DOI QR코드

DOI QR Code

Optimum Conditions for Glycoside Conversion to Aglycone by ${\gamma}-Galactosidase$

유당분해효소에 의한 Glycoside의 Aglycone으로 전환을 위한 최적 조건 확립

  • Kim, Nam-Chul (Department of Food Science and Technology, Sejong University) ;
  • Jeon, Byung-Ju (Department of Food Science and Technology, Sejong University) ;
  • Ahn, Joung-Jwa (Department of Food Science and Technology, Sejong University) ;
  • Kwak, Hae-Soo (Department of Food Science and Technology, Sejong University)
  • Published : 2007.09.30

Abstract

This study was designed to find the optimum conditions for converting isoflavone glycoside to aglycone by ${\beta}-galactosidase$. Three different forms of the enzyme were tested and the optimum enzyme concentration, incubation temperature, pH, and incubation time were determined. Before treatment with enzyme, isoflavone contained 89.4% glycoside including daidzin, glycitin and genistin, and only 10.6% aglycone including daidzein, glycitein and genistein. Among the enzymes tested, the highest rate of isoflavone hydrolysis to aglycone, 35%, was observed when 3 unit/g Fungal Lactase (Amano Enzyme) was used. Higher incubation temperatures resulted in a higher rate of hydrolysis along with a greater loss of isoflavone mass. Therefore, body temperature $(37^{\circ}C)$ may be adequate for isoflavone conversion, with 44.9% hydrolysis and less than 10% loss of mass. As expected, a higher amount of aglycone was produced at pH 7 compared with other pH values. During 5hr of incubation, the conversion of glycoside to aglycone increased dramatically from 0 to 1hr, and plateaued thereafter. In addition, commercial soy-based milk was hydrolyzed more effectively with ${\beta}-galactosidase$ when incubated for 5hr. Based on the above results, the optimum conditions for isoflavone hydrolysis by ${\beta}-galactosidase$ were for 3 hr at $37^{\circ}C$, pH 7 with 3 unit/g Fungal Lactase (Amano Lactase), yielding an average total amount of aglycone ranging from 40 to 47%.

