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1. INTRODUCTION

1. Introduction

Modern biomedical studies often collect multiple types of data or multi-modality data

on a large number of subjects. It is desirable to integrate such data because different

modalities play unique roles in complex biological systems. For example, in the study

of Alzheimer’s disease, the integration of data on magnetic resonance imaging, positron

emission tomography, and cerebrospinal fluid can yield more accurate disease classification

(Zhang, Shen and The Alzheimer’s Disease Neuroimaging Initiative, 2012). In cancer

research, different types of genomics data, such as DNA alterations, RNA expressions,

and protein expressions, can be integrated to identify disease subtypes and predict patient

survival (Shen, Olshen and Ladanyi, 2009; Wang et al., 2012; Hoadley et al., 2014; Wong

et al., 2019).

Due to cost or other constraints, certain features are not measured on all study sub-

jects. For example, in The Cancer Genome Atlas (TCGA) (https://cancergenome.nih.gov/),

data on multiple types of genomic features, including DNA alterations, methylation pro-

files, and the expressions of RNA and protein, were collected for over 10,000 patients

with 33 cancer types. For a substantial number of the patients, however, data on pro-

tein expressions were not generated. As another example, in the Trans-Omics for Preci-

sion Medicine (TOPMed) program (https://www.nhlbi.nih.gov/research/resources/nhlbi-

precision-medicine-initiative/topmed), whole-genome sequencing data will be available for

hundreds of thousands of subjects, but other types of genomics data, such as RNA ex-

pressions, methylation profiles, and metabolites, will be available for only a few thousand

subjects through ancillary studies of specific diseases.
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1. INTRODUCTION

It is highly desirable to identify a small subset of features that are associated with

the outcome of interest and to estimate the effects of these features. To perform variable

selection and estimation with missing data, one may first produce a complete data set

and then apply conventional penalized regression methods (Tibshirani, 1996; Fan and

Li, 2001; Zou, 2006) to the complete data set. Complete data may be obtained through

deletion of entries with missing data, mean imputation, and nearest-neighbor imputation

(Troyanskaya et al., 2001). Recently, Cai, Cai and Zhang (2016) proposed an imputation

method specific to multi-modality data by assuming that the (complete) feature matrix

is approximately low-rank; the method is only applicable to a blockwise missing-data

pattern, where a data type is either entirely missing or entirely observed on a subject.

In general, the two-step approach to variable selection with missing data is inefficient

due to discarding available data and ignoring the associations among the observed and

missing variables and yields inconsistent estimators when data are not missing completely

at random. To accommodate the missing-at-random mechanism, Ibrahim, Zhu and Tang

(2008), Garcia, Ibrahim and Zhu (2010), and Jiang, Nguyen and Rao (2015) proposed to

model the variables with missing values and perform variable selection using information-

criterion or penalization methods. However, those approaches are intractable when there

are many variables with missing values, as in our case.

Regression analysis on large, multi-modality data sets with missing values is highly

challenging for two reasons. First, because different types of features tend to be correlated,

efficient methods ought to leverage their relationships, but it is difficult to formulate

or estimate the intricate relationships among different types of many features. Second,

in the presence of missing data, a tractable objective function for estimation is often
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1. INTRODUCTION

unavailable; for instance, the likelihood function would generally involve integration over

many variables and not have a closed form.

To address the aforementioned challenges, we propose a penalized-likelihood approach

in which the likelihood involves both an outcome model and a latent factor model for the

potentially missing features. The factor model uses a small set of latent factors to explain

the associations among features across or within individual data types, effectively reducing

the dimensionality of the data. In multi-platform genomics studies, the latent factors can

be interpreted as unobserved biological processes that govern the activities of different

genomic features; this kind of model has been successfully used to combine multiple types

of genomics data in order to understand the interactions among different types of features,

recover personal genomics characteristics of cancer patients, and discover cancer subtypes

(Shen, Olshen and Ladanyi, 2009; Shen, Wang and Mo, 2013; Lock et al., 2013).

Because the observed-data likelihood involves integration over the features with miss-

ing values, direct maximization of the (penalized) likelihood is computationally intensive

or even infeasible when the number of features is moderately large. To efficiently com-

pute the penalized estimators, we develop an EM algorithm (Dempster, Laird and Rubin,

1977) which, by making use of the low-dimensional structure of the latent factor model,

involves only low-dimensional integration. The algorithm is applicable to general missing-

data patterns with a large number of features.

Because the likelihood involves the latent factor model, the total number of nonzero

parameters is larger than the number of features. As a result, estimation consistency

cannot be established under conventional high-dimensional settings, where the number of

features is larger than the sample size. In fact, it is highly challenging to establish the
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2. MODEL, LIKELIHOOD, AND PENALIZED ESTIMATION

estimation and selection consistency of our penalized estimators even when the number of

features is smaller than but diverges with the sample size. In existing work on large latent

factor models, estimation is based on principal components analysis (Bai, 2003; Fan, Liao

and Mincheva, 2013; Fan, Liu and Wang, 2018) or maximum likelihood (Bai and Li,

2012; Bai and Liao, 2016). In those cases, the theoretical developments rely heavily on

the specific closed-form expressions of the estimators or the likelihood. In our setting,

variables may be missing, and the latent factor model is only a part of the full likelihood

that generally does not have a closed-form expression. In addition, proofs for estimation

and selection consistency of penalized regression methods for complete data (Fan and

Peng, 2004; Fan and Lv, 2011) are not applicable, because an essential assumption about

the lower bound of the eigenvalues of the information matrix does not hold for the latent

factor model.

The rest of this article is structured as follows. In Section 2, we formulate the model

and define the maximum penalized-likelihood estimator. In Section 3, we describe the

numerical implementation of the proposed methods. In Section 4, we present asymptotic

properties of the penalized estimators. In Section 5, we report the results from simulation

studies. In Section 6, we provide an application to a TCGA multi-platform genomics

data set. We make concluding remarks in Section 7 and relegate theoretical details to the

Appendix.

2. Model, likelihood, and penalized estimation

Let Y be an outcome variable, X be a vector of covariates, and (S(1), . . . ,S(K)) be K

types of potentially missing covariates for some K ≥ 1. Let S = (S(1)T, . . . ,S(K)T)T.
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2. MODEL, LIKELIHOOD, AND PENALIZED ESTIMATION

Suppose that the dimension of X is fixed, whereas the dimension of S, denoted by pn,

may change with the sample size n. We specify the following models for Y and S:

Y | (X,S) ∼ f(·;αTX + βTS, ξ),

S(k) = Γ(k)X + Ψ(0,k)U (0) + Ψ(k)U (k) + ε(k) for k = 1, . . . , K,

where f is a parametric density function, α and β are vectors of regression parameters, ξ

is a vector of low-dimensional nuisance parameters, U (k) is a multivariate standard-normal

latent variables with dimension rk (rk ≥ 0) for k = 0, . . . , K, (Γ(k),Ψ(0,k),Ψ(k))k=1,...,K

are matrices of regression parameters, and (ε(1), . . . , ε(K)) are zero-mean normal variables

with independent components. The variables (U (0), . . . ,U (K), ε(1), . . . , ε(K)) are mutually

independent. The numbers of latent variables (r0, . . . , rK) are chosen to be much smaller

than the dimension of each type of features. To ensure model identifiability, we set

ψ
(0,1)
jl = 0 and ψ

(k)
jl = 0 for l > j and k = 1, . . . , K, where ψ

(0,1)
jl and ψ

(k)
jl are the (j, l)th

elements of Ψ(0,1) and Ψ(k), respectively. Also, we assume that ψ
(0,1)
jj > 0 for j = 1, . . . , r0

and ψ
(k)
jj > 0 for j = 1, . . . , rk and k = 1, . . . , K. These conditions are analogous to

condition (IC5) of Bai and Li (2012). They are satisfied if the first rk components of the

kth feature type depend on all corresponding type-specific latent variables U (k), the first

r0 components of the first feature type depend on all common latent variables U (0), and

the corresponding vectors of factor loadings are linearly independent; in this case, the

latent variables can be transformed to yield the desired structure for the factor loading

matrices. If these conditions are in doubt, we may refit the model with a different ordering

of features. The model of Y , hereafter referred to as the outcome model, includes many

common models, such as the linear and logistic regression models, as special cases. The
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2. MODEL, LIKELIHOOD, AND PENALIZED ESTIMATION

model of S is a latent factor model, which assumes that S (conditional on X) follows a

multivariate normal distribution, and the associations among the multi-modality features

are induced by a small set of unobserved latent factors U ≡ (U (0)T, . . . ,U (K)T)T.

