Síndrome de Lynch: impacto de la caracterización de familias en base a estudios genéticos

Autores/as

  • Carlos A. Vaccaro Servicio de Coloproctología, Hospital Italiano de Buenos Aires https://orcid.org/0000-0002-1299-5864
  • Tamara Piñero Instituto de Ciencias Básicas y Medicina Experimental, Instituto Universitario del Hospital Italiano de Buenos Aires https://orcid.org/0000-0002-3853-9795
  • Alberto I. Herrando Programa Cáncer Hereditario (Pro.Can. He.), Hospital Italiano de Buenos Aires
  • Romina Cajal Instituto de Ciencias Básicas y Medicina Experimental, Instituto Universitario del Hospital Italiano de Buenos Aires
  • Alejandra Ferro Programa Cáncer Hereditario (Pro.Can. He.), Hospital Italiano de Buenos Aires
  • Pablo Kalfayan Servicio de Medicina Interna y Genética, Hospital Italiano de Buenos Aires
  • Juan Pablo Santino Servicio de Anatomía Patológica, Hospital Italiano de Buenos Aires https://orcid.org/0000-0001-9927-4965
  • María Dalva Falconi Programa Cáncer Hereditario (Pro.Can. He.), Hospital Italiano de Buenos Aires
  • Alicia Verzura Sección Oncología, Hospital Italiano de Buenos Aires
  • Gisela Guerrero Programa Cáncer Hereditario (Pro.Can. He.), Hospital Italiano de Buenos Aires
  • María Cecilia Riggi Servicio de Ginecología, Hospital Italiano de Buenos Aires https://orcid.org/0000-0001-6235-9527
  • Walter Pavicic Programa Cáncer Hereditario (Pro.Can. He.), Hospital Italiano de Buenos Aires, Instituto Multidisciplinario de Biología Celular, IMBICE, CONICET https://orcid.org/0000-0001-7840-4943
  • María Laura González Servicio de Gastroenterología, Hospital Italiano de Buenos Aires, Buenos Aires

DOI:

https://doi.org/10.56969/oc.v23i1.63

Palabras clave:

síndrome de Lynch, cáncer hereditario, síndrome familiar X, asesoramiento genético, genes de reparación, Lynch syndrome, hereditary cancer, family syndrome X, genetic counseling, mismatch repair gene

Resumen

El objetivo de este trabajo fue caracterizar demográfica y molecularmente las familias con diagnóstico de síndrome de Lynch en base a estudios genéticos. Se utilizó la base prospectiva del Registro de Epidemiología Molecular de Cáncer Colorrectal (REM-CCR) del Hospital Italiano de Buenos Aires (Clinical trials.gov NCT02781337). El criterio de inclusión fue que tuvieran hecho un estudio genético entre 1996 y 2017 (secuenciación y/o determinación de grandes rearreglos de al menos un gen reparador de error de apareamiento). Se analizaron 50 familias con los criterios de Amsterdam. En 23 (46%) se identificaron variantes patogénicas (n=19) y probablemente patogénicas (n=2). El 28.6% de las variantes patogénicas fueron originalmente descritas en esta serie, entre ellas la variante c.1911del en el exón 12 de MSH2 identificada en una familia con agregación de cáncer de mama. Fue identificada una mutación fundadora de Piamonte, Italia (c.2252_2253del). Los genes afectados incluyeron MSH2 (13 variantes)MLH1 (9 variantes) y PMS2 (1 variante). La tasa de detección de mutaciones fue del 46%. Entre las familias con mutación identificada (n=23), se detectó una edad mediana de inicio del cáncer menor (46 vs. 50 años, p=0.02) y mayor incidencia de tumores extra-colorrectales (90.5% vs. 45.8%, p <0.01), que las 27 sin mutaciones. La implementación de estudios genéticos permitió caracterizar variables demográficas en base a la identificación de mutaciones germinales asociadas al síndrome de Lynch, identificándose dos grupos diferenciados por la edad de afectación y la incidencia de tumores extracolónicos.

Citas

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65:87-108. DOI: https://doi.org/10.3322/caac.21262

Ferlay J, Shin HR, Bray F, Forman D, Mathers C Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127:2893-917. DOI: https://doi.org/10.1002/ijc.25516

Abriata MG. Boletín de Vigilancia Epidemiológica. Argentina: Instituto Nacional del Cancer; 2011.

Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med 2009; 361:2449-60. DOI: https://doi.org/10.1056/NEJMra0804588

Woods MO, Younghusband HB, Parfrey PS, et al. The genetic basis of colorectal cancer in a population-based incident cohort with a high rate of familial disease. Gut 2010; 59:1369-77. DOI: https://doi.org/10.1136/gut.2010.208462

Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 2007; 50:113-30. DOI: https://doi.org/10.1111/j.1365-2559.2006.02549.x

Webber EM, Kauffman TL, O’Connor E, Goddard KA. Systematic review of the predictive effect of MSI status in colorectal cancer patients undergoing 5FU-based chemotherapy. BMC Cancer 2015;15:156. DOI: https://doi.org/10.1186/s12885-015-1093-4

Kim JH, Kang GH. Molecular and prognostic heterogeneity of microsatellite-unstable colorectal cancer. World J Gastroenterol 2014; 20:4230-43. DOI: https://doi.org/10.3748/wjg.v20.i15.4230

Vasen HF, Mecklin JP, Khan PM, Lynch HT. The International Collaborative Group on Hereditary Non- Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum 1991; 34:424-5. DOI: https://doi.org/10.1007/BF02053699

Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative Group on HNPCC. Gastroenterology 1999; 116:1453-6. DOI: https://doi.org/10.1016/S0016-5085(99)70510-X

Vaccaro CA, Bonadeo F, Roverano AV, et al. Hereditary nonpolyposis colorectal cancer (Lynch syndrome) in Argentina: report from a referral hospital register. Dis Colon Rectum 2007; 50:1604-11. DOI: https://doi.org/10.1007/s10350-007-9037-y

Sarroca C, Valle AD, Fresco R, Renkonen E, Peltömaki P, Lynch H. Frequency of hereditary non-polyposis colorectal cancer among Uruguayan patients with colorectal cancer. Clin Genet 2005; 68:80-7. DOI: https://doi.org/10.1111/j.1399-0004.2005.00458.x

Westlake PJ, Bryant HE, Huchcroft SA, Sutherland LR. Frequency of hereditary nonpolyposis colorectal cancer in southern Alberta. Dig Dis Sci 1991; 36:1441-7. DOI: https://doi.org/10.1007/BF01296813

Kravochuck SE, Church JM. Hereditary non-polyposis colorectal cancer/Lynch syndrome in three dimensions. ANZ J Surg 2017; 87:1006-10. DOI: https://doi.org/10.1111/ans.13483

Alvarez K, Hurtado C, Hevia MA, et al. Spectrum of MLH1 and MSH2 mutations in Chilean families with suspected Lynch syndrome. Dis Colon Rectum 2010; 53:450-9. DOI: https://doi.org/10.1007/DCR.0b013e3181d0c114

Carethers JM, Stoffel EM. Lynch syndrome and Lynch syndrome mimics: The growing complex landscape of hereditary colon cancer. World J Gastroenterol 2015; 21:9253-61. DOI: https://doi.org/10.3748/wjg.v21.i31.9253

Giardiello FM, Allen JI, Axilbund JE, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society Task Force on colorectal cancer. Gastroenterol 2014; 147:502-26. DOI: https://doi.org/10.1053/j.gastro.2014.04.001

Fishel R, Lescoe MK, Rao MR, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993; 75:1027-38. DOI: https://doi.org/10.1016/0092-8674(93)90546-3

Leach FS, Nicolaides NC, Papadopoulos N, et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 1993; 75:1215-25. DOI: https://doi.org/10.1016/0092-8674(93)90330-S

Lindor NM, Rabe K, Petersen GM, et al. Lower Cancer Incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA 2005; 293:1979-85. DOI: https://doi.org/10.1001/jama.293.16.1979

Mueller-Koch Y, Vogelsang H, Kopp R, et al. Hereditary non-polyposis colorectal cancer: clinical and molecular evidence for a new entity of hereditary colorectal cancer. Gut 2005; 54:1733-40. DOI: https://doi.org/10.1136/gut.2004.060905

Llor X, Pons E, Xicola RM, et al. Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Clin Cancer Res 2005; 11:7304-10. DOI: https://doi.org/10.1158/1078-0432.CCR-05-0965

