Comptes Rendus
An approximate analytical model for the frequency response of evaporating droplets under a mixed feeding regime
[Un modèle analytique approximatif pour la réponse en fréquence des gouttelettes d’évaporation sous un régime d’alimentation mixte]
Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 77-95.

Ce travail est l’une des approches analytiques pour évaluer la réponse en fréquence d’évaporation des gouttelettes injectées, en utilisant l’analogie de Heidmann i.e. d’une seule gouttelette alimentée en continu avec le même carburant liquide. Sur la base d’une analyse linéaire utilisant le critère de Rayleigh, un facteur de réponse sans dimension est déterminé. Les effets dus à la variation du coefficient de transfert de chaleur du processus d’alimentation, ainsi que ceux dus aux temps caractéristiques d’évaporation et au retard de phase sont analysés. Une augmentation brutale du facteur de réponse se produit, lorsqu’un coefficient thermodynamique du carburant injecté prend certaines valeurs spécifiques.

This work is one of the analytical approaches to evaluate the evaporation frequency response of injected droplets, using the Heidmann analogy of a single droplet that is continuously fed with the same liquid fuel. Based on a linear analysis using the Rayleigh criterion, a dimensionless response factor is determined. The effects due to the variation of the heat transfer coefficient of the feeding process, as well as those due to the characteristic evaporation times and phase delay are analyzed. An abrupt increase of the response factor occurs, when a thermodynamic coefficient of the injected fuel takes certain specific values.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crmeca.146
Keywords: Combustion instability, Injection regime, Evaporation, Double confluent Heun equation, Transfer function
Mot clés : instabilité de combustion, régime d’injection, évaporation, équation de Heun à double confluence, fonction de transfert
Kwassi Anani 1 ; Roger Prud’homme 2 ; Mahouton N. Hounkonnou 3

1 Laboratory of Mathematical Modelling and Applications, Department of Mathematics, University of Lomé, 02 BP 1515 Lomé, Togo
2 Jean Le Rond d’Alembert Institute, UMR 7190 CNRS, Sorbonne University, 4 place Jussieu, 75252 Paris Cedex 05
3 University of Abomey-Calavi, International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair) 072 B.P. 050 Cotonou, Republic of Benin
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_S2_77_0,
     author = {Kwassi Anani and Roger Prud{\textquoteright}homme and Mahouton N.  Hounkonnou},
     title = {An approximate analytical model for the frequency response of evaporating droplets under a mixed feeding regime},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {77--95},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S2},
     year = {2023},
     doi = {10.5802/crmeca.146},
     language = {en},
}
TY  - JOUR
AU  - Kwassi Anani
AU  - Roger Prud’homme
AU  - Mahouton N.  Hounkonnou
TI  - An approximate analytical model for the frequency response of evaporating droplets under a mixed feeding regime
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 77
EP  - 95
VL  - 351
IS  - S2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.146
LA  - en
ID  - CRMECA_2023__351_S2_77_0
ER  - 
%0 Journal Article
%A Kwassi Anani
%A Roger Prud’homme
%A Mahouton N.  Hounkonnou
%T An approximate analytical model for the frequency response of evaporating droplets under a mixed feeding regime
%J Comptes Rendus. Mécanique
%D 2023
%P 77-95
%V 351
%N S2
%I Académie des sciences, Paris
%R 10.5802/crmeca.146
%G en
%F CRMECA_2023__351_S2_77_0
Kwassi Anani; Roger Prud’homme; Mahouton N.  Hounkonnou. An approximate analytical model for the frequency response of evaporating droplets under a mixed feeding regime. Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 77-95. doi : 10.5802/crmeca.146. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.146/

[1] Vineeth Nair; R. I. Sujith Multifractality in combustion noise: Predicting an impending instability, J. Fluid Mech., Volume 747 (2014), pp. 635-655 | DOI

[2] Tejas Pant; Chao Han; Haifeng Wang Computational investigations of the coupling between transient flame dynamics and thermo-acoustic instability in a self-excited resonance combustor, Combust. Theory Model., Volume 23 (2019) no. 5, pp. 854-884 | DOI | Zbl