The factor model captures the associations among features across different data types

as well as within individual data types. The set of latent variables U (0) is shared among all

data types and induces associations across all features. For k = 1, . . . , K, the set of latent

variables U (k) is shared only among components of S(k) and captures the associations

among features of this data type that are not explained by U (0). The factor model is

plausible for many applications in which features of individual or multiple types share

common sources of variability. For example, in multi-platform cancer genomics studies,

different types of genomic features are commonly affected by major biological processes,

such as growth suppressor evasion and cell death resistance (Hanahan and Weinberg,

2011); associations induced by such processes can be captured by U (0). By contrast,

some biological processes, such as miRNA regulation, may alter the expression of genes

with no effect on other types of features, such as mutations; associations induced by such

processes can be captured by the type-specific latent variables U (k) (k = 1, . . . , K).

We allow each component of S ≡ (S1, . . . , Spn)T to be missing and use Mj to indicate,

by the values 1 versus 0, whether Sj is observed or missing (j = 1, . . . , pn). We assume that

S is missing at random, such that M ≡ (M1, . . . ,Mpn)T is independent of S conditional

on (Y,X,S), where S = {Sj : P (Mj = 1) = 1}. This assumption holds when missing

data are introduced by design, where subjects with specific values of (Y,X,S) are selected

for measurements of components of S (not included in S). The assumption also holds

when missing data arise from random technical errors in the data-collection process that
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2. MODEL, LIKELIHOOD, AND PENALIZED ESTIMATION

are independent of the data.

For a random sample of size n, the observed data consist of (Yi,X i,M i,M i ◦ Si)

(i = 1, . . . , n), where ◦ denotes componentwise multiplication. Let r =
∑K

k=0 rk, Γ =

(Γ(1)T, . . . ,Γ(K)T)T, Ψ be a (pn × r) matrix with

Ψ =



Ψ(0,1) Ψ(1) 0 · · · 0

Ψ(0,2) 0 Ψ(2) · · · 0

...
...

. . .
...

Ψ(0,K) 0 · · · 0 Ψ(K)


, (2.1)

and Σ be a (pn × pn) diagonal matrix with the diagonal elements being the variances of

the components of (ε(1), . . . , ε(K)). Let θ ≡ (α,β, ξ,Γ,Ψ,Σ) denote the collection of all

parameters. The observed-data log-likelihood function concerning θ is

`n(θ) =
n∑
i=1

log

∫
f(Yi;α

TX i + βTSi, ξ)φ(Si; ΓX i,ΨΨT + Σ) dS
(M)
i , (2.2)

where S
(M)
i is the vector of the missing components of Si, and φ(·;µ,Ω) is the density of

the multivariate normal distribution with mean µ and covariance matrix Ω. We propose

to estimate θ using maximum penalized-likelihood estimation with an adaptive-lasso (Zou,

2006) penalty on β. Specifically, the penalized estimator θ̂ ≡ (α̂, β̂, ξ̂, Γ̂, Ψ̂, Σ̂) maximizes

p`n(θ) ≡ `n(θ)− nλn
pn∑
j=1

wj|βj|,

where λn is a tuning parameter, and wj ≡ |β̃j|−1 is a weight term derived from an initial

estimator β̃j (j = 1, . . . , pn).

In general, the likelihood involves the conditional distribution of Y given the observed

components of S (and X) and the distribution of the observed components of S. When
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2. MODEL, LIKELIHOOD, AND PENALIZED ESTIMATION

the data are complete, the conditional distribution of Y involves (α,β, ξ) only, and the

distribution of S involves (Γ,Ψ,Σ) only, such that the two sets of parameters can be

estimated separately. With missing data, however, the conditional distribution of Y given

the observed components of S involves (α,β, ξ) and functions of (Γ,Ψ,Σ) that capture

the relationship between the missing and observed components of S. Therefore, valid

estimation and variable selection for the outcome model ought to properly account for

the relationships among different components of S. Mean imputation completely ignores

these relationships, and single imputation based on the observed components of S alone

may be biased when the missing-data mechanism depends on (Y,X); both approaches

may yield inefficient or inconsistent estimation of the outcome model.

To obtain the initial estimators β̃j (j = 1, . . . , pn), one may maximize `n(·) with

an L1 or L2 penalty on β. However, this approach involves an extra step of tuning

parameter selection and is computationally intensive due to the presence of missing data.

An alternative approach is to fit a “marginal” regression model of Y against (X, Sj)

for each j and use the regression parameter estimator for Sj as the initial estimator β̃j

(j = 1, . . . , pn). In each model, we assume that Sj follows a linear regression model with

covariates X. Involving only a single incomplete independent variable, the model can be

easily estimated using the EM algorithm. We adopt the marginal approach because it is

computationally efficient and does not require tuning. We expect the marginal approach

to perform well when the marginal effects of S have a sparsity structure similar to that

of the conditional effects.
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3. COMPUTATION OF THE PENALIZED ESTIMATORS

3. Computation of the penalized estimators

It is convenient to introduce the notation: Mi = {j : Mij = 0}, andMC
i = {1, . . . , pn}\Mi.

Here and in the sequel, bij denotes the jth component of the vector bi. Let S
(O)
i = (Si)MC

i
,

β
(M)
i = βMi

, β
(O)
i = βMC

i
, ε

(M)
i = (εi)Mi

, Γ
(M)
i = ΓMi

, and Ψ
(M)
i = ΨMi

, where bA is

the vector that consists of all the components of b indexed by A, and BA is the matrix

that consists of all the rows of B indexed by A. By the definition of the factor model,

the likelihood function is proportional to

n∏
i=1

∫
f(Yi;α

TX i+β
TSi, ξ)

pn∏
j=1

σ−1
j exp

{
−

(Sij − γT
jX i −ψT

j U i)
2

2σ2
j

}
e−

1
2
UT
i U i d(U i,S

(M)
i ),

where γT
j and ψT

j are the jth rows of Γ and Ψ, respectively, and σ2
j is the jth diagonal

element of Σ. With Sij = γT
jX i +ψT

j U i + εij for Mij = 0, the above expression becomes

n∏
i=1

∫
f(Yi;α

TX i + β
(O)T
i S

(O)
i + β

(M)T
i Γ

(M)
i X i + β

(M)T
i Ψ

(M)
i U i + β

(M)T
i ε

(M)
i , ξ)

×
pn∏
j=1

σ−1
j exp

[
− 1

2σ2
j

{
Mij(Sij − γT

jX i −ψT
j U i)

2 + (1−Mij)ε
2
ij

}]
e−

1
2
UT
i U i d(U i, ε

(M)
i ).

(3.3)

To obtain the penalized estimators, we adopt an EM algorithm with (U i, ε
(M)
i ) (i =

1, . . . , n) as missing data; the algorithm iterates between the E-step and M-step described

below until convergence. In contrast to direct maximization of the log-likelihood function,

the EM algorithm avoids inversion of large matrices and involves numerical integration

of lower dimensions.

In the E-step, we calculate the conditional expectation of functions of (U i, ε
(M)
i ) that

are involved in the M-step. Because all functions of ε
(M)
i that are involved in the M-step

are linear or quadratic, we only need to calculate the conditional expectation of functions
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3. COMPUTATION OF THE PENALIZED ESTIMATORS

of U i and a one-dimensional linear transformation of ε
(M)
i . Let p

(M)
i be the dimension of

ε
(M)
i , ci =

{∑p
(M)
i
j=1 (β

(M)
ij σ

(M)
ij )2

}1/2

, and ε̃i = β
(M)T
i ε

(M)
i . Because ε̃i is zero-mean normal

with variance ci and is independent of U i and {εij : j ∈ MC
i }, the joint density function

of (Yi,Si,U i, ε̃i) is proportional to

f(Yi,Si,U i, ε̃i;X i) ≡ f(Yi;α
TX i + β

(O)T
i S

(O)
i + β

(M)T
i Γ

(M)
i X i + β

(M)T
i Ψ

(M)
i U i + ε̃i, ξ)

× exp
{
−
∑
j∈MC

i

1

2σ2
j

(Sj − γT
jX i −ψT

j U i)
2 − ε̃2i

2c2
i

− 1

2
UT
i U i

}
.

