Weed Allelochemicals and Possibility for Pest Management

Article Preview

Abstract:

Purpose: Weed interference is a constraint in agricultural practice. The crop-weed interaction has been extensively described in literature, but the weed-weed interaction and their potential usage in crop production have not much been understood. In this paper, the interactions of allelochemicals of the weeds which cause troublesome in crop production and ecosystem against weeds, crops, and pathogens are described. Principal results: Weed allelochemicals are classified into many chemical classes, and the majority is consisting of phenolics acids, alkaloids, terpenes, flavonoids, long chain fatty acids, lactones, and other volatile compounds. Type of weed allelochemicals and their doses are varied among weed species. Some allelochemicals such as catechin (+/-) have been reported to be responsible for weed invasiveness. Some crops exude germination stimulants to parasitic weeds such as Striga spp. and Orobanche spp. In contrast to their negative impacts on crop production, many weeds can be exploited as promising sources to control harmful insects, fungi, bacteria, and weeds. For instance, Ageratum conyzoides is a destructive weed in crop production, but it exerted excellent insecticidal, antifungal, and herbicidal capacity and promoted citrus productivity in A. conyzoides intercropped citrus orchards. Major conclusions: In general, weeds compete with crops by chemical pathway by releasing plant growth inhibitors to reduce crop growth. Weed allelochemicals may be successfully exploited for pest and weed controls in an integrated sustainable crop productoiin. Some weed allelochemicals are potent for development of natural pesticides.

Info:

Pages:

25-39

Citation:

Online since:

July 2016

Export:

* - Corresponding Author

[1] J.R. Qasem, C.L. Foy, Weed allelopathy, its ecological impact and future prospects: a review, J. Crop Prod. 4 (2001) 43-119.

DOI: 10.1300/J144v04n02_02

Google Scholar

[2] S.R. Eskelsen, G.D. Crabtree, The role of allelopathy in buckwheat (Fagopyrum sagittatum) inhibition of Canada thistle (Cirsium arvense), Weed Sci. 43 (1995) 70-74.

DOI: 10.1614/WT-09-050.1

Google Scholar

[3] K.L. Kalburtji, A. Gagianas, Effects of sugarbeet as a preceding crop on cotton, J. Agron. Crop Sci. 178 (1997) 59-63

DOI: 10.1111/j.1439-037X.1997.tb00351.x

Google Scholar

[4] J.S. Sauerborn, Legumes used for weed control in agro-ecosystems in the tropics, Plant Res. Dev. 50 (1999) 74-82.

Google Scholar

[5] T.D. Xuan, I.M. Chung, T.D. Khanh, S. Tawata, Identification of phytotoxic substances from early growth of barnyardgrass (Echinochloacrus-galli) root exudates, J. Chem. Ecol. 32 (2006a) 895-906.

DOI: 10.1007/s10886-006-9035-x

Google Scholar

[6] T.D. Xuan, A.A. Elzaawely, F. Deba, M. Fukuta, S. Tawata, Mimosine in Leucaena as a potent bio-herbicide, Agron. Sustain. Dev. 26 (2006b) 89-97.

DOI: 10.1051/agro:2006001

Google Scholar

[7] H.P. Bais, R. Vepachedu, R. Callaway, Allelopathy and exotic plant invasion: from molecules and genes to species, Sci. 301 (2003) 1377-1380.

DOI: 10.1126/science.327.5967.781-b

Google Scholar

[8] S.O. Duke, A.C. Blair, F.E. Dayan, R.D. Johnson, K.M. Meepagala, D. Cook, J. Bajsa, Is (-) catechin a novel weapon of spotted knapweed (Centaurea stoebe)?, J. Chem. Ecol. 35 (2009) 142-153.

DOI: 10.1007/s10886-008-9587-z

Google Scholar

[9] U.P. Singh, V.B. Pandey, K.N. Singh, R.D.N. Singh, Antifungal activity of some new flavones and flavone glycosides of Echinops echinatus, Can. J. Bot. 66 (1998) 1901-1903.

DOI: 10.1139/b88-260

Google Scholar

[10] O. Spring, U. Rodon, F.A. Macias, Sesquiterpenes from noncapitate glandular trichomes of Helianthus annus, Phytochem. 31 (1992) 1541-1544.

DOI: 10.1016/0031-9422(92)83102-5

Google Scholar

[11] F.A. Tomas-Barberan, A.D. Msonthi, K. Hostettmann, Antifungal epicuticular methylated flavonoids from Helichrysum nitens, Phytochem. 27 (1998) 75-755.

DOI: 10.1016/0031-9422(88)84087-1

Google Scholar

[12] A.G. Gonzalez, T. Abad, I.A. Jiménez, A.G. Ravelo, J.G. L.Z. Aguiar, L.S. Andrés, M. Plasencia, J.R. Herrera, L. Moujir, A first study of antibacterial activity of diterpenes from some Salvia species (Lamiaceae), Biochem. Syst. Ecol. 17 (1989) 293-296.