Valle L, Perea J, Carbonell P, et al. Clinicopathologic and pedigree differences in Amsterdam I-positive hereditary nonpolyposis colorectal cancer families according to tumor microsatellite instability status. J Clin Oncol 2007; 25:781-6. DOI: https://doi.org/10.1200/JCO.2006.06.9781

Lagerstedt Robinson K, Liu T, Vandrovcova J, et al. Lynch syndrome (hereditary nonpolyposis colorectal cancer) diagnostics. J Natl Cancer Inst 2007; 99:291-9. DOI: https://doi.org/10.1093/jnci/djk051

Lynch HT, Lynch PM, Pester J, Fusaro RM. The cancer family syndrome. Rare cutaneous phenotypic linkage of Torre’s syndrome. Arch Intern Med 1981; 141:607-11. DOI: https://doi.org/10.1001/archinte.141.5.607

Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 2008; 135:1079-99. DOI: https://doi.org/10.1053/j.gastro.2008.07.076

Entius MM, Keller JJ, Drillenburg P, Kuypers KC, Giardiello FM, Offerhaus GJ. Microsatellite instability and expression of hMLH-1 and hMSH-2 in sebaceous gland carcinomas as markers for Muir-Torre syndrome. Clin Cancer Res 2000; 6:1784-9.

Hamilton SR, Liu B, Parsons RE, et al. The molecular basis of Turcot’s syndrome. N Engl J Med 1995; 332:839-47. DOI: https://doi.org/10.1056/NEJM199503303321302

Engel C, Loeffler M, Steinke V, et al. Risks of less common cancers in proven mutation carriers with Lynch syndrome. J Clin Oncol 2012; 30:4409-15. DOI: https://doi.org/10.1200/JCO.2012.43.2278

Vasen HF, Tomlinson I, Castells A. Clinical management of hereditary colorectal cancer syndromes. Nat Rev Gastroenterol Hepatol 2015; 12:88-97. DOI: https://doi.org/10.1038/nrgastro.2014.229

Barrow E, Hill J, Gareth Evans DG. Cancer risk in Lynch Syndrome. Fam Cancer 2013; 12:229-40. DOI: https://doi.org/10.1007/s10689-013-9615-1

Grindedal EM, Møller P, Eeles R, et al. Germ-line mutations in mismatch repair genes associated with prostate cancer. Cancer Epidemiol Biomarkers Prev 2009; 18:2460-7. DOI: https://doi.org/10.1158/1055-9965.EPI-09-0058

Kempers MJ, Kuiper RP, Ockeloen CW, et al. Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: a cohort study. Lancet Oncol 2011;12:49-55. DOI: https://doi.org/10.1016/S1470-2045(10)70265-5

Baglietto L, Lindor NM, Dowty JG, et al. Risks of Lynch syndrome cancers for MSH6 mutation carriers. J Natl Cancer Inst 2010; 102:193-201. DOI: https://doi.org/10.1093/jnci/djp473

Hendriks YM, Wagner A, Morreau H, et al. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology 2004; 127:17-25. DOI: https://doi.org/10.1053/j.gastro.2004.03.068

Gupta S, Provenzale D, Ragenbogen SE. Genetic / Familial High-Risk Assessment : Colorectal, Version 3.2017. Natl Compr Cancer Netw 2017; 15:1465-75. DOI: https://doi.org/10.6004/jnccn.2017.0176

Senter L, Clendenning M, Sotamaa K, et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology 2008; 135:419-28. DOI: https://doi.org/10.1053/j.gastro.2008.04.026

ten Broeke SW, Brohet RM, Tops CM, et al. Lynch syndrome caused by germline PMS2 mutations: delineating the cancer risk. J Clin Oncol 2015; 33:319-25. DOI: https://doi.org/10.1200/JCO.2014.57.8088

Descargas

Publicado

15-04-2018

Cómo citar

Vaccaro, C. A., Piñero, T., Herrando, A. I., Cajal, R., Ferro, A., Kalfayan, P., Santino, J. P., Falconi, M. D., Verzura, A., Guerrero, G., Riggi, M. C., Pavicic, W., & González, M. L. (2018). Síndrome de Lynch: impacto de la caracterización de familias en base a estudios genéticos. Oncología Clínica, 23(1). https://doi.org/10.56969/oc.v23i1.63

Número

Sección

Artículos Originales

Categorías

Artículos más leídos del mismo autor/a