Keywords

References

  1. Adlercreutz, H., Hamalainen, E., Gorbach, S., and Goldin, B. (1991a) Dietary phytoestrogen and the menopause in Japan (letter). Lancet 339, 1233-1240 https://doi.org/10.1016/0140-6736(92)91174-7
  2. Adlercreutz, H., Honjo, H., Higashi, A., Fotsis, T., Hamalainen, E., Hasegawa, T., and Okada, H. (1991b) Urinary excretion of lignans and isoflavone phytoesterogens in Japanese men and women consuming a traditional diet. American J. Clin. Nutr. 54, 1093-1100 https://doi.org/10.1093/ajcn/54.6.1093
  3. Bayless, T. M., Rothfeld, B., Massa, C., Wise, L., Paige, D., and Bedine, M. (1975) Lactose and milk intolerance: Clinical implications. New Eng. J. Med. 292, 1156-1161 https://doi.org/10.1056/NEJM197505292922205
  4. Carr-Panizzi, M. C., de Go-Favoni. S. P., and Kikuchi, A. (2004) Hypothermal treatments in the development of isoflavone aglycones in soybean (Glycine max (L.) Merrill) Grains, Brazilian Arch. Biol. Technol. 47, 225-232 https://doi.org/10.1590/S1516-89132004000200010
  5. Clarkson, T. B., Anthony, M. S., and Hughes, C. L. (1995) Estrogenic soybean isoflavones and chronic disease. Trends in Endocr. Metabol. 6, 11-16 https://doi.org/10.1016/1043-2760(94)00087-K
  6. Coward, L., Smith, M., Kirk, M., and Barnes, S. (1998) Chemical modification of isoflavones in soyfoods during cooking and processing. Am. J. Clin. Nutr. 68(suppl), 1486s-149ls
  7. Day, A. J., Canada, F. J., Daz, J. C., Kroon, P. A., Malauchlan, R., Faulds, C. B., Plumb, G. W., Morgan, M. R. A., and Williamson, G. (2000) Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FESB Lett. 468, 166-170 https://doi.org/10.1016/S0014-5793(00)01211-4
  8. Han, B. Z., Beumer, R. R., Rombouts, F. M., and Nout, M. J. R. (2001) Microbiological safety and quantity of commercial sufu-a Chinese fermented soybean food. Food Control 12, 541-547 https://doi.org/10.1016/S0956-7135(01)00064-0
  9. Hwang, J., Wang, J., Morazzoni, P., Hodis, H. N., and Sevanian, A. (2003) The phytoestrogen equol increases nitric oxide availability by inhibiting superoxide production: an antioxidant mechanism for cell-mediated LDL modification. Free Rad. Biol. Med. 34, 1271-1282 https://doi.org/10.1016/S0891-5849(03)00104-7
  10. Izumi, T, Piskula, M. K., Osawa, S., Obata, A., Tobe, K., Saito, M., Kataoka, S., Kubota, Y, and Kikuchi, M. (2000) Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130, 1695-1699
  11. Izumi, T., Nasu, A., Kataoka, S., Tokutake, S., Obata, A., and Tobe, K. (1997) An efficient preparation of acetyl isoflavone glucoside. Chem. Pharm. Bull. 45, 1593-1595 https://doi.org/10.1248/cpb.45.1593
  12. Jackson, C. J. C., Dini, J. P., Lavandier, C., Rupasinghe, H. P. V., Faulkner, H., Poysa, V., Buzzell, D., and Degrandism, S. (2002) Effect of processing on the content and composition of isoflavones during manufacturing of soy beverages and tofu. Process in Biochem. 37, 1117-1123 https://doi.org/10.1016/S0032-9592(01)00323-5
  13. Knight, D. C., and Eden, J. A. (1996) A review of the clinical effects of phytoestrogens. Obstet. Gynecol. 87, 897-904
  14. Kodou, S., Shimoyanagi, M., Imura, T., Uchida, T., and Okudo, K. (1991) A new isoflavone glycoside in soybean seed (Glycine max Merrill), glycitein 7-O-$\beta$-D-(6'-O-acetyl)-glucopyranoside. Agric. Biol. Chem. 55, 859-860 https://doi.org/10.1271/bbb1961.55.859
  15. Kudou, S., Fleury, T., Welti, D., Magnolato, D., Uchida, T., and Kitamura, K. (1991) Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agric. Biol. Chem. 55, 2227-2233 https://doi.org/10.1271/bbb1961.55.2227
  16. Kwak, H. S, Ihm, M. R., and Ahn, J. (2001) Microencapsulation of $\beta$-galactosidase with fatty acid esters. J. Dairy Sci. 84, 1576-1582 https://doi.org/10.3168/jds.S0022-0302(01)74590-0
  17. Lee, H. P., Gourley, L., Duffy, S. W, Esteve, J., Lee, J., and Day, N. E. (1991) Dietary effects on breast-cancer risk in Singapore. Lancet 337, 1197-1200 https://doi.org/10.1016/0140-6736(91)92867-2