DOI: 10.1016/0305-1978(89)90005-7

Google Scholar

[13] L. Kasasian, Control of Orobanche, Int. J. Pest Manage. 19 (1973) 368-371.

DOI: 10.1080/09670877309412782

Google Scholar

[14] H.H. Linke, H. Schnell, M.C. Saxena, Factors affecting the seed bank of Orobanche crenata in fields under lentil based cropping systems in northern Syria, in: J.K. Ransom, L.J. Musselman, A.D. Worsham, C. Parkers (Eds.), Proceedings of the 5th International Symposium on parasitic weeds. Nairobi: CIMMYT, 1991, pp.321-327.

Google Scholar

[15] R. Labrada, R. Perez, Non-chemical control methods for Orobanche ramose, Agrotenica de Cuba. 20 (1988) 35-40.

Google Scholar

[16] B. Bouhatous, P. Jacquard, The effect of combination of hosts on infection capacity of Orobanche crenata Forks, in: A.H. Pieterse, J.A.C. Verkei, S.J. Borg (Eds), Biology and management of orobanche, proceedings of the third international workshop on orobanche and related striga research. Amsterdam, The Netherlands, Royal Tropical Institute, 1994, pp.320-333.

DOI: 10.1017/s0014479700025965

Google Scholar

[17] E.L. Rice, Allelopathy. New York, Academic Press, 1974, p.352.

DOI: 10.1007/BF02869951

Google Scholar

[18] A.R. Putnam, C.S. Tang, Allelopathy: state of science, in: A.R. Putnam, C.S. Tang (Eds), The Science of Allelopathy. New York, John Wiley and Sons, Inc., 1986, pp.1-19.

Google Scholar

[19] J.V. Lovett, J. Levitt, Allelochemicals in a future agriculture, in: B. Stonehouse (ed), Biological Husbandry. London, Butterworth, 1981, pp.169-181.

DOI: 10.1016/b978-0-408-10726-6.50018-8

Google Scholar

[20] W.W. Fletcher, R.C. Kirkwood, A growth inhibitor found in Centaurea spp, Can. J. Plant Sci. 43 (1982) 475-481.

DOI: 10.4141/cjps63-098

Google Scholar

[21] J.R. Qasem, Allelopathic effect of white top (Lepidium draba) on wheat and barley, Allelopathy J. 1 (1994) 29-40.

Google Scholar

[22] S.D. Kanchan, J. Chandra, Pollen allelopathy – a new phenomenon, New Phytol. 84 (1980) 739-746.

DOI: 10.1111/j.1469-8137.1980.tb04786.x

Google Scholar

[23] J.R. Qasem, Aqueous extract effect of nettle-leaved goosefoot (Chenopodium murale L.) on wheat and barley, Res. J. Apeppo Univ. 14 (1990) 37-53.

Google Scholar

[24] J. Arines, E. Vieitez, J.L.F. Mantilla, In: Herbicides and Plant Growth Regulators. London, Granada, 1974, pp.93-99.

Google Scholar

[25] D.T. Bell, D.E. Koeppe, Noncompetitive effects of giant foxtail on the growth of corn, Agron. J. 64 (1972) 321-325.

DOI: 10.2134/agronj1972.00021962006400030019x

Google Scholar

[26] D.A. Levin, The chemical defenses of plants to pathogens and herbivores, Annu. Rev. Ecol. Syst. 7 (1976) 121-159.

DOI: 10.1146/annurev.es.07.110176.001005

Google Scholar

[27] T. Swain, Secondary compounds as protective agents, Annu. Rev. Plant Phys. 28 (1977) 479-501.

Google Scholar

[28] F. Deba, T.D. Xuan, M. Yasuda, S. Tawata, Herbicidal and fungicidal activities and identification of potential phytotoxins from Bidens pilosa L. var. radiata Scherff, Weed Biol. Manag. 7 (2007) 77-83.

DOI: 10.1111/j.1445-6664.2007.00239.x

Google Scholar

[29] G. Campbell, J.D.H. Lambert, T. Arnason, G.H.N. Towers, Allelopathic properties of alpha-terthienyl and phenylheptatriyne, naturally occurring compounds from species of Asteraceae, J. Chem. Ecol. 8 (1982) 961-972.

DOI: 10.1007/BF00987662

Google Scholar

[30] T. Yamamoto, K. Yokotani-Tomita, S. Kosemura, S. Yamamura, K. Yamada, K. Hasegawa, Allelopathic substance exuded from a serious weed, germinating barnyardgrass (Echinochloa crus-galli L.) roots, J. Plant Growth Regul. 18 (1999) 65-67.

