Experimental Study on Compressive Behavior of Concrete-filled Double-skin Circular Tubes with Active Confinement

Document Type : Original Article

Authors

1 Department of Civil Engineering, Babol University of Technology, Babol, Iran

2 Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran

Abstract

A convenient family member of composite columns is concrete filled double skin tube (CFDST); it contains two tubes of concentric steel and also shell concrete that there is between them. The superior or equal potential offering characteristics of CFDST columns are more than counterparts of filled steel tubes of classical concrete (CFST). The purposes of the present study are to provide experimental investigation results into the prestressed load-carrying capacity of CFDST columns. Here, an innovative technique is used to confined concrete prestressing, in which the fresh concrete is compressed for a short-run duration. Sixty-four total specimens were tested with various outer thickness and diameter, inner thickness and diameter, and also CFDST columns of concrete strength that resist axial compression. The experimental results support that the present technique prestressed confined concrete, and it demonstrates that CFDST specimens' load-carrying capacity enhanced significantly.

Keywords

Main Subjects


  1. Han, L.-H., Li, W. and Bjorhovde, R., "Developments and advanced applications of concrete-filled steel tubular (cfst) structures: Members", Journal of constructional steel research, Vol. 100, (2014), 211-228, doi: 10.1016/j.jcsr.2014.04.016.
  2. Essopjee, Y. and Dundu, M., "Performance of concrete-filled double-skin circular tubes in compression", Composite Structures, Vol. 133, (2015), 1276-1283, doi: 10.1016/j.compstruct.2015.08.033.
  3. Borzouyi Kutenayi, S., Kiahosseini, S. and Talebpour, M., "The effect of caspian sea water on corrosion resistance and compressive strength of reinforced concrete containing different sio2 pozzolan", International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 10, (2017), 1464-1470, doi: 10.5829/ije.2017.30.10a.06.
  4. Wang, Y., Chen, G., Wan, B., Han, B. and Ran, J., "Axial compressive behavior and confinement mechanism of circular frp-steel tubed concrete stub columns", Composite Structures, Vol. 256, (2021), 113082, doi: 10.1016/j.compstruct.2020.113082.
  5. Hemmati, A. and Mojaddad, S., "Effect of steel confinement on behavior of reinforced concrete frame", Journal of Rehabilitation in Civil Engineering, Vol. 7, No. 3, (2019), 1-14, doi: 10.22075/jrce.2018.13791.1252.
  6. Seyed Razzaghi, M., Esfandyari, R. and Nateghi, F., "The effects of internal and external stiffeners on hysteretic behavior of steel beam to cft column connections", International Journal of Engineering, Transactions A: Basics, Vol. 27, No. 7, (2014), 1005-1014, doi: 10.5829/idosi.ije.2014.27.07a.01.
  7. Cheng, B. and Su, R., "Numerical studies of deep concrete coupling beams retrofitted with a laterally restrained steel plate", Advances in Structural Engineering, Vol. 14, No. 5, (2011), 903-915, doi: 10.1260/1369-4332.14.5.903.
  8. Zhao, X.-L., Tong, L.-W. and Wang, X.-Y., "Cfdst stub columns subjected to large deformation axial loading", Engineering Structures, Vol. 32, No. 3, (2010), 692-703, doi: 10.1016/j.engstruct.2009.11.015.
  9. Young, B. and Ellobody, E., "Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns", Journal of Constructional Steel Research, Vol. 62, No. 5, (2006), 484-492, doi: 10.1016/j.jcsr.2005.08.004.
  10. Kodur, V. and MacKinnon, D., "Simplified design of concrete-filled hollow structural steel columns for fire endurance", Journal of Constructional Steel Research, Vol. 1, No. 46, (1998), 298, doi: 10.1016/s0143-974x(98)80034-5.
  11. Zhu, A.-Z., Xu, W., Gao, K., Ge, H.-B. and Zhu, J.-H., "Lateral impact response of rectangular hollow and partially concrete-filled steel tubular columns", Thin-Walled Structures, Vol. 130, (2018), 114-131, doi: 10.1016/j.tws.2018.05.009.
  12. Mohammed, A.H., Mohammedali, T.K. and Hussin, A.K., "Experimental study on performance of fiber concrete-filled tube columns under axial loading", International Journal of Engineering, Transactions C: Aspects, Vol. 32, No. 12, (2019), 1726-1732, doi: 10.5829/ije.2019.32.12c.05.
  13. Wang, W.-D., Jia, Z.-L., Shi, Y.-L. and Tan, E.L., "Performance of steel-reinforced circular concrete-filled steel tubular members under combined compression and torsion", Journal of Constructional Steel Research, Vol. 173, (2020), 106271, doi: 10.1016/j.jcsr.2020.106271.
  14. Thai, S., Thai, H.-T., Uy, B. and Ngo, T., "Concrete-filled steel tubular columns: Test database, design and calibration", Journal of Constructional Steel Research, Vol. 157, (2019), 161-181, doi: 10.1016/j.jcsr.2019.02.024.
  15. Wei, Y., Jiang, C. and Wu, Y.-F., "Confinement effectiveness of circular concrete-filled steel tubular columns under axial compression", Journal of Constructional Steel Research,  Vol. 158, (2019), 15-27, doi: 10.1016/j.jcsr.2019.03.012.