The conditional expectation of any function g of (U i, ε̃i) given the observed data is

C−1

∫
g(U i, ε̃i)f(Yi,Si,U i, ε̃i;X i) d(U i, ε̃i), (3.4)

where C equals the above integral evaluated at g(·, ·) = 1. In contrast to the (r + p
(M)
i )-

dimensional integration in (3.3), the integration in (3.4) is of dimension (r + 1) only. To

approximate (3.4), we extend the approach of Liu and Pierce (1994) to the multivariate

setting and write (3.4) as ∫
w(υ)e−

1
2

(υ−µυ)TH−1
υ (υ−µυ) dυ, (3.5)

where υ = (UT
i , ε̃i)

T, w(υ) = C−1g(U i, ε̃i)f(Yi,Si,U i, ε̃i;X i)e
1
2

(υ−µυ)TH−1
υ (υ−µυ), µυ is

the maximizer of f(Yi,Si,U i, ε̃i;X i) with respect to (U i, ε̃i), and Hυ is the Hessian ma-

trix of − log f(Yi,Si,U i, ε̃i;X i) with respect to (U i, ε̃i) evaluated at µυ. Then, we can

approximate (3.5) by the sparse-grid multivariate Gauss-Hermite quadrature (Heiss and

Winschel, 2008). Unlike a conventional multivariate quadrature, where the number of

nodes increases exponentially with the dimension of integration under a fixed level of

accuracy, the number of nodes under the sparse-grid quadrature increases only polyno-

mially with the dimension. All functions of ε
(M)
i that are involved in the M-step can be
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3. COMPUTATION OF THE PENALIZED ESTIMATORS

obtained from the first and second moments of ε̃i. The relationship between the moments

of (U i, ε
(M)
i ) and the moments of (U i, ε̃i) is given in Appendix A.1.

To perform the M-step, we obtain a local quadratic approximation to the log-likelihood

of the outcome model. For i = 1, . . . , n, let η̂i = αTX i + β
(O)T
i S

(O)
i + β

(M)T
i Γ

(M)
i X i +

β
(M)T
i Ψ

(M)
i Ê(U i) + Ê(ε̃i), where Ê(·) is the conditional expectation obtained from the

E-step, and the parameters are evaluated at the estimators obtained from the previous

M-step (or the initial estimators for the first iteration). By the Taylor series expansion of

log f(Yi; η, ξ) at η = η̂i, we can approximate log f(Yi; η, ξ) by −(zi−η)2/(2s2
i ) up to a con-

stant term, where s2
i = −∂2 log f(Yi; η, ξ)/∂η2|η=η̂i , and zi = η̂i+s

−2
i ∂ log f(Yi; η, ξ)/∂η|η=η̂i .

In the M-step, we first update the parameters in the latent factor model in a coordinate-

wise fashion by maximizing

−
n∑
i=1

Ê

{
Mij

2σ2
j

(
Sij − γT

jX i −ψT
j U i

)2

+
1−Mij

2s2
i

(
zi −αTX i − β(O)T

i S
(O)
i − β(M)T

i Γ
(M)
i X i − β(M)T

i Ψ
(M)
i U i − ε̃i

)2
}

with respect to (γj,ψj, σ
2
j ) in turn for j = 1, . . . , pn, where the remaining parameters

are fixed at the current estimators. Note that if Sj belongs to the kth data type (j =

1, . . . , pn; k = 1, . . . , K), then only the components of ψj that correspond to U (0) and U (k)

need to be updated; the remaining components are set to 0. Also, under the identifiability

conditions, the upper triangular elements of Ψ(0,1) and Ψ(1), . . . ,Ψ(K) are set to 0. Then,

we update α and β by maximizing

n∑
i=1

zi
s2
i

{αTX i + βTÊ(S̃i)} −
1

2s2
i

(αT,βT)

 X iX
T
i X iÊ(S̃

T

i )

Ê(S̃i)X
T
i Ê(S̃iS̃

T

i )


 α

β

− λn|w ◦ β|,
(3.6)
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4. ASYMPTOTIC PROPERTIES OF THE PENALIZED ESTIMATORS

where S̃i = M i ◦Si+(1−M i)◦(Γ̂X i+Ψ̂U i+εi), and (Γ̂, Ψ̂) are the current estimators

of (Γ,Ψ). The estimators of (α,β) can be efficiently computed using the coordinate-

descent algorithm (Friedman, Hastie and Tibshirani, 2010) for complete data. Finally,

we update the estimator of ξ by maximizing the conditional expected log-likelihood with

other parameters evaluated at the current estimators.

To obtain more stable estimators, we adopt the pathwise coordinate-descent ap-

proach of Friedman, Hastie and Tibshirani (2010): instead of directly computing the

penalized estimators at the selected value of λn, we perform the estimation for a se-

quence of decreasing values of λn up to the selected value. The sequence starts at

λmax, the smallest value of λn under which all estimators of β are zero. In particu-

lar, λmax = maxj w
−1
j |n−1

∑n
i=1 s

−2
i (zi −αTX i)Ê(S̃ij)|, where α and parameters in si, zi,

and Ê(·) are evaluated at the maximum likelihood estimators (MLE) under β = 0. For

the linear outcome model, the estimator of the error variance may vary greatly over dif-

ferent values of λn, and therefore the estimators of β that are obtained from maximizing

(3.6) may be unstable over different values of λn. To overcome this problem, we maximize

(3.6) with si set to 1 in each M-step and also set si = 1 in the calculation of λmax.

4. Asymptotic properties of the penalized estimators

We partition β as (βT
S ,β

T
N )T, such that βS is p1n-dimensional and has a nonzero true

value, and βN has a true value of 0. Write w = (w1, . . . , wpn)T, and partition w =

(wT
S ,w

T
N )T and S = (ST

S ,S
T
N )T to conform with the partitioning of β. Assume that

pn = O(nκ) for some positive κ < 1/5 and p1n = O(pn).

Let Z(η, ξ) = ∂ log f(Y ; η, ξ)/∂η, ˙̀ (C)

α (θ) = Z(αTX+βTS, ξ)X, ˙̀ (C)

βS
(θ) = Z(αTX+
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4. ASYMPTOTIC PROPERTIES OF THE PENALIZED ESTIMATORS

βTS, ξ)SS , ˙̀ (C)

βN
(θ) = Z(αTX + βTS, ξ)SN , ˙̀ (C)

ξ (θ) = ∂ log f(Y ;αTX + βTS, ξ)/∂ξ,

˙̀ (C)

Γ (θ) = Ω−1(S − ΓX)XT, ˙̀ (C)

Ψ (θ) = Ω−1{(S − ΓX)(S − ΓX)T − Ω}Ω−1Ψ, and

˙̀ (C)

Σ (θ) = diag
[
Ω−1{(S−ΓX)(S−ΓX)T−Ω}Ω−1

]
, where Ω = ΨΨT +Σ, and diag(D)

is the diagonal matrix that consists of the diagonal elements of D. Let

˙̀ (C)

θS
(θ) ≡ ( ˙̀ (C)

α (θ)T, ˙̀ (C)

βS
(θ)T, ˙̀ (C)

ξ (θ)T, vec{ ˙̀ (C)

Γ (θ)}T, vec{ ˙̀ (C)

Ψ (θ)}T, vecd{ ˙̀ (C)

Σ (θ)}T)T

be the vector of the score statistics for a subject with complete data, where vec(D)

denotes the vector obtained from stacking the columns of D, and vecd(D) denotes

the vector of the diagonal elements of D. Define V (α,β, ξ) = ∂2 log f(Y ;αTX +

βTS, ξ) /∂(αT,βT, ξT)T∂(αT,βT, ξT) and I(θ) = E
[
E{ ˙̀ (C)

βN
(θ) | O}E{ ˙̀ (C)

θS
(θ)T | O}

]
,

where O denotes the observed data, which consist of (Y,X) and a (random) subset

of S. Let β0 ≡ (βT
0S ,β

T
0N )T ≡ (β01, . . . , β0pn)T denote the true value of β and θ0 ≡

(α0,β0, ξ0,Γ0,Ψ0,Σ0) denote the true value of θ. For k = 1, . . . , K, let Ψ
(0,k)
0 and Ψ

(k)
0

be the true values of Ψ(0,k) and Ψ(k), respectively. In the sequel, ‖ ·‖ denotes the L2 norm

for vectors or the Frobenius norm for matrices.

We impose the following conditions, some of which involve a generic, finite, and posi-

tive constant C.