DOI: 10.1007/PL00007050

Google Scholar

[31] Y. Gu, H.B. Li, C.H. Kong, Allelopathic potential of barnyardgrass on rice and soil microbes in paddy, Allelopathy J. 21 (2008) 389-395.

Google Scholar

[32] T.D. Xuan, T. Toyama, M. Fukuta, T.D. Khanh, S. Tawata, Chemical interaction in the invasiveness of cogongrass (Imperata cylindrica (L.) Beauv.), J. Agr. Food Chem. 57 (2009) 9448-9453.

DOI: 10.1021/jf902310j

Google Scholar

[33] A.S. Abdul-Wahab, F.A.G. Al-Naib, Inhibitional effects of Imperata cylindrica (L.), Bull. Iraqi Nat. Hist. Mus. Pub. 5 (1972) 17-24.

Google Scholar

[34] J.H.H. Eussen, Isolation of growth inhibitory substances from alang-alang (Imperata cylindrica (L.)). in: J.H.H. Eussen (Ed.), Studies on tropical weed Imperata cylindrica (L.) Beauv. var. major. Utrecht, Drukkerij Elinkwijk Bv, 1978.

DOI: 10.1007/bf00345330

Google Scholar

[35] J.H.H. Eussen, G.J. Niemann, Zeitschrift fur Pflanzenphysiol 102:263, cited by J.V. Lovett (1986) Allelopathy: The Australian experience, in: A.R. Putnam, C.S. Tang (Eds.), The Science of Allelopathy. New York, John Wiley and Sons, 1986, pp.75-99.

Google Scholar

[36] S.W. Adkins, A. Shabbir, Biology, ecology and management of the invasive pathenium weed (Parthenium hysterophorus L.), Pest Manag. Sci. 70 (2014) 1023-1029

DOI: 10.1002/ps.3708

Google Scholar

[37] K.K. Barman, V.P. Singh, R.P. Dubey, P.K. Singh, A. Dixit, A.R. Sharma, Challenges and opportunities in weed management under a changing agricultural scenario, in: Recent Advances in Weed Management. Springer, New York Heidelberg Dordrecht London, 2014, pp.365-390.

DOI: 10.1007/978-1-4939-1019-9_16

Google Scholar

[38] S.W. Adkins, S.C. Navie, K. Dhlileepan, Parthenium weed in Australia: research progress and prospects, in: T.V. Ramachadra Prasad, H.V. Nanjappa, R. Devendra (Eds.), Proceedings of the Second International Conference on Parthenium Management. University of Agricultural Sciences, Bangalore, India, 2005, pp.11-27.

Google Scholar

[39] L. Nigatu, A. Hasen, J. Sharma, S.W. Adkins, Impact of Parthenium hysterophorus on grazing land communities in North-Eeastern Ethiopia, Weed Biol. Manag. 10 (2010) 143-152

DOI: 10.1111/j.1445-6664.2010.00378.x

Google Scholar

[40] A. Tanveer, A. Khaliq, H.H. Ali, G. Mahajan, B.S. Chauhan, Interference and management of parthenium: the world's most important invasive weed, Crop Prot. 68 (2015) 49-59

DOI: 10.1016/j.cropro.2014.11.005

Google Scholar

[41] H.P. Singh, Effect of parthenin - a sesquiterpene lactone from Parthenium hysterophorus, on early growth and physiology of Ageratum conyzoides, J. Chem. Ecol. 28 (2002) 2169-2179

DOI: 10.1023/A:1021089013754

Google Scholar

[42] D.R. Batish, H.P. Singh, D.B. Saxena, R.K. Kohli, Weed suppressing ability of parthenin-a sesquiterpene lactone from Parthenium hyterophorus. N. Z., Plant Prot. 55 (2002) 218-221.

DOI: 10.30843/nzpp.2002.55.3893

Google Scholar

[43] D.R. Batish, Assessment of Parthenium against some weeds, A. Naturforsch 62 (2007) 367-372.

Google Scholar

[44] C.F. Reinhardt, R.G. Belz, K. Hurle, Role of the allelochemical parthenin in the invasive strategy of the alient plant Parthenium hysterophorus L., South Afr. J. Bot. 75 (2009) 417-418.

DOI: 10.1016/j.sajb.2009.02.097

Google Scholar

[45] N. Ambiye, V. Golatkar, Phytochemical analysis of Lantana camara and Parthenium hysterophorus, Bioinfolet. 7 (2010) 135-136.

Google Scholar

[46] C. Yebing, Allelopathic effects of Parthenium hysterophorus L. volatilos its chemical components, Allelopathy J. 27 (2011) 217.

Google Scholar

[47] K. Jai, C. Abhishek, K. Ajita, B. Satish, J. Disha, Inhibitory potential of parthenin a sesquiterpene lactone against Fusarium oxysporum, Aspergillus niger and Drechslera hawaiiensis, Intel. J. Res. Biosci. 5 (2016) 72-75.