  1. Liu, X., Xu, C., Liu, J. and Yang, Y., "Research on special-shaped concrete-filled steel tubular columns under axial compression", Journal of Constructional Steel Research, Vol. 147, (2018), 203-223, doi: 10.1016/j.jcsr.2018.04.014.
  2. Jin, L., Fan, L., Li, P. and Du, X., "Size effect of axial-loaded concrete-filled steel tubular columns with different confinement coefficients", Engineering Structures, Vol. 198, (2019), 109503, doi: 10.1016/j.engstruct.2019.109503.
  3. Yuan, F., Huang, H. and Chen, M., "Effect of stiffeners on the eccentric compression behaviour of square concrete-filled steel tubular columns", Thin-Walled Structures, Vol. 135, (2019), 196-209, doi: 10.1016/j.tws.2018.11.015.
  4. Rahmani, Z., Naghipour, M. and Nematzadeh, M., "Flexural performance of high-strength prestressed concrete-encased concrete-filled steel tube sections", International Journal of Engineering, Transactions C: Aspects, Vol. 32, No. 9, (2019), 1238-1247, doi: 10.5829/ije.2019.32.09c.03.
  5. Jiang, Y., Silva, A., Macedo, L., Castro, J.M., Monteiro, R. and Chan, T.-M., "Concentrated-plasticity modelling of circular concrete-filled steel tubular members under flexure", in Structures, Elsevier. Vol. 21, (2019), 156-166.
  6. Al Zand, A.W., Badaruzzaman, W.H.W., Mutalib, A.A. and Hilo, S.J., "Flexural behavior of cfst beams partially strengthened with unidirectional cfrp sheets: Experimental and theoretical study", Journal of Composites for Construction, Vol. 22, No. 4, (2018), 04018018, doi: 10.1061/(asce)cc.1943-5614.0000852.
  7. Ho, J. and Dong, C., "Improving strength, stiffness and ductility of cfdst columns by external confinement", Thin-Walled Structures, Vol. 75, (2014), 18-29, doi: 10.1016/j.tws.2013.10.009.
  8. Wei, S., Mau, S., Vipulanandan, C. and Mantrala, S., "Performance of new sandwich tube under axial loading: Experiment", Journal of Structural Engineering, Vol. 121, No. 12, (1995), 1806-1814, doi: 10.1061/(asce)0733-9445(1995)121:12(1806).
  9. Han, L.-H., Huang, H., Tao, Z. and Zhao, X.-L., "Concrete-filled double skin steel tubular (CFDST) beam–columns subjected to cyclic bending", Engineering Structures, Vol. 28, No. 12, (2006), 1698-1714, doi: 10.1016/j.engstruct.2006.03.004.
  10. Yagishita, F., Kitoh, H., Sugimoto, M., Tanihira, T. and Sonoda, K., "Double skin composite tubular columns subjected to cyclic horizontal force and constant axial force", in Proc., 6th ASCCS Int. Conf. on Steel-Concrete Composite Structures, Univ. of Southern California Los Angeles. (2000), 497-503.
  11. Li, W., Ren, Q.-X., Han, L.-H. and Zhao, X.-L., "Behaviour of tapered concrete-filled double skin steel tubular (CFDST) stub columns", Thin-Walled Structures, Vol. 57, (2012), 37-48, doi: 10.1016/j.tws.2012.03.019.
  12. Nematzadeh, M., Hajirasouliha, I., Haghinejad, A. and Naghipour, M., "Compressive behaviour of circular steel tube-confined concrete stub columns with active and passive confinement", Steel Composite Structures, An International Journal, Vol. 24, No. 3, (2017), 323-337, doi: 10.1016/j.engstruct.2016.10.008.
  13. Nematzadeh, M., Naghipour, M., Jalali, J. and Salari, A., "Experimental study and calculation of confinement relationships for prestressed steel tube-confined compressed concrete stub columns", Journal of Civil Engineering Management, Vol. 23, No. 6, (2017), 699-711, doi: 10.3846/13923730.2017.1281837.
  14. Nematzadeh, M., Fazli, S., Naghipour, M. and Jalali, J., "Experimental study on modulus of elasticity of steel tube-confined concrete stub columns with active and passive confinement", Engineering Structures, Vol. 130, (2017), 142-153, doi: 10.1016/j.engstruct.2016.10.008.
  15. Testing, A.S.f., Materials. Committee A-01 on Steel, S.S. and Alloys, R., "Standard test methods and definitions for mechanical testing of steel products, ASTM International, (2017).
  16. Concrete, A.I.C.C.o. and Aggregates, C., "Standard test method for compressive strength of cylindrical concrete specimens, ASTM international, (2014).
  17. Committee, A., "Building code requirements for structural concrete:(aci 318-02) and commentary (aci 318r-02), American Concrete Institute. (2002).
  18. Uenaka, K., Kitoh, H. and Sonoda, K., "Concrete filled double skin circular stub columns under compression", Thin-Walled Structures, Vol. 48, No. 1, (2010), 19-24, doi: 10.1016/j.tws.2009.08.001.
  19. AIJ, Standard for structural calculation of steel reinforced concrete structures. 2001.
  20. Hassanein, M., Kharoob, O. and Liang, Q., "Circular concrete-filled double skin tubular short columns with external stainless steel tubes under axial compression", Thin-Walled Structures, Vol. 73, (2013), 252-263, doi: 10.1016/j.tws.2013.08.017.
  21. Liang, Q.Q. and Fragomeni, S., "Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading", Journal of Constructional Steel Research, Vol. 65, No. 12, (2009), 2186-2196, doi: 10.1016/j.jcsr.2009.06.015.
  22. Liang, Q.Q., "Performance-based analysis of concrete-filled steel tubular beam–columns, part i: Theory and algorithms", Journal of Constructional Steel Research, Vol. 65, No. 2, (2009), 363-372, doi: 10.1016/j.jcsr.2008.03.007.