Occurrence of Microcystis aeruginosa Kütz. Water Blooms in a Eutrophic Pond of Chidambaram Taluk

Article Preview

Abstract:

The occurrence and abundance of Microcystis aeruginosa were monitored monthly in eutrophic pond water of Ilamiyakkinar temple pond from July 2014 to June 2015. Some environmental factors such as water temperature, pH, free carbon-dioxide (FCO2), total alkalinity, Dissolved oxygen (DO2), biological oxygen demand (BOD), nitrate (NO2-N) and phosphate are recorded and their relationship with the bloom formation by Microcystis aeruginosa were discussed. The initiation and persistence of Microcystis aeruginosa were founded to be triggered by relatively high water temperature (24 °C to 36.5 °C), pH (7.3 to 8.72) and NO2-N concentration.

Info:

Pages:

11-15

Citation:

Online since:

September 2015

Export:

[1] APHA, Standard Methods for examination of water and wastewater (22nd ed.), American Public Health Association, Washington DC, 2012, p.1175.

Google Scholar

[2] Affan, M. A., A. S. Jewel, M. Haque, S. Khan, J. B. Lee, Algae 20 (1) 2005 43-52.

Google Scholar

[3] Azevedo, S. M. F. O., W. W. Carmichael, E. M. Jochimsen, K. L.Rinehart, S. lau, G.R. Shaw, G. K. Eaglesham, Toxicology 181 (2002) 441-446.

DOI: 10.1016/s0300-483x(02)00491-2

Google Scholar

[4] Carmichael, W. W., Assessment of blue-green algal toxins in raw and finished drinking water. In: AWWA Research Foundation Report, American Water Works Association. Denver, Co. USA. ISBN-1-58321-076-9 (2001) 1-49.

Google Scholar

[5] Elayaraj, B., M. Selvaraju, International Letters of Natural Science 16 (2014) 145-156.

Google Scholar

[6] Eloff, J. N., A. J. Vander, Toxicology studies on Microcystis. In: The Water Environment Algal Toxin and Health. Carmichael, W. W (eds.). Plenum Press, New York. (1981) 343-364.

Google Scholar

[7] Jewel, M. A. S., M. M. Rahman, M. S. Sarker, Bangladesh J. Prog. Sci & Tech 4 (2) (2006) 159-164.

Google Scholar

[8] Kardinaal, W. E., P.M. Visser, Chapter 3. Dynamics of cyanobacterial toxins, sources of variability in microcystin concentrations. In: harmful Cyanobacteria. J. Huiman, H. C. P. Matthijs and P. M. Visser (eds), Springer, Dordrecht, pp.41-63.

DOI: 10.1007/1-4020-3022-3_3

Google Scholar

[9] Komarek, J. Arch. Hydrobiol., Algal. Stud., 64 (1991) 115-127.

Google Scholar

[10] NALMS (North American Lake Management Society), (2007) 1-2.

Google Scholar

[11] Park, H. D., C. Iwami, M. F. Watanabe, K. Harada, T. Okino, H. Hayashi, Environ Toxicol Water Quality 13 (1998) 61-72.

Google Scholar

[12] Quadra, B., L. Mohammed, S. Brahim, V. Victor, Z. Halim, El. A. Maria, D. Jacqueline, Oceanographic commission (1998) 29-31.

Google Scholar

[13] Sivonen, K., G. Jones, 1999. Chapter 3. Cyanobacterial toxins. In: toxic cyanobacteria in water, A guide to their health consequences, monitoring and management, I. Chorus and J. Bartram (eds), E & FN Spon., London. 41-112.

DOI: 10.1201/9781482295061

Google Scholar

[14] Tilman, D., R. Kiesling, R. Sterner, S. S. Kilman, F. A. Johnosan, Arch. Hydrobiol 106 (1986) 474-485.

Google Scholar

[15] Tundisi, J. G., T. Matsumura, Brazillin phycological society (1992) 1-33.

Google Scholar

[16] Utkilen, H., O. M. Skulburg, B. Underdhal, N. Gjolme, R. Skulberg, J. Kotai, Phycologia 35 (6) (1996) 189-197.

Google Scholar

[17] Wu, Z. X and L. R. Song, 2008. Physiological comparison between colonial and unicellular forms of Microcystis aeruginosa Kutz. (Cyanobacteria). Phycologia 47: 98-104.

DOI: 10.2216/07-49.1

Google Scholar