(C1) The vector of covariates X is bounded, and the eigenvalues of E(XXT) lie within

(C−1, C). Also, each component of ( ˙̀ (C)

α (θ0), ˙̀ (C)

βS
(θ0), ˙̀ (C)

βN
(θ0), ˙̀ (C)

ξ (θ0)) has a finite

second moment, and λmin{−EV (α0,β0, ξ0)} > C−1, where λmin(D) is the smallest

eigenvalue of D. In addition, within a small neighborhood of (α0,β0, ξ0) and for

any element v(α,β, ξ) of V (α,β, ξ), v(α,β, ξ) is twice-differentiable with each

component of its derivatives up to the second order uniformly bounded by a function

14

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



4. ASYMPTOTIC PROPERTIES OF THE PENALIZED ESTIMATORS

of (Y,X,S) that has a finite second moment.

(C2) The probability P (M1 = 1, . . . ,Mpn = 1 | Y,X,S) > C−1 for almost surely all

(Y,X,S).

(C3) The initial estimators satisfy that |β̃j|−1 = Op(n
ρ) for j = 1, . . . , p1n and some

ρ ∈ [0, 1/2) and |β̃j| = Op(n
−τ ) for j = p1n + 1, . . . , pn and some τ ∈ (κ, 1/2].

(C4) The tuning parameter λn satisfies λnn
1/2+ρ → 0 as n → ∞, where ρ is defined in

condition (C3).

(C5) The parameters (Γ,Ψ,Σ) satisfy that ‖γj‖ + ‖ψj‖ < C and σ2
j ∈ (C−1, C) for

j = 1, . . . , pn, and the limit of p−1
n ΨT

0 Σ−1
0 Ψ0 as n → ∞ exists and has finite and

positive eigenvalues. Also, the true values of ψ
(0,1)
jj (j = 1, . . . , r0) and ψ

(k)
jj (j =

1, . . . , rk; k = 1, . . . , K) are bounded below by C−1. In addition, for k = 1, . . . , K,

all eigenvalues of Ψ̃
(k)T

0 Ψ̃
(k)

0 are bounded below by C−1, where Ψ̃
(k)

0 ≡ (Ψ
(0,k)
0 ,Ψ

(k)
0 ).

(C6) Let S(O) be an arbitrary subvector of S, ν = (α,β, ξ), νj be the jth component

of ν (j = 1, . . . , qn), and qn be the dimension of ν. Let H1 and H2 be classes of

functions defined as

H1 =

{
h : (Y,X,S,θ) 7→ ∂2

∂νj∂νk
log f(Y ;αTX + βTS, ξ); j, k = 1, . . . , qn

}
,

H2 =

{
h : (Y,X,S,θ) 7→

{ ∂

∂νj
log f(Y ;αTX + βTS, ξ)

}k0 pn∏
h=1

Skhh ; j = 1, . . . , qn;

k0 = 0, 1, or 2; (k1, . . . , kpn) are nonnegative integers;

pn∑
h=1

kh ≤ 4

}
,

and H = H1 ∪ H2. Let f(S | Y,X,S(O);θ) be the conditional density function of

S given (Y,X,S(O)), ḟ(S | Y,X,S(O);θ) = ∂f(S | Y,X,S(O);θ)/∂θ, and S(M)
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4. ASYMPTOTIC PROPERTIES OF THE PENALIZED ESTIMATORS

be the vector of components of S that are not in S(O). For θ̃ and θ within a small

neighborhood of θ0 and for all h ∈ H, each component of

E

∫
h(Y,X,S(O), θ̃)ḟ(S | Y,X,S(O);θ) dS(M)

is bounded by C, and E
{
h(Y,X,S,θ) | Y,X,S(O);θ

}
is four-times differentiable

with respect to θ with each component of its derivatives up to the fourth order

uniformly bounded by a function of (Y,X,S(O)) that has a finite second moment.

(C7) The score statistics for the outcome model satisfy E|Z(αT
0X+βT

0S, ξ0)Sj|k ≤ k!Ck

for j = p1n + 1, . . . , pn and k ≥ 2.

(C8) For some η ∈ (1− τ, 1− κ),

sup
θ
‖I(θ)‖2,∞ = O(nτ+η−1),

where ‖D‖2,∞ = ‖ sup‖v‖=1Dv‖∞, the supremum is taken in a small neighborhood

of θ0, and τ is defined in condition (C3).

(C9) The tuning parameter λn satisfies λnn
3/2−κ−η →∞, where η is chosen in condition

(C8).

Remark 1. Condition (C1) pertains to regularity conditions on the outcome model and

guarantees that with complete data, a local maximizer of the log-likelihood function

is consistent for (α,β, ξ). Condition (C2) requires that a nonvanishing proportion of

subjects have complete data. Condition (C3) requires that the initial estimators of the

nonzero parameters do not tend to zero at a rate faster than n−ρ, whereas the estimators

of the zero parameters are nτ -consistent. This condition implies that the signal strength
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of Sj (j = 1, . . . , p1n) is bounded below by Cn−ρ for some positive constant C. Condition

(C5) pertains to regularity conditions for consistent estimation of the latent factor model,

and condition (C6) pertains to regularity conditions on the conditional density function of

the missing data given the observed data. Condition (C7) pertains to high-order moments

of the score statistics of the outcome model, and condition (C8) is a general and weaker

version of the strong irrepresentable condition (Zhao and Yu, 2006); these two conditions

are imposed to ensure consistent model selection. Conditions (C4) and (C9) jointly require

that n1/2+ρ � λ−1
n � n3/2−κ−η. They ensure that the penalty for β is strong enough to

impose model sparsity but weak enough to yield consistent estimation of the nonzero

parameters.

Remark 2. If we set the marginal estimators described in Section 2 as the initial es-

timators, then condition (C3) pertains to the relationships among the factor loadings

across different features. Note that the marginal estimators are the MLE under the full

likelihood (that incorporates the distribution of the incomplete variables) and thus are

n1/2-consistent for the “true” marginal regression parameters. In light of Proposition 1

of Fan and Song (2010), we can show that a marginal regression parameter under a gen-

eralized linear model of Y tends to zero at a certain rate if and only if the correlation

between the corresponding feature and ST
Sβ0S tends to zero at the same rate. Therefore,

condition (C3) holds if |
∑p1n

j=1 β0jψ
T
0jψ0k + β0kσ

2
0k| > Cn−ρ for k = 1, . . . , p1n and some

positive constant C and
∑p1n

j=1 β0jψ
T
0jψ0k = O(n−τ ) for k = p1n + 1, . . . , pn, where for

j = 1, . . . , pn, ψT
0j is the jth row of Ψ0, and σ2

0j is the jth diagonal element of Σ0.

LetH be the projection matrix onto the linear space of Σ
−1/2
0 Ψ0. Our main theoretical
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results are summarized in the following theorem, whose proof is given in Appendix A.2.

Theorem 1. Under conditions (C1)–(C9), a local maximizer of p`n(θ), denoted by θ̂ ≡

(α̂, β̂S , β̂N , ξ̂, Γ̂, Ψ̂, Σ̂), satisfies that

1. ‖α̂−α0‖+‖β̂S−β0S‖+‖ξ̂−ξ0‖+‖(I−H)Σ
−1/2
0 (Γ̂−Γ0)‖+‖(I−H)Σ

−1/2
0 (Ψ̂−

Ψ0)‖+ ‖Σ̂−Σ0‖ = Op(n
−1/2p

1/2
n );

2. ‖HΣ
−1/2
0 (Γ̂− Γ0)‖+ ‖HΣ

−1/2
0 (Ψ̂−Ψ0)‖ = Op(n

−1/2pn); and

3. P (β̂N = 0)→ 1 as n→∞.

Remark 3. This theorem provides the rate of convergence for the estimators of the

nonzero parameters and states that the estimators of the zero parameters are equal

to zero with probability tending to 1. A major step in the proof of Theorem 1 is

to construct a shrinking neighborhood N of the true parameter values and show that

p`n(θ0) > supθ∈∂N p`n(θ) with probability tending to 1, where ∂N denotes the boundary

of N ; similar approaches were adopted by Fan and Li (2001) and Fan and Peng (2004) to

prove the consistency of the smoothly clipped absolute deviation estimator. The proof is

substantially more difficult for the factor model than for conventional regression models,

because the largest eigenvalues of (ΨΨT + Σ) diverge to infinity (Bai and Liao, 2016).

A key innovation in our proof is to identify the few eigenvalues of the Hessian matrix of

p`n(·) that tend to 0 (as a result of the unboundedness of the eigenvalues of (ΨΨT + Σ))

and construct an “elliptical” N with diameter of order n−1/2pn in directions that cor-

respond to their eigenvectors and with diameter of order n−1/2p
1/2
n in other directions.