  18. Matsuura, M., Obata, A., and Fukushima, D. (1989) Objectionable flavor of soy milk developed during the soaking of soybeans and its control. J. Food Sci. 54, 602-605 https://doi.org/10.1111/j.1365-2621.1989.tb04662.x
  19. Messina, M. and Messina, V. (1991) Increasing use of soyfoods and their potential role in cancer prevention. J. Am. Diet Assoc. 91, 836-840
  20. Morabito, N., Crisafulli, A., Vergara, C., Gaudio, A., Lasco, A., and Frisina, N. (2002) Effects of genistein and hormonereplacement therapy on bone loss in early postmenopausal women: a randomized double-blind placebo-controlled study. J. Bone Miner. Res. 17, 1904-1912 https://doi.org/10.1359/jbmr.2002.17.10.1904
  21. Newcomer, A. and McGill, D. (1984) Clinical importance of lactase deficiency. New Eng. J. Med. 310, 42-46 https://doi.org/10.1056/NEJM198401053100109
  22. Ohta, N., Kuwata, G., Akahori, H., and Watanabe, T. (1980) Isolation of a new isoflavone acetylglucoside, 6'-O-acetylgenistin, from soybeans. Agric. Biol. Chem. 44, 469-470 https://doi.org/10.1271/bbb1961.44.469
  23. Piskula, M. K., Yamakoshi, J., and Iwai, Y. (1999) Daidzein and genistein but not their glucosides are absorbed from the rat stomach. FEBS Lett. 447, 287-291 https://doi.org/10.1016/S0014-5793(99)00307-5
  24. Richelle, M., Pridmore-Merten, S., Bodenstab, S., Enslen, M., and Offord, E. A. (2002) Hydrolysis of isoflavone glycosides to aglycones by $\beta$-glycosidase does not alter plasma and urine isoflavone pharmacokinetics in postmenopausal women. Human Nutr. Metabol. 132, 2587-2592
  25. SAS (1985) User's Guide: Statistics, Version 5 Edition. SAS Institute, Inc., Cary, NC, USA
  26. Scrimshaw, N. S., and Murray, E. B. (1988) The acceptability of milk and milk products in populations with high prevalence of lactose intolerance. Am. J. Clin. Nutr. 48, 1083-1159 https://doi.org/10.1093/ajcn/48.4.1083
  27. Semenza, G.. (1987) In: Mammalian Ectoenzymes. Kenny, A. J. and Turner, A. J. (eds), Elervier, Amsterdam, The Netherlands, pp. 256-287
  28. Severson, R. K., Nomura, A. Y. M., Grove, J. S., and Stemmerman, G. N. (1989) A prospective study of demographics and prostate cancer among men of Japanese ancestry in Hawaii. Cancer Res. 49, 1857-1860
  29. Simmons, F. J. (1978) The geographic hypothesis and lactose malabsoprtion: A weighing of the evidence. Dig. Diseases 23, 963-967 https://doi.org/10.1007/BF01263095
  30. Tikkanen, M. J. and Adlecreutz, H. (2000) Dietary soyderived isoflavone phytoestrogens. Could they have a role in coronary heart disease prevention? Biochem. Pharmacol. 60, 1-5 https://doi.org/10.1016/S0006-2952(99)00409-8
  31. Toda, T., Sakamoto, A., Takayanagi, T., and Yokotsuka, K. (2001) Changes in isoflavone compositions of soybean during process. Food Sci. Technol. Res. 6, 314-319 https://doi.org/10.3136/fstr.6.314
  32. Uesugi, T., Fukui, Y., and Yamori, Y. (2002) Beneficial effects of soybean isoflavone supplementation on bone metabolism and serum lipids in postmenopausal Japanese women: a four-week study. J. Am. Coll. Nutr. 21, 97-102 https://doi.org/10.1080/07315724.2002.10719200
  33. Wang, H. J. and Murphy, P. A. (1994) Isoflavone coposition in American and Japanese soybeans in Iowa: Effects ofvariety, crop year, and location. J. Agric. Food Chem. 42, 1674-1677 https://doi.org/10.1021/jf00044a017
  34. Watanabe, S. and Koessel, S. (1993) Colon cancer: an approach from molecular epidemiology. J. Epidemiol. 3, 47-61 https://doi.org/10.2188/jea.3.47
  35. Xu, X., Harris, K. S., Wang, H. J., Murphy, P. A., and Hendrich, S. (1995) Bioavailability of soybean isoflavones depends upon gut microflora in women. J. Nutr. 125, 2307-2315
  36. Yin, L., Li, L., Liu, H., Saito, M., and Tatsumi, E. (2005) Effects of fermentation temperature on the content and composition of isoflavones and $\beta$-glucosidase activity in sufu. Biosci. Biotechnol. Biochem. 69, 267-272 https://doi.org/10.1271/bbb.69.267