[3] S. Candel; D. Durox; T. Schuller; N. Darabiha; L. Hakim; T. Schmitt Advances in combustion and propulsion applications, Eur. J. Mech. B Fluids, Volume 40 (2013), pp. 87-106 | DOI | Zbl

[4] George C. Hsiao; Hua Meng; Vigor Yang Pressure-coupled vaporization response of n-pentane fuel droplet at subcritical and supercritical conditions, Proc. Combust. Inst., Volume 33 (2011), pp. 1997-2003 | DOI

[5] S. Lei; A. Turan Chaotic modeling and control of combustion instability due to vaporization, Int. J. Heat Mass Transfer, Volume 53 (2010), pp. 4482-4494 | DOI | Zbl

[6] W. A. Sirignano; J.-P. Delplanque; C. H. Chiang; R. Bhatia Liquid-propellant droplet vaporization: A rate controlling process for combustion instability, Liquid Rocket Engine Combustion Instability (V. Yang; W. E. Anderson, eds.) (Progress in Astronautics and Aeronautics), Volume 169, AIAA Publishers, Reston, 1994, pp. 307-343

[7] Luca Magri; Matthew P. Juniper; Jonas P. Moeck Sensitivity of the Rayleigh criterion in thermoacoustics, J. Fluid Mech., Volume 882 (2020), R1 | DOI | Zbl

[8] A. Duvvur; C. H. Chiang; W. A. Sirignano Oscillatory fuel droplet vaporization: Driving mechanism for combustion instability, J. Propul. Power, Volume 12 (1996), pp. 358-365 | DOI

[9] L. Yuan; C. Shen; Z. Xinqiao Dynamic response of vaporizing droplet to pressure oscillation, Heat Mass Transf., Volume 52 (2017), pp. 711-723 | DOI

[10] A. Y. Tong; W. A. Sirignano Oscillatory vaporization of fuel droplets in an unstable combustor, J. Propul. Power, Volume 5 (1989), pp. 257-261 | DOI

[11] M. de la Cruz García; E. Mastorakos; A. P. Dowling Investigations on the self-excited oscillations in a kerosene spray flame, Combust. Flame, Volume 156 (2009), pp. 175-186 | DOI

[12] Charles T. Haddad; Joseph Majdalani Transverse waves in simulated liquid rocket engines, AIAA J., Volume 51 (2012), pp. 591-605 | DOI

[13] Jerrold B. Greenberg; David Katoshevski Polydisperse spray diffusion flames in oscillating flow, Combust. Theory Model., Volume 20 (2016), pp. 349-372 | DOI | Zbl

[14] M. F. Heidmann; P. R. Wieber Analysis of frequency response characteristics of propellant vaporization (1966), pp. 1-23 (https://ntrs.nasa.gov/api/citations/19670003840/downloads/19670003840.pdf) (NASA Technical Note)

[15] Roger Prud’homme; M. Habiballah; L. Matuszewski; Y. Mauriot; A. Nicole Theoretical analysis of dynamic response of a vaporizing droplet to an acoustic oscillation, J. Propul. Power, Volume 26 (2010), pp. 74-83 | DOI

[16] Kwassi Anani; Roger Prud’homme Theoretical analysis of thermal conduction effect on frequency response of a perturbed vaporizing spherical droplet, Flow Turbul. Combust., Volume 98 (2017), pp. 503-522 | DOI

[17] Kwassi Anani; Roger Prud’homme; Mahouton N. Hounkonnou Dynamic response of a vaporizing spray to pressure oscillations: Approximate analytical solutions, Combust. Flame, Volume 193 (2018), pp. 295-305 | DOI

[18] S. Y. Slavyanov; W. Lay The Heun class of equations, Special Functions: A Unified Theory Based on Singularities (Oxford Mathematical Monographs), Oxford University Press, New York, 2000, pp. 97-160