This construction guarantees that the second-order term in the Taylor series expansion
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of p`n(θ) at θ0 is negative and dominates the first-order term at any θ ∈ ∂N with proba-

bility tending to 1. Using this construction, we prove that the projections of Σ
−1/2
0 Γ̂ and

Σ
−1/2
0 Ψ̂ along the linear space of Σ

−1/2
0 Ψ0 are consistent at the (n1/2p−1

n )-rate, whereas

the estimators of all other nonzero parameters, including the regression parameters of

interest, are consistent at the conventional (n1/2p
−1/2
n )-rate.

Remark 4. Bai and Li (2012) proved that the MLE of an unstructured factor loading

matrix Ψ with complete data is n−1/2p
1/2
n -consistent; this rate is faster than that given

in Theorem 1. However, the arguments of Bai and Li (2012) are not applicable to our

setting, especially when the missing-data mechanism depends on S (through Y ). The

asymptotic properties of the MLE of the factor model in the presence of missing data

have not been previously studied, and it is unclear whether the convergence rates given

in Theorem 1 can be improved.

Remark 5. The dimension of the features, pn, that we allow is smaller than that in

the existing work on penalized regression with complete data (Fan and Peng, 2004; Fan

and Lv, 2011) for three reasons. First, because the likelihood involves the model of the

incomplete variables, the number of (nonzero) parameters is much larger than that of the

existing work under the same number of features. Second, the rate of convergence of the

proposed estimators is slower than that of the existing work, such that a smaller pn is

required for the consistency of certain functions of the parameters, such as the information

matrix. Third, due to the structure of the factor model, the sizes of the derivatives of

the log-likelihood function are potentially larger than those in conventional regression

models, such that a smaller pn is required to guarantee the concavity of the (observed)

19

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



5. SIMULATION STUDIES

log-likelihood function around the true parameter values.

5. Simulation studies

We considered two types of features, S(1) and S(2), both with dimension p/2. We gener-

ated the features from the following factor model:

S(k) = ψ(0,k)U (0) +ψ(k)U (k) + ε(k) for k = 1, 2,

where U (0), U (1), and U (2) are independent standard normal variables, ε(1) and ε(2) are

independent (p/2)-variate standard normal variables, and ψ(0,1), ψ(0,2), ψ(1), and ψ(2) are

(p/2)-vectors of factor loadings. We set

ψ(0,1) = ψ(0,2) = (0.2, . . . , 0.2︸ ︷︷ ︸
20 terms

,−0.2, . . . ,−0.2︸ ︷︷ ︸
(p/4−10) terms

, 0.2, . . . , 0.2︸ ︷︷ ︸
(p/4−10) terms

)T,

ψ(1) = ψ(2) = (0.4, . . . , 0.4︸ ︷︷ ︸
20 terms

, 0.4, . . . , 0.4︸ ︷︷ ︸
(p/4−10) terms

,−0.2, . . . ,−0.2︸ ︷︷ ︸
(p/4−10) terms

)T.

In this setting, the first 20 components of each type of features are positively associ-

ated with both the common and type-specific latent variables, whereas the remaining

components are negatively associated with either the common or type-specific latent

variable. As a result, the first 20 components of each type of features are relatively

strongly associated with each other, but they are weakly associated with other fea-

tures. We let the outcome variable Y be continuous or binary. For the continuous

case, we set Y =
∑15

j=1 0.05(S
(1)
j + S

(2)
j ) + δ, where δ follows a standard normal distri-

bution, and S
(k)
j is the jth component of S(k) (k = 1, 2). For the binary case, we set

P (Y = 1 | S(1),S(2)) = logit−1{−3 +
∑15

j=1 0.15(S
(1)
j + S

(2)
j )}, such that P (Y = 1) ≈ 0.1.

We set S(1) to be completely observed and S(2) to be missing for 50% of the subjects
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based on one of the following missing-data mechanisms: (1) missing completely at ran-

dom (MCAR); and (2) missing at random (MAR), such that in the case of the continuous

outcome variable, S(2) is observed for subjects with extreme values of Y , and in the case

of the binary outcome variable, S(2) is observed for all subjects with Y = 1 and for a

random subset of subjects with Y = 0.

We adopted two penalization methods: lasso (Tibshirani, 1996) and adaptive lasso

(Zou, 2006). For lasso, we set each weight term wj to be 1. For adaptive lasso, we used the

MLE of the regression parameters in the marginal regression models of Y against S
(k)
j (j =

1, . . . , p/2; k = 1, 2) as the initial estimators. The tuning parameter for each method was

selected by 5-fold cross-validation, where the cross-validation error is defined as the nega-

tive log-likelihood value, and the grid for λ is {(0.01)j/100λmax}j=0,1,...,99. For each penaliza-

tion method, we considered four methods for handling missing data: (1) variable selection

on complete cases only; (2) variable selection with missing data (singly) imputed using

the structured matrix completion method of Cai, Cai and Zhang (2016), where the row

thresholding parameter is set to be 2{p/length(S(2))}1/2 ≈ 2.828; (3) variable selection

with missing data imputed by the posterior expectation under the proposed factor model,

with the factor model estimated using only (S(1),S(2)); and (4) the proposed penalized-

likelihood method. For method (4) and the estimation of the factor model in method (3),

we used the function GQN2 ORDER of the C++ software SPARSE GRID HW (available

at https://people.sc.fsu.edu/˜jburkardt/cpp src/sparse grid hw/sparse grid hw.html) and

set level = 3 to generate the nodes and weights for the sparse-grid quadrature. We termi-

nated the EM algorithm when the maximum absolute difference between the parameter

estimators of two consecutive iterations became smaller than 10−5. For methods (3) and
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(4), we considered models with (r0, r1, r2) ∈ {(r0, r1, r2) :
∑2

k=0 |rk − 1| ≤ 1, r0 6= 0} and

selected the model using the Bayesian information criterion (BIC) (Schwarz, 1978). Note

that the models considered differ from the true model by at most one latent variable.

Models with r0 = 0 assume independence between the two types of features and thus

were not considered. In all models, we set X = 1.

We set n = 500 and p = 100 or 300. For each method, we report the number

of variables selected, false discovery rate, true positive rate, and prediction error. The

false discovery rate is defined as the proportion of selected variables that have zero true

parameter value, and the true positive rate is defined as the proportion of variables

with nonzero true parameter values that are selected. Prediction error is defined as

E{S(1)T(β̂
(1)
− β(1)

0 ) + S(2)T(β̂
(2)
− β(2)

0 )}2, where β̂
(k)

and β
(k)
0 are the estimated and

true values of the regression parameters of S(k) (k = 1, 2), respectively. For the single

imputation method based on the factor model and the proposed method, we also report

the proportion of replicates in which the correct numbers of latent variables are selected.

The results, which are based on 200 replicates, are summarized in Tables 1 and 2.

With the sparse-grid numerical integration, the mean computing time for a single

E-step is about 0.1–0.2 seconds under p = 100 and about 0.3–0.7 seconds under p =

300 in various settings. In all scenarios, the proposed method performs substantially

better than the complete-case analysis, because the latter discards subjects with partial

information and thus is less efficient. Single imputation based on the factor model has

overall better variable selection and prediction performance than single imputation based

on structured matrix completion, because the former assumes a correct imputation model.