Google Scholar

[48] W. Roder, S. Phenchanh, B. Keoboulapha, Weeds in slash and burn rice fields in northern Laos, Weed Res. 37 (1997) 111-119.

DOI: 10.1046/j.1365-3180.1996.d01-6.x

Google Scholar

[49] R.K. Kohli, D.R. Batish, H.P. Singh, K.S. Dogra, Status, invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L., Ageratum conyzoides L., Lantana camara L.) in India, Biol. Invasions. 8 (2006) 1501-1510.

DOI: 10.1007/s10530-005-5842-1

Google Scholar

[50] A.L. Okunade, Ageratum conyzoides L. (Asteraeae), Fitoterapia. 73 (2002) 1-16.

DOI: 10.1016/S0367-326X(01)00364-1

Google Scholar

[51] T.D. Xuan, T. Shinkichi, N.H. Hong, T.D. Khanh, I.M. Chung, Assessment of phytotoxic action of Ageratum conyzoides L. (billy goat weed) on weeds, Crop Prot. 23 (2004) 915-922.

DOI: 10.1016/j.cropro.2004.02.005

Google Scholar

[52] C.H. Kong, F. Hu, X. Xu, M. Zhang, W. Liang, Volatile allelochemicals in the Ageratum conyzoides intercropped citrus orchard and their effects on mites Amblyseius newsami and Panonychus citri, J. Chem. Ecol. 31 (2005) 2193-2203.

DOI: 10.1007/s10886-005-6085-4

Google Scholar

[53] W.S. Bowers, T. Ohta, J.S. Cleere, P.A. Marsella, Discovery of insect anti-juvenile hormone in plants, Science. 193 (1976) 542-547.

DOI: 10.1126/science.986685

Google Scholar

[54] C.H. Kong, Allelochemicals and their transformations in the Ageratum conyzoides intercropped citrus orchard soils, Plant Soil. 264 (2004) 149-157.

DOI: 10.1023/B:PLSO.0000047759.65133.fa

Google Scholar

[55] C.H. Kong, Ecological pest management and control by using allelopathic weeds (Ageratum conyzoides, Ambrosia trifida, and Lantana camara) and their allelochemicals in China, Weed Biol. Manag. 10 (2010) 73-80.

DOI: 10.1111/j.1445-6664.2010.00373.x

Google Scholar

[56] J.H. Kil, K.C. Shim, K.A. Park, K. Kim, Inhibitory effects of Ambrosia trifida L. on the development of root hairs and protein patterns of radicle, Intel. J. Biol. Biomol. Agri. Food Biotech. Engin. 8 (2014) 608-611.

Google Scholar

[57] C.H. Kong, P. Wang, C.X. Zhang, M.X. Zhang, F. Hu, Herbicidal potential of allelochemicals from Lantana camara against Eichlornia crasspipes and the alga Microsystis aeruginosa, Weed Res. 46 (2006) 290-295.

DOI: 10.1111/j.1365-3180.2006.00509.x

Google Scholar

[58] M.M. Williams, J.B. Masiunas, Functional relationships between giant ragweed (Ambrosia trifida) interference and sweet corn yield and ear traits, Weed Sci. 54 (2006) 948-953.

DOI: 10.1614/ws-05-187r.1

Google Scholar

[59] E. Bloszyk, U. Rychlewska, B. Szczepanska, M. Holub, Sesquiterpene lactones of Ambrosia artemisiifolia L. and Ambrosia trifida L. species, Collect. Czech Chem. Commu. 57 (1992) 1092-1102.

DOI: 10.1135/cccc19921092

Google Scholar

[60] T.S. Lu, J.P. Felix, V. David, H.F. Nikolaus, Sesquiterpenes and thiarubrines from Ambrosia trifida and its transformed roots, Phytochem. 33 (1993) 113-116.

DOI: 10.1016/0031-9422(93)85405-G

Google Scholar

[61] P. Wang, W.J. Liang, C.H. Kong, Y. Jiang, Allelopathic potentials of volatile allelochemicals from Ambrosia trifida L. on other plants, Allelopathy J. 15 (2005) 131-136.

Google Scholar

[62] P. Wang, C.H. Kong, C.X. Zhang, Chemical composition and antimicrobial activity of the essential oil from Ambrosia trifida L., Molecules 11 (2006) 549-555.

DOI: 10.3390/11070549

Google Scholar

[63] L.G. Holm, D.L. Plucknett, J.V. Pancho, J.P. Herberger, The World's Worst Weeds: Distribution and Ecology. Krieger, Malabar, FL, 1991.

Google Scholar

[64] C.B. Gentle, J.A. Duggin, Allelopathy as a competitive strategy in persistent thicklets of Lantana camara L. in three Australian forest communities, Plant Ecol. 132 (1997) 85-96.

