ATP) and ATPDraw graphical pre-processor. Copyright. (e-mail: canam@emtp.org), (www.eeug.org)
Brown, G.W. (1978) Joint Frequency Distributions of Stroke Current Rates of Rise and Crest Magnitude to Transmission Lines. IEEE Transactions on Power Apparatus and Systems, PAS-97(1): 53-58
Datsios, Z.G., Mikropoulos, P.N. (2014) Implementation of leader development models in ATP-EMTP using a type-94 circuit component. u: International Conference on Lightning Protection (ICLP), Shanghai, pp. 979-985. doi: 10.1109/ICLP.2014.6973265
Grujić, A., Stojković, Z. (2011) Software tool for estimating the 3D lightning protection zone of high voltage substations. International Journal of Electrical Engineering Education, 48(3): 307-322
Hileman, A.R. (1999) Insulation coordination for power systems. Marcel Dekker, Book 767 pages
IEEE modeling and Analysis of system Transient Working Group (1996) Modeling guidelines for fast front transients. IEEE Transactions on Power Delivery, vol. 11, no. 1, pp. 493-506, Jan doi: 10.1109/61.484134
Lertwanitrot, P., Kettranan, P., Itthisathienkul, P., Nagaopitakkul, A. (2015) Characteristics and behaviour of transient current during lightning strike on transmission tower. u: International MultiConference of Engineers and Computer Scientists, IMECS 2015, March 18-20, 2015, Hong Kong, Vol II
Savić, M.S. (1989) Engineering method for high-voltage substations lightning performance estimation. IEE Proceedings C Generation, Transmission and Distribution, 136(4): 222
Savić, M., Stojković, Z. (1996) Tehnika visokog napona - atmosferski prenaponi. Beograd: Elektrotehnički fakultet
Stojković, Z. (2012) Computer-aided design in power engineering: Application of software tools. Berlin-Heidelberg: Springer, p. 436, DOI: 10.1007/978-3-642-30206-0
Zdravković, Z., Vukelja, P., Mrvić, J. (2001) Koordinacija izolacije objekata visokih napona trofaznih mreža. Beograd: Nikola Tesla
Zdravković, Z., Vukelja, P., Mrvić, J. (2005) Disruptive discharge risk and reliability parameters of high-voltage electrical power facilities. Electrical Engineering, 88(5): 447-452
 

O članku

jezik rada: srpski
vrsta rada: stručni članak
DOI: 10.5937/zeint26-12323
objavljen u SCIndeksu: 27.12.2016.
metod recenzije: jednostruko anoniman
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka