Thermodynamic Modeling the Solubility of CO2 in Aqua System of Methyldiethanolamine and 2-(2-Aminoethylamino)ethanol Using the Nonelectrolyte Wilson Nonrandom Factor

Document Type : Original Article

Authors

1 Chemical Engineering Department, Arak Branch, Islamic Azad University, Arak, Iran

2 Department of Basic Sciences, Shahid Sattari Aeronautical University of Science and Technology, Tehran, Iran

3 Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

Alkanolamines are used to remove acidic gases such as CO2 and H2S from natural gas. In this study, thermodynamic modeling of the binary component CO2+MDEA, three component MDEA+H2O+CO2 and the quaternary MDEA+AEEA+H2O+CO2 systems were developed using an additional Gibbs argillic model for the first time in the modeling of CO2 solubility in different solutions. The appropriate model was considered using the assumption of an entirely molecular system without any occurrence of chemical reactions and saturated gas phase from the CO2 gas. The nonelectrolyte Wilson nonrandom factor (N-Wilson-NRF) model and the activity coefficient method (γ_φ Aproach) were used to calculate solubility of CO2. The two-component water- CO2 model was modeled and the results were obtained by the accuracy of 1.38 of experimental results. In a three-component, water-CO2-MDEA system with the amount of 6.913, the optimization was developed. The quaternary water-CO2-MDEA-AEEA system was optimized with an overall approximation of 19.537 for all experiment data.