DOI: 10.1023/A:1009707404802

Google Scholar

[65] E.L. Ghisalberti, Lantana camara L. (Verbenaceae), Fitoterapia 71 (2000) 467-486.

DOI: 10.1016/S0367-326X(00)00202-1

Google Scholar

[66] M.C. Press, J.D. Scholes, C.R. Riches, Current status and future prospects for management of parasitic weeds (Striga and Orobanche), in: C.R. Riches (Ed.), the World's Worst Weeds. British Crop Protection Council, Brighton, UK, 2001, pp.71-90.

Google Scholar

[67] R. Matusova, R. Kumkum, F.W.A. Verstappen, M.C.R. Franssen, M.H. Beale and H.J. Bouwmeester, The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway, Plant Physiol. 139 (2005) 920-934. doi: http://dx.doi.org/10.1104/ p.105

DOI: 10.1104/pp.105.061382

Google Scholar

[68] J.H. Dawson, L.J. Musselman, P. Wolswinkel, I. Dorr, Biology and control of Cuscuta, Rev. Weed Sci. 6 (1994) 265-317.

Google Scholar

[69] W. Huang, S.B. Wu, Y.L. Wang, Z.Y. Guo, E.J. Kennelly, C.L. Long, Chemical constituents from Striga asiatica and its chemotaxonomic study, Biochem. System Ecol. 48 (2013) 100-106.

DOI: 10.1016/j.bse.2012.10.010

Google Scholar

[70] T. Yokota, H. Sakai, K. Okuno, K. Yoneyama, Y. Takeuchi, Alectrol and orobanchol, Germination stimulants from Orobanche minor, from its host red clover, Phytochem. 49 (1998) 1967-1973.

DOI: 10.1016/S0031-9422(98)00419-1

Google Scholar

[71] T.D. Khanh, L.C. Cong, T.D. Xuan, S.J. Lee, D.S. Kong, and I.M. Chung, Weed-suppressing potential of dodder (Cuscuta hygrophilae) and its phytotoxic constituents, Weed Sci. 56 (2008) 119-127.

DOI: 10.1614/WS-07-102.1

Google Scholar

[72] C.H. Muller, Inhibitory terpenes volatilized from Salvia shrubs, Bull. Torrey Bot. Club 92 (1965) 38-45.

DOI: 10.2307/2483311

Google Scholar

[73] J. Wurzoburger, Y. Leshem, Physiological action of the germination inhibitor in the husk of Aegilops hotschyi Bioss, New Phytol. 68 (1969) 337-341.

DOI: 10.1111/j.1469-8137.1969.tb06445.x

Google Scholar

[74] C.E. Colton, F.A. Einhellig, Allelopathic mechanisms of velvet leaf (Abutilon theophrasti Medic, Malvaceae) on soybean, Soil Sci. Soc. Am. J. 41 (1980) 903-908.

Google Scholar

[75] I.S. Alsaadawi, E.L. Rice, Allelopathic effects of Polygonum aviculare L. I. Vegetational patterning, J. Chem. Ecol. 8 (1982) 993-1009.

DOI: 10.1007/BF00987881

Google Scholar

[76] M. Vikherkova, Influence of active substances from rhizome of wheatgrass on growth and water balance of flax, in: A.M. Grodzinsky (Ed.), Physiological-biochemical basis of plant interaction in phytocenoses. Keiv, Naukova Dumka, 1970, pp.135-140.

Google Scholar

[77] G.D. Manners, D.S. Galitz, Allelopathy of small everlasting (Antennaria microphylla): Identification of constituents phytotoxic to leafy spurge (Euphorbia esula), Weed Sci. 34 (1986) 8-12.

DOI: 10.1017/s0043174500026345

Google Scholar

[78] J. Lydon, J.R. Teasdale, P.K. Chen, Allelopathic activity of annual wormwood (Artemisia annua) and the role of artemisinin, Weed Sci. 45 (1997) 807-811.

DOI: 10.1017/s0043174500089001

Google Scholar

[79] E.L. Rice, R.L. Parenti, Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. VI. Inhibitors produced by Bromus japonica Thunb, Southwest Nat. 12 (1967) 97-103.

DOI: 10.2307/1934928

Google Scholar

[80] G. Grummer, H. Beyer, The influence exerted by species of Camelina on flax by means of toxic substances, Symposium of the British Ecological Society 1 (1960) 13-157.

Google Scholar

[81] M.A.B. Mallik, R. Puchala, F.A. Grosz, A growth-inhibitory factor from lambquarters (Chenopodium album), J. Chem. Ecol. 20 (1994) 957-967.

DOI: 10.1007/BF02059590

Google Scholar

[82] S.R. Ambika, Allelopathic interference of Chromolaena odorata (L.), in: R.M. King, H. Robinson (Eds.), Second world congress on allelopathy: critical analysis and future prospect. Lakehead University, Thunder Bay, Ontario, Canada, Abstract no 49, 1999.

