Mass concentration in rescaled first order integral functionals
[Concentration de masse dans des fonctionnelles intégrales d’ordre 1 rééchelonnées]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 431-472.

Nous considérons des problèmes de minimisation locaux d’ordre 1 de la forme min N f(u,u) sous contrainte de masse N u=m. Nous prouvons que la fonction d’énergie minimale H(m) est toujours concave, et que des rééchelonnements appropriés de l’énergie, dépendant d’un petit paramètre ε, Γ-convergent vers la H-masse, définie pour les mesures atomiques i m i δ x i par i H(m i ). Nous considérons également des lagrangiens dépendant de ε, et des lagrangiens et H-masses spatialement inhomogènes. Notre résultat est valable sous de faibles hypothèses sur f, et couvre les α-masses en toute dimension N2 pour des exposants α au-dessus d’un seuil critique, et toutes les H-masses concaves en dimension N=1. Notre résultat donne en particulier la concentration des fluides de Cahn-Hilliard en gouttelettes, et est lié à l’approximation du transport branché par des énergies elliptiques.

We consider first order local minimization problems of the form min N f(u,u) under a mass constraint N u=m. We prove that the minimal energy function H(m) is always concave, and that relevant rescalings of the energy, depending on a small parameter ε, Γ-converge towards the H-mass, defined for atomic measures i m i δ x i as i H(m i ). We also consider Lagrangians depending on ε, as well as space-inhomogeneous Lagrangians and H-masses. Our result holds under mild assumptions on f, and covers in particular α-masses in any dimension N2 for exponents α above a critical threshold, and all concave H-masses in dimension N=1. Our result yields in particular the concentration of Cahn-Hilliard fluids into droplets, and is related to the approximation of branched transport by elliptic energies.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.257
Classification : 28A33, 49J45, 46E35, 49Q20, 76T99, 49Q22, 49J10
Keywords: $\Gamma $-convergence, semicontinuity, integral functionals, convergence of measures, concentration-compactness, Cahn-Hilliard fluids, branched transport
Mot clés : $\Gamma $-convergence, semi-continuité, fonctionnelles intégrales, convergence des mesures, concentration-compacité, fluides de Cahn-Hilliard, transport branché
Antonin Monteil 1 ; Paul Pegon 2

1 Université Paris-Est Créteil Val-de-Marne, LAMA, 61 avenue du Général de Gaulle, 94010 Créteil, France
2 Université Paris-Dauphine, CEREMADE & INRIA Paris, MOKAPLAN, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__431_0,
     author = {Antonin Monteil and Paul Pegon},
     title = {Mass concentration in rescaled~first~order~integral functionals},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {431--472},
     publisher = {\'Ecole polytechnique},
     volume = {11},
     year = {2024},
     doi = {10.5802/jep.257},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.257/}
}
TY  - JOUR
AU  - Antonin Monteil
AU  - Paul Pegon
TI  - Mass concentration in rescaled first order integral functionals
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 431
EP  - 472
VL  - 11
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.257/
DO  - 10.5802/jep.257
LA  - en
ID  - JEP_2024__11__431_0
ER  - 
%0 Journal Article
%A Antonin Monteil
%A Paul Pegon
%T Mass concentration in rescaled first order integral functionals
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 431-472
%V 11
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.257/
%R 10.5802/jep.257
%G en
%F JEP_2024__11__431_0
Antonin Monteil; Paul Pegon. Mass concentration in rescaled first order integral functionals. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 431-472. doi : 10.5802/jep.257. https://jep.centre-mersenne.org/articles/10.5802/jep.257/

[AFP00] L. Ambrosio, N. Fusco & D. Pallara - Functions of bounded variation and free discontinuity problems, Oxford Math. Monographs, Oxford University Press, Oxford, New York, 2000 | DOI

[AG99] P. Aviles & Y. Giga - “On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg–Landau type energy for gradient fields”, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) no. 1, p. 1-17 | DOI | MR | Zbl

[BB90] G. Bouchitté & G. Buttazzo - “New lower semicontinuity results for nonconvex functionals defined on measures”, Nonlinear Anal. 15 (1990) no. 7, p. 679-692 | DOI | MR | Zbl

[BB93] G. Bouchitté & G. Buttazzo - “Relaxation for a class of nonconvex functionals defined on measures”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 10 (1993) no. 3, p. 345-361 | DOI | Numdam | MR | Zbl