[19] Jong Guen Lee; Domenic A. Santavicca Experimental diagnostics of combustion instabilities, Combustion instabilities in gas turbine engines: Operational Experience, Fundamental Mechanisms, and Modeling (T. C. Lieuwen; V. Yang, eds.) (Progress in astronautics and aeronautics), Volume 481, AIAA Publishers, Reston, 2005, pp. 481-529

[20] Crissthian I. Sevilla-Esparza; Jeffrey L. Wegener; Sophonias Teshome; Juan I. Rodriguez; Owen I. Smith; Ann R. Karagozian Droplet combustion in the presence of acoustic excitation, Combust. Flame, Volume 161 (2014), pp. 1604-1619 | DOI

[21] Fredrik Laurén; Jan Nordström Practical inlet boundary conditions for internal flow calculations, Comput. Fluids, Volume 175 (2018), pp. 159-166 | DOI | Zbl

[22] S. Bari; T. H. Lim; C. W. Yu Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine, Renewable Energy, Volume 27 (2002), pp. 339-351 | DOI

[23] Sirshendu Mondal; Achintya Mukhopadhyay; Swarnendu Sen Effects of inlet conditions on dynamics of a thermal pulse combustor, Combust. Theory Model., Volume 16 (2012), pp. 59-74 | DOI | Zbl

[24] R. S. Miller; K. Harstad; J. Bellan Evaluation of equilibrium and non-equilibrium evaporation models for many droplet gas-liquid flow simulations, Int. J. Multiphase Flow, Volume 24 (1998), pp. 1025-1055 | DOI | Zbl

[25] B. Abramzon; W. A. Sirignano Droplet vaporization model for spray combustion calculations, Int. J. Heat Mass Transfer, Volume 32 (1989) no. 9, pp. 1605-1618 | DOI

[26] Kwassi Anani; Roger Prud’homme; Mahouton N. Hounkonnou Drop vaporization frequency response: an approximate analytical solution for mixed injection regimes, Thermodynamics of Interfaces and Fluid Mechanics (TIFM), Volume 5 (2021), pp. 1-11 | DOI

[27] Roger Prud’homme; Kwassi Anani Vaporization of an equivalent pastille, Fluid Mechanics at Interfaces 2: Case Studies and Instabilities (Roger Prud’homme; Stéphane Vincent, eds.), ISTE/Wiley Publishers, London, 2022, pp. 77-93 | DOI

[28] R. Gonçalves Dos Santos; M. Lecanu; S. Ducruix; O. Gicquel; E. Iacona; D. Veynante Coupled large eddy simulations of turbulent combustion and radiative heat transfer, Combust. Flame, Volume 152 (2008), pp. 387-400 | DOI

[29] Yanying Xu; Ming Zhai; Peng Dong; Fei Wang; Qunyi Zhu Modeling of a self-excited pulse combustor and stability analysis, Combust. Theory Model., Volume 15 (2011), pp. 623-643 | DOI | Zbl

[30] Ashwin Kannan; Balaji Chellappan; Satyanarayanan Chakravarthy Flame-acoustic coupling of combustion instability in a non-premixed backward-facing step combustor: The role of acoustic-Reynolds stress, Combust. Theory Model., Volume 20 (2016), pp. 658-682 | DOI | Zbl

[31] Jie Ren; Olaf Marxen; Rene Pecnik Boundary-layer stability of supercritical fluids in the vicinity of the Widom line, J. Fluid Mech., Volume 871 (2019), pp. 831-864 | DOI | Zbl

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Combustion in microgravity: The French contribution

Roger Prud'homme; Guillaume Legros; José L. Torero

C. R. Méca (2017)


Pertinence de la comparaison à la loi en d2 en « évaporation » supercritique

Stéphane Préau; Roger Prud'homme; Jalil Ouazzani; ...

C. R. Méca (2004)


Analyse numérique d'une méthode multi-fluide Eulérienne pour la description de sprays qui s'évaporent

Frédérique Laurent

C. R. Math (2002)