Google Scholar

[83] F. Hussain, T.W. Khan, A. Hussain, Allelopathic effects of Cirsium arvense (L.) Scop, in: I. Ilahi, F. Hussain (Eds.), Modern trends of plant science research in Pakistan. Proceedings in third national conference of plant scientists. Department of Botany, Peshawar, University of Peshawar, 1987, pp.24-28.

Google Scholar

[84] R.S. Tames, M.D. Gesto, E. Vieitez, Growth substances isolated from tubers of Cyperus esculentus var. aureus, Physiol. Plant 28 (1973) 95-200.

DOI: 10.1111/j.1399-3054.1973.tb01175.x

Google Scholar

[85] E.L. Rice, W.T. Penfound, L.M. Rohrbaugh, Seed dispersal and mineral nutrition in succession in abandoned fields in central Oklahoma, Ecol. 41 (1960) 224-228.

DOI: 10.2307/1931958

Google Scholar

[86] R.L. Parenti, E.L. Rice, Inhibitional effects of Digitaria sanguinalis and possible role in old-field succession, Bull. Torrey Bot. Club 96 (1969) 70-78.

DOI: 10.2307/2484009

Google Scholar

[87] S.R. Soni, K. Mohnot, Presence of an autotoxic factor in fruit carp of Echinops echinatus Roxb, J. Curr. Biosci. 5 (1988) 101-104.

Google Scholar

[88] M.C. Salas, E. Vieitez, Activated de crecimiento de Ericaceae, Anales de Edafocogia y Agrobilogia 31 (1972) 1001-1009.

Google Scholar

[89] A. Ballester, J.M. Albo, E. Vieitez, The allelopathic potential of Erica scoparia L., Oecol. 30 (1977) 55-6.

DOI: 10.1007/BF00344891

Google Scholar

[90] Carballeira, A. Cuervo, Seasonal variation in allelopathic potential of soils from Erica australis L. healthland, Acta. Oecol. 1 (1980) 345-353.

Google Scholar

[91] E.L. Rice, Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. IV. The inhibitors produced by Ambrosia elatior L. and Ambrosia psilostachya D. C., Southwest Nat. 10 (1965) 248-255.

Google Scholar

[92] S. Kohmuenzer, Botanical and chemical studies of the collective species Gallium mollugo with reference to karyotypes growing in Poland.VI. Effects of extracts and some other chemical components of Galium molugo on the germination of seeds and growth of selected plant, Dissert. Pharm. Pharma. 17 (1965) 369-379.

Google Scholar

[93] H.P. Singh, D.R. Batish, R.K. Kohli, Autotoxicity: concept, organisms, and ecological significance, Crit. Rev. Plant Sci. 18 (1999) 757-772.

DOI: 10.1080/07352689991309478

Google Scholar

[94] A.G. Winter, New physiological and biological aspects in the interrelationships between higher plants, Sym. Soc. Exp. Biol. 15 (1961) 229-244.

Google Scholar

[95] S.D. Kanchan, Jayachandra, Pollen allelopathy - a new phenomenon, New Phytol. 84 (1976) 739-746.

DOI: 10.1111/j.1469-8137.1980.tb04786.x

Google Scholar

[96] A.D.M. Glass, The allelopathic potential of phenolic acids associated with the rhizosphere of Pteridium aquilinum, Can. J. Bot. 54 (1976) 2440-2444.

DOI: 10.1139/b76-259

Google Scholar

[97] D.C. Whitehead, H. Dibb, R.D. Hartley, Phenolic compounds in soil as influenced by the growth of different plant species, J. App. Ecol. 19 (1982) 579-588.

DOI: 10.2307/2403490

Google Scholar

[98] F.A. Al-Naib, E.L. Rice, Allelopathic effects of Plantanus occidentalis, Bull. Torrey Bot. Club 98 (1971) 75-82.

DOI: 10.2307/2483770

Google Scholar

[99] J. Kawabata, 8-methylsulfinyloctyl isothiocyanate as allelochemical candicate from Rorippa sylvestris Besser, Agric. Biol. Chem. 53 (1989) 3361-3362.

DOI: 10.1271/bbb1961.53.3361

Google Scholar

[100] A. Yamane, J. Fujikura, H. Ogawa, J. Mizutani, Isothiocyanates as allelopathic compounds from Rorippa indica Hiern (Cruciferae) roots, J. Chem. Ecol. 18 (1992) 1941-1954.

DOI: 10.1007/BF00981918

Google Scholar

[101] F.A. Einhellig, J.A. Rasmussen, Allelopathic effects of Rumex crispus on Amaranthus retroflexus, grain sorghum and field corn, Am. Midl. Nat. 90 (1973) 79-86.