Under MCAR, the proposed method and the single imputation method based on the
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Table 1: Simulation results for the continuous outcome variable
Lasso A-Lasso

Variables Pred Correct Variables Pred Correct

selected FDR TPR error model selected FDR TPR error model

MCAR; p = 100

Complete 26.4 0.372 0.531 0.125 N/A 22.4 0.280 0.526 0.122 N/A

SMC 28.9 0.377 0.584 0.120 N/A 23.7 0.276 0.555 0.122 N/A

Imputed 30.2 0.354 0.632 0.098 1 25.0 0.243 0.616 0.096 1

Proposed 25.6 0.294 0.592 0.105 1 23.0 0.218 0.591 0.098 1

MAR; p = 100

Complete 32.0 0.350 0.670 0.160 N/A 26.3 0.231 0.661 0.206 N/A

SMC 28.8 0.355 0.589 0.150 N/A 22.2 0.203 0.570 0.152 N/A

Imputed 31.7 0.371 0.644 0.134 1 25.3 0.239 0.629 0.149 1

Proposed 27.9 0.269 0.668 0.089 1 24.5 0.186 0.654 0.080 1

MCAR; p = 300

Complete 29.9 0.497 0.454 0.156 N/A 35.6 0.533 0.507 0.168 N/A

SMC 34.3 0.485 0.547 0.130 N/A 32.4 0.428 0.577 0.123 N/A

Imputed 34.0 0.462 0.567 0.124 0.910 36.9 0.465 0.607 0.130 0.910

Proposed 24.2 0.366 0.495 0.140 0.910 27.6 0.367 0.556 0.120 0.915

MAR; p = 300

Complete 36.9 0.473 0.600 0.153 N/A 34.2 0.412 0.626 0.236 N/A

SMC 40.1 0.504 0.616 0.157 N/A 35.9 0.408 0.649 0.198 N/A

Imputed 34.0 0.462 0.568 0.151 0.995 34.4 0.427 0.615 0.189 0.995

Proposed 26.5 0.320 0.586 0.118 0.995 27.2 0.294 0.615 0.094 0.995

NOTE: “A-Lasso” stands for adaptive lasso; “Complete,” “SMC,” “Imputed,” and “Proposed” stand for

the complete-case analysis, the structured matrix completion method of Cai, Cai and Zhang (2016), single

imputation based on the factor model, and the proposed method, respectively; “Variables selected,” “FDR,”

“TPR,” “Pred error,” and “Correct model” stand for the average number of variables selected, the false

discovery rate, the true positive rate, the prediction error, and the proportion of replicates in which the correct

factor model is selected, respectively.
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Table 2: Simulation results for the binary outcome variable

Lasso A-Lasso

Variables Pred Correct Variables Pred Correct

selected FDR TPR error model selected FDR TPR error model

MCAR; p = 100

Complete 20.0 0.356 0.408 1.486 N/A 17.1 0.286 0.396 1.507 N/A

SMC 23.2 0.364 0.468 1.451 N/A 18.8 0.274 0.439 1.370 N/A

Imputed 24.8 0.343 0.522 1.214 1 20.7 0.251 0.504 1.113 1

Proposed 24.4 0.353 0.506 1.277 1 20.5 0.251 0.502 1.100 1

MAR; p = 100

Complete 25.8 0.340 0.550 1.134 N/A 20.4 0.227 0.515 1.075 N/A

SMC 23.7 0.338 0.498 1.464 N/A 19.0 0.220 0.481 1.530 N/A

Imputed 25.0 0.337 0.534 1.272 1 20.5 0.232 0.513 1.430 1

Proposed 27.2 0.341 0.577 1.101 1 21.8 0.227 0.552 0.966 1

MCAR; p = 300

Complete 23.4 0.508 0.338 1.827 N/A 26.8 0.535 0.388 2.300 N/A

SMC 28.4 0.495 0.432 1.592 N/A 27.6 0.462 0.460 1.462 N/A

Imputed 29.1 0.488 0.452 1.515 0.915 30.4 0.478 0.490 1.488 0.915

Proposed 27.5 0.487 0.426 1.624 0.880 30.7 0.486 0.484 1.389 0.910

MAR; p = 300

Complete 30.9 0.498 0.484 1.371 N/A 27.4 0.422 0.499 1.379 N/A

SMC 31.4 0.488 0.494 1.502 N/A 28.1 0.409 0.523 1.975 N/A

Imputed 25.7 0.440 0.446 1.531 0.990 27.3 0.425 0.491 2.003 0.990

Proposed 31.5 0.479 0.511 1.346 0.990 30.8 0.443 0.540 1.182 0.990

NOTE: See NOTE to Table 1.
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factor model perform similarly, possibly because the structure of the factor model can be

accurately recovered using (S(1),S(2)) alone. Under MAR, however, the proposed method

yields substantially smaller prediction error and similar or better false discovery and true

positive rates than the single imputation methods, due to either the estimation bias of the

factor model or the failure to recover the low-rank structure underlying (S(1),S(2)) in the

single imputation methods. Note that the proposed method generally yields better results

under MAR than under MCAR, because subjects with extreme outcome values contain

more information than randomly selected subjects. Due to estimation bias, however, the

single imputation methods fail to capture the extra information and perform worse under

MAR. For the single imputation method based on the factor model and the proposed

method, BIC selects the correct factor model in the majority of replicates.

Adaptive lasso generally yields lower false discovery rate and smaller prediction error

than lasso; in some cases, lasso yields higher true positive rate than adaptive lasso, prob-

ably because lasso selects more variables. These results agree with the expectation that

by assigning larger penalties to less important variables, adaptive lasso outperforms lasso.

We conducted additional simulation studies to investigate the performance of the pro-

posed methods under a misspecified latent factor model. We showed that when every

feature depends on all three latent variables, the proposed method with r0 = r1 = r2 = 1

still yields superior performance over the complete-case analysis and imputation meth-

ods. Details of the simulation settings and results are presented in Section S1 of the

supplementary materials.
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6. A real study

We considered the TCGA data (available at http://gdac.broadinstitute.org/) on two

smoking-related, upper aerodigestive tract cancers: head and neck squamous cell carci-

noma (HNSC) and lung adenocarcinoma (LUAD). After removing patients with missing

clinical data, the total sample size was 955, with 448 HNSC patients and 507 LUAD pa-

tients. We considered the outcome variable tumor stage, dichotomized into stage I/II and

stage III/IV. The proportions of patients with later stages were 0.77 for HNSC and 0.22

for LUAD. We considered two types of genomic features, gene expressions and protein

expressions, with 18028 and 155 variables, respectively. A total of 400 patients had no

protein data due to insufficient tissue sample left for protein expression measurement, so

the missing mechanism does not depend on the protein expression values. In addition,

patients missed 763 gene expressions on average, and among patients with some protein

data, an average of 4.3 protein expressions are missing; the missing data did not exhibit a

blockwise pattern. The missing-data pattern is plotted in Figure S1 in the supplementary

materials.

We first screened the gene expressions according to their marginal associations with

tumor stage, such that the resulting number of variables and sample size were comparable.

We tested each gene expression’s marginal association with tumor stage using the score

test (adjusted for cancer type), with the model for missing data included in the likelihood,

and we selected the 500 variables with the smallest p-values. Then, we fit a logistic

regression model for tumor stage, with cancer type as X and the screened gene expressions

and protein expressions as S. For the latent factor model, we set cancer type as a
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covariate and ranged the total number of latent variables r from 3 to 6 with (r0, r1, r2) ∈

{(r0, r1, r2) :
∑2

k=0 rk ≤ 6, rk ≥ 1 for k = 0, 1, 2}. We used the adaptive-lasso penalty

with the marginal regression parameter estimators as the initial estimators and selected

the tuning parameter using 5-fold cross validation.

The BIC picked (r0, r1, r2) = (2, 3, 1) for the factor model. A total of 53 genomic

features were selected, with 45 gene expressions and 8 protein expressions; the selected

features are presented in Table S3 in the supplementary materials. Several selected genes,

including WDR37, FUT7, and DDIT4, were previously reported to be associated with

metastasis or patient survival (Ogawa, Inoue and Koide, 1997; Läubli et al., 2006; Wang

et al., 2015). The selected proteins include the epidermal growth factor receptor, which

is known to be involved in the pathogenesis and progression of different types of cancer

(Nicholson, Gee and Harper, 2001; Normanno et al., 2006).

The estimated outcome model and factor model enabled us to construct a personal

genomic risk score. For each patient, we calculated the posterior expectation of the

latent variable, denoted by Û , and imputed the missing values of the genomic features by

the corresponding element of ΓX + ΨÛ , where the parameters were evaluated at their

estimated values. The risk score is defined as βTŜ, with β evaluated at its estimated

value and Ŝ the vector of the observed or imputed genomic features.

We evaluated the association between the risk score and progression-free survival time

(since initial diagnosis). For each cancer type, we fit a stratified Cox model of progression-

free survival time against the risk score, stratified by tumor stage. The likelihood-ratio

p-values for the effects of the risk score are 4.20 × 10−4 and 6.41 × 10−6 for HNSC and

LUAD, respectively. These p-values are highly significant, suggesting that the selected
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genomic features are highly relevant to cancer progression. Note that the results are not

due to overfitting, because progression-free survival time is not involved in the calculation

of the risk score, and all evaluations are stratified by tumor stage and cancer type.

For comparisons, we performed similar analyses using imputed data and the complete

cases only. (The method developed by Cai, Cai and Zhang (2016) is not applicable to

the general missing-data pattern exhibited in this data set.) For single imputation, we

imputed the missing values using k-nearest-neighbor imputation (Troyanskaya et al., 2001)

with k = 10 and performed adaptive lasso. For the complete-case analysis, because very

few patients have complete data, we removed only the patients with no protein expression

data; we imputed the missing values for the remaining patients using 10-nearest-neighbor

imputation and performed adaptive lasso on the imputed data set. In constructing the

risk scores, we again imputed missing values of S using 10-nearest-neighbor imputation.