Keywords


1.     Barzagli, F., Mani, F. and Peruzzini, M., "A comparative study of the CO2 absorption in some solvent-free alkanolamines and in aqueous monoethanolamine (MEA)", Environmental Science & Technology,  Vol. 50, No. 13, (2016), 7239-7246. DOI: 10.1021/acs.est.6b00150
2.     Akhmetshina, A.I., Petukhov, A.N., Vorotyntsev, A.V., Nyuchev, A.V. and Vorotyntsev, I.V., "Absorption behavior of acid gases in protic ionic liquid/alkanolamine binary mixtures", ACS Sustainable Chemistry & Engineering,  Vol. 5, No. 4, (2017), 3429-3437. DOI: 10.1021/acssuschemeng.7b00092
3.     Akbartabar, I., Yazdanshenas, M.E., Tayebi, H.-A. and Nasirizadeh, N., "Physical chemistry studies of acid dye removal from aqueous media by mesoporous nano composite: Adsorption isotherm, kinetic and thermodynamic studies", Physical Chemistry Research,  Vol. 5, No. 4, (2017), 659-679. DOI: 10.22036/PCR.2017.83378.1371
4.     Patel, H.A., Karadas, F., Canlier, A., Park, J., Deniz, E., Jung, Y., Atilhan, M. and Yavuz, C.T., "High capacity carbon dioxide adsorption by inexpensive covalent organic polymers", Journal of Materials Chemistry,  Vol. 22, No. 17, (2012), 8431-8437. https://doi.org/10.1039/C2JM30761H
5.     He, X., Fu, C. and Hägg, M.-B., "Membrane system design and process feasibility analysis for CO2 capture from flue gas with a fixed-site-carrier membrane", Chemical Engineering Journal,  Vol. 268, (2015), 1-9. DOI: 10.1016/j.ijggc.2013.03.026
6.     Yan, H., Fu, Q., Zhou, Y., Li, D. and Zhang, D., " CO2 capture from dry flue gas by pressure vacuum swing adsorption: A systematic simulation and optimization", International Journal of Greenhouse Gas Control,  Vol. 51, (2016), 1-10. https://doi.org/10.1016/j.ijggc.2016.04.005
7.     Shi, W., Siefert, N.S. and Morreale, B.D., "Molecular simulations of CO2, H2, H2O, and H2S gas absorption into hydrophobic poly (dimethylsiloxane)(PDMS) solvent: Solubility and surface tension", The Journal of Physical Chemistry C,  Vol. 119, No. 33, (2015), 19253-19265. DOI: 10.1021/acs.jpcc.5b05806
8.     Sadegh, N., Stenby, E.H. and Thomsen, K., "Thermodynamic modeling of hydrogen sulfide absorption by aqueous n-methyldiethanolamine using the extended uniquac model", Fluid Phase Equilibria,  Vol. 392, (2015), 24-32. https://doi.org/10.1016/j.fluid.2015.01.024
9.     Barati-Harooni, A., Najafi-Marghmaleki, A. and Mohammadi, A.H., "Efficient estimation of acid gases (CO2 and H2S) absorption in ionic liquids", International Journal of Greenhouse Gas Control,  Vol. 63, (2017), 338-349. https://doi.org/10.1016/j.ijggc.2017.05.014
10.   Koronaki, I., Prentza, L. and Papaefthimiou, V., "Modeling of CO2 capture via chemical absorption processes−an extensive literature review", Renewable and Sustainable Energy Reviews,  Vol. 50, (2015), 547-566. https://doi.org/10.1016/j.rser.2015.04.124
11.   Suleman, H., Nasir, Q., Maulud, A.S. and Man, Z., "Comparative study of electrolyte thermodynamic models for carbon dioxide solubility in water at high pressure", Chemical Engineering Transactions,  Vol. 45, (2015). DOI: 10.3303/CET1545099
12.   Shekaari, H., Zafarani-Moattar, M.T., Mokhtarpour, M. and Faraji, S., "Effect of 1-ethyl-3-methylimidazolium ethyl sulfate ionic liquid on the solubility of indomethacin in aqueous solutions at various temperatures", Journal of Molecular Liquids,  Vol. 260, (2018), 166-172. https://doi.org/10.1016/j.molliq.2018.03.061
13.   Castañeda, C.A., Wolfson, N.A., Leng, K.R., Kuo, Y.-M., Andrews, A.J. and Fierke, C.A., "Hdac8 substrate selectivity is determined by long-and short-range interactions leading to enhanced reactivity for full-length histone substrates compared with peptides", Journal of Biological Chemistry,  Vol. 292, No. 52, (2017), 21568-21577.
14.   Barzagli, F., Mani, F. and Peruzzini, M., "Efficient CO2 absorption and low temperature desorption with non-aqueous solvents based on 2-amino-2-methyl-1-propanol (AMP)", International Journal of Greenhouse Gas Control,  Vol. 16, (2013), 217-223. https://doi.org/10.1016/j.ijggc.2013.03.026
15.   Zoghi, A.T. and Feyzi, F., "Equilibrium solubility of carbon dioxide in aqueous 2-((2-aminoethyl) amino) ethanol and n-methyldiethanolamine solution and modeling by electrolyte mpr-cpa eos", The Journal of Chemical Thermodynamics,  Vol. 67, (2013), 153-162.
16.   Haghtalab, A. and Shojaeian, A., "High pressure measurement and thermodynamic modelling of the solubility of carbon dioxide in n-methyldiethanolamine and 1-butyl-3-methylimidazolium acetate mixture", The Journal of Chemical Thermodynamics,  Vol. 81, (2015), 237-244. https://doi.org/10.1016/j.jct.2014.10.011
17.   Smith, J., Van Ness, H. and Abbott, M., "Chemical engineering thermodynamics", Sat,  Vol. 18, (1996), 1-3.
18.   He, P. and Chu, J., "Low pressure vapor-liquid equilibrium validation with special pseudo-components", in Control Conference (CCC), 2017 36th Chinese, IEEE. 10381-10386.
19.   Løvseth, S.W., Austegard, A., Westman, S.F., Stang, H.G.J., Herrig, S., Neumann, T. and Span, R., "Thermodynamics of the carbon dioxide plus argon (CO2+ ar) system: An improved reference mixture model and measurements of vapor-liquid, vapor-solid, liquid-solid and vapor-liquid-solid phase equilibrium data at the temperatures 213–299 k and pressures up to 16 mpa", Fluid Phase Equilibria,  Vol. 466, (2018), 48-78. https://doi.org/10.1016/j.fluid.2018.02.009
20.   Chen, M., Xie, Y., Wu, H., Shi, S. and Yu, J., "Modeling solubility of nitrogen in clean fire extinguishing agent by peng-robinson equation of state and a correlation of henry’s law constants", Applied Thermal Engineering,  Vol. 110, (2017), 457-468. https://doi.org/10.1016/j.applthermaleng.2016.08.179
21.   Ashassi-Sorkhabi, H. and Kazempour, A., "Application of pitzer and six local composition models to correlate the mean ionic activity coefficients of aqueous 1-butyl-3-methylimidazolium bromide ionic liquid solutions obtained by emf measurements", The Journal of Chemical Thermodynamics,  Vol. 110, (2017), 71-78. https://doi.org/10.1016/j.jct.2017.02.015
22.   Mester, Z. and Panagiotopoulos, A.Z., "Mean ionic activity coefficients in aqueous nacl solutions from molecular dynamics simulations", The Journal of Chemical Physics,  Vol. 142, No. 4, (2015), 044507.
23.   Renon, H. and Prausnitz, J.M., "Local compositions in thermodynamic excess functions for liquid mixtures", AIChE Journal,  Vol. 14, No. 1, (1968), 135-144. https://doi.org/10.1002/aic.690140124
24.   Haghtalab, A. and Mazloumi, S.H., "Electrolyte cubic square-well equation of state for computation of the solubility CO2 and H2S in aqueous mdea solutions", Industrial & Engineering Chemistry Research,  Vol. 49, No. 13, (2010), 6221-6230.
25.   Bonenfant, D., Mimeault, M. and Hausler, R., "Determination of the structural features of distinct amines important for the absorption of CO2 and regeneration in aqueous solution", Industrial & Engineering Chemistry Research,  Vol. 42, No. 14, (2003), 3179-3184.
26.   Ma'mun, S., Jakobsen, J.P., Svendsen, H.F. and Juliussen, O., "Experimental and modeling study of the solubility of carbon dioxide in aqueous 30 mass% 2-(2-aminoethylamino)ethanol solution", Industrial & Engineering Chemistry Research,  Vol. 45, No. 8, (2006), 2505-2512.
27.   Zoghi, A.T., Feyzi, F. and Dehghani, M.R., "Modeling CO2solubility in aqueous n-methyldiethanolamine solution by electrolyte modified peng–robinson plus association equation of state", Industrial & Engineering Chemistry Research,  Vol. 51, No. 29, (2012), 9875-9885. doi: 10.1021/ie2026053
28.          Dumée, L., Scholes, C., Stevens, G. and Kentish, S., "Purification of aqueous amine solvents used in post combustion CO2capture: A review", International Journal of Greenhouse Gas Control,  Vol. 10, (2012), 443-455. https://doi.org/10.1016/j.ijggc.2012.07.005