[BBH17] F. Bethuel, H. Brezis & F. Hélein - Ginzburg-Landau vortices, Modern Birkhäuser Classics, Springer International Publishing, Cham, 2017 | DOI

[BCM09] M. Bernot, V. Caselles & J.-M. Morel - Optimal transportation networks: Models and theory, Lect. Notes in Math., Springer-Verlag, Berlin Heidelberg, 2009 | DOI

[BDS96] G. Bouchitté, C. Dubs & P. Seppecher - “Transitions de phases avec un potentiel dégénéré à l’infini, application à l’équilibre de petites gouttes”, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) no. 9, p. 1103-1108 | Zbl

[BPP12] P. Bauman, J. Park & D. Phillips - “Analysis of nematic liquid crystals with disclination lines”, Arch. Rational Mech. Anal. 205 (2012) no. 3, p. 795-826 | DOI | MR | Zbl

[Bra02] A. Braides - Gamma-convergence for beginners, Oxford Lect. Series in Math. and its Appl., Oxford University Press, Oxford, 2002 | DOI

[But89] G. Buttazzo - Semicontinuity, relaxation and integral representation in the calculus of variations, Longman Scientific & Technical; New York: John Wiley & Sons, Harlow, 1989

[BZ88] J. E. Brothers & W. P. Ziemer - “Minimal rearrangements of Sobolev functions”, J. reine angew. Math. 384 (1988), p. 153-179 | MR | Zbl

[CDRMS17] M. Colombo, A. De Rosa, A. Marchese & S. Stuvard - “On the lower semicontinuous envelope of functionals defined on polyhedral chains”, Nonlinear Anal. 163 (2017), p. 201-215 | DOI | MR | Zbl

[DPH03] T. De Pauw & R. Hardt - “Size minimization and approximating problems”, Calc. Var. Partial Differential Equations 17 (2003) no. 4, p. 405-442 | DOI | MR | Zbl

[Dub98] C. Dubs - Problèmes de perturbations singulières avec un potentiel dégénéré a l’infini, Thèse de Doctorat, Toulon, 1998

[Fed59] H. Federer - “Curvature measures”, Trans. Amer. Math. Soc. 93 (1959) no. 3, p. 418-491 | DOI | MR | Zbl

[Fle66] W. H. Fleming - “Flat chains over a finite coefficient group”, Trans. Amer. Math. Soc. 121 (1966) no. 1, p. 160-186 | DOI | MR | Zbl

[Mar14] M. Mariş - “Profile decomposition for sequences of Borel measures”, 2014 | arXiv

[MM77] L. Modica & S. Mortola - “Un esempio di Γ - -convergenza”, Boll. Un. Mat. Ital. B (5) 14 (1977), p. 285–299 | MR | Zbl

[Mon15] A. Monteil - Elliptic approximations of singular energies under divergence constraint, Ph. D. Thesis, Université Paris-Saclay, 2015

[Mon17] A. Monteil - “Uniform estimates for a Modica–Mortola type approximation of branched transportation”, ESAIM Control Optim. Calc. Var. 23 (2017) no. 1, p. 309-335 | DOI | Numdam | MR | Zbl

[Nir59] L. Nirenberg - “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1959) no. 2, p. 115-162 | Numdam | MR | Zbl

[OS11] E. Oudet & F. Santambrogio - “A Modica-Mortola approximation for branched transport and applications”, Arch. Rational Mech. Anal. 201 (2011) no. 1, p. 115-142 | DOI | MR | Zbl

[PSZ99] P. Pucci, J. Serrin & H. Zou - “A strong maximum principle and a compact support principle for singular elliptic inequalities”, J. Math. Pures Appl. (9) 78 (1999) no. 8, p. 769-789 | DOI | MR | Zbl

[RV73] A. Roberts & D. Varberg - Convex functions, Pure and Applied Math., vol. 57, Academic Press, 1973

[San15] F. Santambrogio - Optimal transport for applied mathematicians, Progress in nonlinear differential equations and their applications, vol. 87, Springer International Publishing, Cham, 2015 | DOI

[ST00] J. Serrin & M. Tang - “Uniqueness of ground states for quasilinear elliptic equations”, Indiana Univ. Math. J. 49 (2000) no. 3, p. 897-923 | MR | Zbl

[Wir19] B. Wirth - “Phase field models for two-dimensional branched transportation problems”, Calc. Var. Partial Differential Equations 58 (2019) no. 5, article ID 164, 31 pages | DOI | MR | Zbl

Cité par Sources :