For the complete-case analysis, the likelihood-ratio p-values for the association between

the risk score and progression-free survival time under the stratified Cox model are 0.024

and 3.98 × 10−6 for HNSC and LUAD, respectively. While the p-value for LUAD is as

significant as that of the proposed method, the p-value for HNSC is only mildly significant.

For single imputation, the likelihood-ratio p-values are 1.84 × 10−3 and 1.80 × 10−5 for

HNSC and LUAD, respectively. Single imputation yields similar results as the proposed

method, with slightly less significant p-values for both cancer types.

As a by-product of the proposed method, we obtained a low-dimensional projection

of the genomic features, Û . We constructed an alternative risk score, defined as βTΨÛ ,

which is the estimated effect of the projected genomic features on tumor stage. For each

cancer type and tumor stage group, we divided patients into two equal-sized risk groups
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according to their risk scores. The Kaplan-Meier curves of the progression-free survival

times for the risk groups are given in Figure 1. We also tested the association between

the risk score and progression-free survival time under the stratified Cox model, and the

likelihood-ratio p-values are 1.55×10−5 and 2.22×10−3 for HNSC and LUAD, respectively.

Remarkably, patients classified into high-risk groups tend to have lower (progression-

free) survival probabilities than patients in the corresponding low-risk groups. Also, the

likelihood-ratio tests are significant for both cancer types, and the p-value for HNSC is

smaller than those obtained from the original risk score (using the proposed method, single

imputation, or complete-case analysis). A possible explanation is that the projection of

the genomic features contains less noise than the individual genomic features and thus

better represents patients’ genomic characteristics.
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Figure 1: Kaplan-Meier curves for risk groups defined by the projected genomic features.
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Finally, we compared the three methods for handling missing data using cross val-

idation. We first independently sampled 10 training sets from the full data set. Each

training set consists of 60% of the patients (n = 573); the training set and the full data

set have approximately equal distributions of cancer type, tumor stage, and missing-data

proportion. In each training set, we followed the procedures used in the analyses of the

whole data set: we screened the gene expressions by selecting the 500 gene expressions

with the strongest association with tumor stage (after adjusting for cancer type) and

performed complete-case analysis, single imputation by 10-nearest-neighbor imputation,

and the proposed method on the screened variables over a sequence of tuning parameter

values. For the proposed method, we set the numbers of latent variables in the factor

model to be r0 = 2, r1 = 3, and r2 = 1.

To evaluate the performance of each method, we used 10-nearest-neighbor imputation

to impute the missing values in the full data set and let each validation set consist of

patients that were not part of a corresponding training set. For each training and vali-

dation data split and each method, we performed the analysis using the training set over

a series of tuning parameter values and computed the area under the receiver operating

characteristic curve (AUC) of the resulting risk scores in the validation set. Each method

produces a curve of AUC against tuning parameter values for each data split. Because

the variables in the regression analyses are different in different data splits due to screen-

ing, it is not appropriate to combine the results over splits at the same tuning parameter

values. Instead, we averaged the AUC values over splits at models with the same number

of selected variables.

The complete-case analysis yields the smallest average AUC at any given model size,
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and the average AUC values between single imputation and the proposed method are

similar. Specifically, the maximum average AUC values for the complete-case analysis,

single imputation, and the proposed method are 0.802, 0.816, and 0.817, respectively.

Possibly due to the small sample size of the training data sets, the performance of single

imputation and the proposed method is similar.

7. Discussion

In this article, we propose a penalized-likelihood approach to variable selection and pa-

rameter estimation for multiple types of many features with missing data. Our approach

accommodates arbitrary missing-data patterns, including but not restricted to blockwise

missing data. We prove estimation and model selection consistency of the penalized es-

timator and develop an efficient EM algorithm for its computation. A key advantage of

the proposed estimator is that it is consistent under MAR, whereas single imputation is

generally biased when the missing-data mechanism depends on the outcome variable.

The structure of the latent factor model facilitates efficient computation of the pe-

nalized estimator under general missing-data patterns. Under the factor model, the con-

ditional distribution of S(M) given (U ,S(O)) is equal to the conditional distribution of

S(M) given U alone. This structure makes it simpler to evaluate the conditional distri-

bution of the variables with missing values given the observed variables in the E-step.

(By contrast, if an unstructured covariance matrix for S is assumed, then the conditional

expectation may involve inversion of large matrices.) In addition, due to the conditional

independence of components of S, the factor loadings for each component of S can be

updated separately with closed-form solutions in the M-step.
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Under the normality assumption on the error term ε in the factor model, the EM

algorithm only involves a low-dimensional numerical integration even when the dimension

of the incomplete variables is high. This assumption ensures the existence of a linear

transformation of ε, denoted by ε̃, such that components of ε̃ are independent, and

the outcome variable depends on ε only through a single component of ε̃. For general

distributions of ε, such a linear transformation is not available, and the integration in the

likelihood function cannot be simplified.

We use BIC to select the numbers of common and type-specific latent variables. When

the number of feature types is large, this approach may involve evaluation of a large

number of models and may be computationally intensive. Alternatively, we can consider

penalization approaches similar to Ibrahim et al. (2011) and Caner and Han (2014), which

penalize variances of the latent variables or columns of the factor loading matrix.

One application of the proposed approach lies in dimension reduction of multi-modality

features. In genomics studies, low-dimensional projections of genomic features have been

used to pick out technical errors (Leek et al., 2010), characterize the activities of gene sets

(Fan et al., 2011), and discover molecular subtypes of patients (Shen, Olshen and Ladanyi,

2009; Shen, Wang and Mo, 2013). Most projection methods do not account for missing

data, much less a missing-not-at-random mechanism. Under the proposed framework, if

the missing-data mechanism depends on an external variable (that is associated with S),

then we can set the variable as the outcome variable Y , and the resulting factor model

can be estimated without bias and be used to generate the projection.

Our work can be extended in several directions. First, we may consider a potentially

right-censored outcome variable that follows the Cox proportional hazards model. This
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extension would find applications in many multi-platform genomics studies in which the

outcome of interest is time to death or disease progression. For this extension, the pe-

nalized estimator can be computed using the EM algorithm, where the M-step involves

maximizing a quadratic approximation of the (expected) log-partial likelihood using the

coordinate-descent algorithm (Simon et al., 2011).

Another extension is to allow associations among features beyond those explained

by the latent variables. The extra associations can be accommodated by adopting an

approximate factor model of S, which allows nonzero but sparse off-diagonal elements

in Σ. A sparse estimator of Σ can be obtained by including a penalty term on the

off-diagonal elements of the covariance matrix in the penalized likelihood (Bai and Liao,

2016). This generalization, however, imposes considerable computational challenges by

complicating the conditional distribution of S given U and introducing an extra tuning

parameter.

A third extension is to consider nonnormal incomplete features. We may fit a semi-

parametric factor model, such that each latent variable is a nonparametric monotone

transformation of a Gaussian variable. We can adopt penalized sieve maximum likeli-

hood methods for estimation and the EM algorithm for computation. Another possibility

is to assume that transformations of components of S follow the (Gaussian) factor model

and fit a regression model of Y on the transformed S.

Finally, we have only established estimation and selection consistency of the penal-

ized estimator. It is plausible that the estimator for the nonzero parameters exhibits the

so-called oracle properties (Fan and Li, 2001) under further regularity conditions. How-

ever, inference based on the oracle properties ignores the variability arising from variable
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selection and thus is seldom conducted in practice. A possible future research direction

is to investigate a “de-biased” version of the penalized estimator (van de Geer et al.,

2014; Zhang and Zhang, 2014), which yields more reliable inference at the expense of

nonsparsity of the estimators.