DOI: 10.2307/2424268

Google Scholar

[102] M.A.K. Lodhi, Germination and decreased growth of Kochia scoparia in relation to its autoallelopathy, Can. J. Bot. 57 (1979) 1083-1088.

DOI: 10.1139/b79-132

Google Scholar

[103] H.H. Li, Allelopathy of Sasa cernua, J. Chem. Ecol. 18 (1992) 1785-1796.

DOI: 10.1007/BF02751103

Google Scholar

[104] J.A. Rassmussen, E.L. Rice, Allelopathic effects of Sporobolus pyramidatus on vegetational patterning, Am. Midl. Nat. 86 (1971) 309-326.

DOI: 10.2307/2423626

Google Scholar

[105] A.S. Abdul-Wahab, E.L. Rice, Plant inhibition by Johnson grass and its possible significance in old field succession, Bull. Torrey Bot. Club 94 (1967) 486-497.

DOI: 10.2307/2483566

Google Scholar

[106] M. An, J.E. Pratley, T. Haig, Allelochemical dynamic of decaying Vulpia residues, and their corresponding biological activity, in: R.M. King, H. Robinson (Eds.), Second world congress on allelopathy: critical analysis and future prospect. Lakehead University, Thunder Bay, Ontario, Canada, Abstract no 5, 1999.

Google Scholar

[107] Inam, F. Hussain, F. Bano, Allelopathic effects of Pakistani weeds: Xanthium strumarium L., Pak. J. Sci. Ind. Res. 30 (1987) 530-533.

Google Scholar

[108] G. Grumer, The role of toxic substances in the interrelationships between higher plants, in: F.L. Milthorpe (Ed.), Mechanisms in biological bompetition. New York, Academic Press, 1961, pp.219-228.

Google Scholar

[109] J. Friedman, Allelopathy in desert ecosystems, in: G.R. Waller (Ed.), Allelochemicals: Role in Agriculture and Forestry, ACS Symposium Series 330. Washington, DC, American Chemical Society, 1987, pp.53-68.

DOI: 10.1021/bk-1987-0330.ch006

Google Scholar

[110] S.C. Datta, K.N. Ghosh, Allelopathy in 2 species of Chenopodium inhibition of germination and seedling growth of certain weeds. Acta. Soc. Bot. Pol. 56 (1987) 257-270.

DOI: 10.5586/asbp.1987.025

Google Scholar

[111] S.C. Datta, S.D. Chakarbarti, Allelopathy in Clerodendrum viscosum: Inhibition of mustard (Brassica) germination and seedling growth, Comp. Physiol. Ecol. 7 (1982) 1-7.

Google Scholar

[112] K. Komai, K. Ueki, Chemical properties and behavior of polyphenolic substances in purple nutsedge (Cyperus rotundus L.), Weed Res. 20 (1975) 66-71.

DOI: 10.3719/weed.20.66

Google Scholar

[113] Zhou, Chemical constituents of the essential oils of wild oat and crabgrass and their effects on the growth and allelochemical production of wheat. Weed Biol. Manag. 13 (2013) 62-69.

DOI: 10.1111/wbm.12010

Google Scholar

[114] W.H. Muller, C.H. Muller, Volatile growth inhibitors produced by Salvia species. Bull. Torrey Bot. Club 91 (1964) 327-330.

DOI: 10.2307/2483297

Google Scholar

[115] C.H. Muller, W.H. Muller, B.L. Haines, Volatile growth inhibitors produced by shrubs, Sci. 143 (1964) 471-473.

DOI: 10.1126/science.143.3605.471

Google Scholar

[116] J.V. Lovett, Allelopathic potential of Datura stramonium L. (Thorn-apple), Weed Res. 21 (1981) 165-170.

DOI: 10.1111/j.1365-3180.1981.tb00112.x

Google Scholar

[117] J.V. Lovett, W.C. Potts, Primary effects of allelochemicals of Datura stramonium L., Plant Soil 98 (1987) 137-144.

DOI: 10.1007/BF02381734

Google Scholar

[118] G.R. Waller, H. Burstrom, Diterpenoid alkaloids as plant growth inhibitors, Nature 222 (1969) 576-578.

DOI: 10.1038/222576a0

Google Scholar

[119] S. Del Amo, A.L. Anaya, Effect of some sesquiterpene lactones on the growth of certain secondary topical specie, J. Chem. Ecol. 4 (1978) 305-313.

DOI: 10.1007/BF00989339

Google Scholar

[120] L.J. Locken, R.G. Kelsey, Cnicin concentrations in Centaurea maulosa spotted knapweed. Biochem. Syst. Ecol. 15 (1987) 313-320.

DOI: 10.1016/0305-1978(87)90005-6

Google Scholar

[121] K.L. Stevens, G.B. Merrill, Sesquiterpene lactones and allelochemicals from Centaurea, in: A.C. Thompson (Ed.), The Chemistry of Allelopathy. Washington DC, American Chemical Society, 1985, pp.83-98.