Supplementary Materials

The supplementary materials contain additional theoretical results, simulation results,

and details of the real data analysis.
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Appendix A: Computational and technical details

A.1 Details of the EM algorithm

To express the first and second conditional moments of S̃i given Oi ≡ (Yi,X i,S
(O)
i )

in terms of those of (U i, ε̃i), we define β̃
(M)

i = (β
(M)
i )

j:β
(M)
ij 6=0

, σ̃
(M)
i = (σ

(M)
i )

j:β
(M)
ij 6=0

,

and p̃
(M)
i to be the dimension of β̃

(M)

i , where σ
(M)
i = (σ1, . . . , σpn)T

Mi
. Let ϑ̃i1 =

c−1
i (β̃

(M)
i1 σ̃

(M)
i1 , . . . , β̃

(M)

ip̃(M)σ̃
(M)

ip̃(M))
T, and set (ϑ̃i2, . . . , ϑ̃ip̃(M)

i
) to be p̃

(M)
i -dimensional unit vec-

tors that are orthogonal to ϑ̃i1 and to each other. The first and second (conditional)

moments of S̃i involve E(U i | Oi), E(ε
(M)
i | Oi), E(U iU

T
i | Oi), E(Ψ̂

(M)

i U iε
(M)T
i | Oi),
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and E(ε
(M)
i ε

(M)T
i | Oi). The moments of U i are readily available from (3.4) by setting

g(U i, ε̃i) = U i or U iU
T
i . For the other terms in the moments of S̃i, we have

E(εij | Oi) =


c−1
i σ

(M)
ij ϑ̃i1,mi(j)E(ε̃i | Oi) if β

(M)
ij 6= 0,

0 otherwise,

E(Ψ̂
(M)

i U iε
(M)T
i | Oi)jk =


c−1
i σ

(M)
ik ϑ̃i1,mi(k)

∑r
h=1 ψ̂

(M)
ijh E(Uihε̃i | Oi) if β

(M)
ik 6= 0,

0 otherwise,

E(ε
(M)
i ε

(M)T
i | Oi)jk =



c−2
i σ

(M)
ij σ

(M)
ik δjk if β

(M)
ij = 0 or β

(M)
ik = 0,

c−2
i

∑p̃
(M)
i
h=1 {I(h = 1)E(ε̃2i | Oi)

+I(h 6= 1)}σ(M)
ij σ

(M)
ik ϑ̃ih,mi(j)ϑ̃ih,mi(k) otherwise,

where ϑ̃ijk is the kth component of ϑ̃ij, mi(j) is such that β̃
(M)
i,mi(j)

= β
(M)
ij , ψ̂

(M)
ijk is the

(j, k)th element of Ψ̂
(M)

i , and δjk = I(j = k).

A.2 Proofs of technical results

Before proving Theorem 1, we present the following lemma, which pertains to an estimator

of the nonzero parameters. Let θ̂Oracle ≡ (α̂Oracle, β̂Oracle, ξ̂Oracle, Γ̂Oracle, Ψ̂Oracle, Σ̂Oracle)

be a local maximizer of p`n(θ) when βN is fixed at 0. For any potentially random real-

valued sequences an and bn, we say that an is dominated by bn if |an/bn| = op(1). We

have the following result about the oracle estimator.

Lemma 1. Under conditions (C1)–(C6), there is a version of θ̂Oracle that satisfies

‖α̂Oracle −α0‖+ ‖β̂Oracle − β0‖+ ‖ξ̂Oracle − ξ0‖+ p−1/2
n ‖HΣ

−1/2
0 (Γ̂Oracle − Γ0)‖
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+ ‖(I −H)Σ
−1/2
0 (Γ̂Oracle − Γ0)‖+ p−1/2

n ‖HΣ
−1/2
0 (Ψ̂Oracle −Ψ0)‖

+ ‖(I −H)Σ
−1/2
0 (Ψ̂Oracle −Ψ0)‖+ ‖Σ̂Oracle −Σ0‖ = Op(n

−1/2p1/2
n ).

The proof of Lemma 1 is presented in Section S3 of the supplementary materials.

Proof of Theorem 1. By Lemma 1, θ̂Oracle converges in probability to θ0 at the desired

rate of convergence, so it suffices to show that there exists a local maximizer of p`n(θ),

denoted by θ̂, such that P (θ̂ = θ̂Oracle) → 1 for some version of the oracle estimator

θ̂Oracle. Let θS be the vector that consists of (α,βS , ξ,Γ,Ψ,Σ). The desired result

follows if the following Karush–Kuhn–Tucker conditions hold:

{
Pn

∂

∂θS
`(θ)− λnwS ◦ sgn(βS)

}∣∣∣∣
θ=θ̂Oracle

= 0,∣∣∣∣Pn ∂

∂βj
`(θ)

∣∣∣
θ=θ̂Oracle

∣∣∣∣ < λnwj for j = p1n + 1, . . . , pn,

λmin

{
− Pn

∂2

∂θS∂θ
T
S
`(θ)

∣∣∣∣
θ=θ̂Oracle

}
> 0,

where `(θ) denotes the log-likelihood function for a single subject, Pn denotes the empirical

process measure, and sgn(βS) is the vector of the signs of βS . The first condition holds

by the definition of θ̂Oracle, and the third condition follows from condition (C1) and the

fact that the Hessian matrix of the log-likelihood function with respect to (Γ,Ψ,Σ) is

negative definite for large enough n (as established in the proof of Lemma 1). To verify

the second condition, let un = nτ+η+κ−1 for some η < 1− κ, and let

Sn =
{∣∣∣n1/2 ∂

∂βj
Pn`(θ0)

∣∣∣ ≤ un for j = p1n + 1, . . . , pn

}
.
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For k ≥ 1 and j = p1n + 1, . . . , pn,

E

∣∣∣∣ ∂∂βj `(θ)
∣∣∣
θ=θ0

∣∣∣∣k = E

∣∣∣∣ ∫ Z(αT
0X + βT

0S, ξ0)Sjf(S(M) | S(O), Y,X) dS(M)

∣∣∣∣k
≤E|Z(αT

0X + βT
0S, ξ0)Sj|k,

where f(S(M) | S(O), Y,X) is the true conditional density function of S(M) given (S(O), Y,X),

and the inequality follows from Jensen’s inequality. By condition (C7) and the Bernstein

inequality, there exists some fixed positive constants c0 and c1 such that

P
(∣∣∣n1/2 ∂

∂βj
Pn`(θ)

∣∣∣
θ=θ0

∣∣∣ > un

)
≤ c0e

−c1un

for j = p1n + 1, . . . , pn. Therefore, P (Sn) ≥ 1 − c0pne
−c1un = 1 − O(eκ logn−c1un), which

tends to 1 because, by conditions (C3) and (C8), η can be chosen such that un dominates

log n. Under Sn and for θ̃ such that the θS-component of θ̃ is close enough to its true

value and the βN -component of θ̃ is zero,

∂

∂βj
Pn`(θ)

∣∣∣∣
θ=θ̃

=
∂

∂βj
Pn`(θ)

∣∣∣∣
θ=θ0

+
∂2

∂βj∂θ
T
S
Pn`(θ)

∣∣∣∣
θ=θ̌

(θ̃ − θ0)

≤ n−1/2un + sup
θ∗

∥∥∥∥ ∂2

∂βj∂θ
T
S
Pn`(θ)

∣∣∣∣
θ=θ∗

(θ̃ − θ0)

∥∥∥∥
≤ n−1/2un + sup

θ∗

∥∥∥∥ ∂2

∂βN∂θ
T
S
Pn`(θ)

∣∣∣∣
θ=θ∗

∥∥∥∥
2,∞
‖θ̃ − θ0‖

for j = p1n + 1, . . . , pn and large enough n, where θ̌ takes some value between θ̃ and θ0,

and the supremum is taken within the small neighborhood around θ0 defined in condition

(C8). Note that

sup
θ∗

∥∥∥∥ ∂2

∂βN∂θ
T
S
Pn`(θ)

∣∣∣∣
θ=θ∗

∥∥∥∥
2,∞

= sup
θ∗

∥∥∥∥ ∂2

∂βN∂θ
T
S
P`(θ)

∣∣∣∣
θ=θ∗

∥∥∥∥
2,∞

+Op(n
−1/2p2

n)

= sup
θ∗
‖I(θ∗)‖2,∞ + op(1)

= Op(n
τ+η−1),
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where the third equality follows from condition (C8), and P is the true probability mea-

sure. Therefore,

max
j>p1n

∣∣∣∣λ−1
n w−1

j

∂

∂βj
Pn`(θ)

∣∣∣
θ=θ̂Oracle

∣∣∣∣ ≤ max
j>p1n

Op(λ
−1
n w−1

j n−1/2un + λ−1
n w−1

j nτ+η−1pnn
−1/2)

=Op(λ
−1
n n−τn−1/2un + λ−1

n nη−3/2nκ),

where the equality follows from condition (C3). The right-hand side of the equality above

is bounded by Op(λ
−1
n n−3/2+κ+η), which is op(1) by condition (C9). The desired result

follows.
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