DOI: 10.1021/bk-1985-0268.ch006

Google Scholar

[122] J.B. Gressel, L.G. Holm, Chemical inhibition of crop germination by weed seeds and nature of inhibition by Abutilon theophrasti, Weed Res. 4 (1964) 44-53.

DOI: 10.1111/j.1365-3180.1964.tb00266.x

Google Scholar

[123] Inderjit, K.M.M. Dakshini, Investigation of some aspects of chemical ecology of cogongrass, Imperata cylindrica (L.) Beauv., J. Chem. Ecol. 17 (1991) 343-352.

DOI: 10.1007/BF00994337

Google Scholar

[124] G. Aliota, Germination of radish (Raphanus sativus L.) seeds in presence of rue (Ruta graveolens L.) infusion: a cellular perspective, in: R.M. King, H. Robinson (Eds.), Second world congress on allelopathy: critical analysis and future prospect. Lakehead University, Thunder Bay, Ontario, Canada, Abstract no.47, 1999.

Google Scholar

[125] C.J. Avers, R.H. Goodwin, Studies on roots. IV. Effects of coumarin and scopoletin on the standard root growth pattern of Phleumpratense, Am. J. Bot. 43 (1956) 61-620.

Google Scholar

[126] S.C. Datta, A.K. Chatterjee, Allelopathy, in Polygoum orientale: inhibition of seed germination and seedling growth of mustard, Comp. Physiol. Ecol. 5 (1980) 54-59.

Google Scholar

[127] Gajic, Study of the quantitative and qualitative improvement of wheat yield through agrostemin as an allelopathic factor, Fragmenta Herbologica Jugoslavica 63 (1976) 1-5.

Google Scholar

[128] D.T. Bell, C.H. Muller, Dominance of California annual grassland by Brassica nigra, Am. Midl. Nat. 90 (1973) 277-299.

DOI: 10.2307/2424453

Google Scholar

[129] S.C. Datta, S.P. Sinha-Roy, Phytotoxic effects of Croton bonplandianum Baill. on weedy associates, Vegetatio. 30 (1975) 157-163.

DOI: 10.1007/BF02389704

Google Scholar

[130] M. Inoue, Allelochemical from Polygnum sachalinese FR. Schm. (Polygonaceae), J. Chem. Ecol. 18 (1992) 1833-1840.

DOI: 10.1007/BF02751107

Google Scholar

[131] J.V. Lovett, J.A. Lynch, Studies of Salvia reflexa Hornem. 1. Possible competitive mechanisms, Weed Res. 19 (1979) 351-357.

DOI: 10.1111/j.1365-3180.1986.tb00707.x

Google Scholar

[132] C.S. Tang, C.K. Wat, G.H.N. Towers, Thiophenes and benzofurans in the undisturbed rhizosphere of Tagetes patula L., Plant Soil 98 (1987) 93-97.

DOI: 10.1007/BF02381730

Google Scholar

[133] D.T. Patterson, Allelopathy, in: N.D. Camper (Ed.), Research Methods in Weed Science, 3rd edn. Champain, IL: Southern Weed Science Society, 1986, pp.111-134.

Google Scholar

[134] H.K. Abbas, T. Tanaka, S.O. Duke, C.D. Boyette, Susceptibility of various crop and weed species to AAL-toxin, a natural herbicide, Weed Technol. 9 (1995) 125-130.

DOI: 10.1017/s0890037x0002306x

Google Scholar

[135] D.R. Batish, Studies on herbicidal activity of parthenin - a constituent of Parthenium hysterophorus towards bill-goat weed, Curr. Sci. 73 (1997) 369-371.

Google Scholar

[136] S. Dmitrovic, Morpho-histological and bioherbicidal evaluation of wild-type and transformed hairy roots of goosefoot, South. Afr. J. Bot. 96 (2015) 53-61.

DOI: 10.1016/j.sajb.2014.11.002

Google Scholar

[137] T.D. Xuan, S. Tawata, T.D. Khanh, I.M. Chung, Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: an overview, Crop Prod. 24 (2005) 197-206.

DOI: 10.1016/j.cropro.2004.08.004

Google Scholar

[138] W. Wang, X.R. Zhu, W.Z. Liu, Influence of ragweed (Ambrosia trifida) on plant parasitic nematodes, J. Chem. Ecol. 24 (1998) 1707-1714.

DOI: 10.1023/A:1020824813741

Google Scholar

[139] W.G. Liang, M.D. Huang, R.J. Prokopy, Influence of citrus orchard ground cover plants on arthropod communities in China: a review, Agri. Eco. Environ. 50 (1994) 29-37.

DOI: 10.1016/0167-8809(94)90122-8

Google Scholar