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Abstract. In this paper, we examine the properties, possible characterizations

and lower Hermite–Hadamard inequalities of certain Schur-convex functions.

1. Introduction

The concept of Schur-convexity is almost one hundred years old now. It was

introduced in 1923 by Issai Schur, in [Sch23]. Since then, a vast number of

publications has been printed using Schur-convexity from different areas of math-

ematics, including real function theory (e.g. [Olb15b]), inequalities (e.g. [Ste07]),

financial mathematics (e.g. [GZ12]), and optimization (e.g. [YL11], [HR05]).

The original definition was the following: a function f : In → R is Schur-

convex if

f(Sx) ≤ f(x)

for all doubly stochastic matrix S and for all x = (x1, . . . , xn) ∈ In, where I is a

non-empty interval.
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Here we examine a special case of the previous inequality, namely, when the

matrix S is a certain fixed one. The advantage of this choice is a unification of

earlier well-known concepts.

The remaining parts of the paper are organized as follows. In Section 2,

we fix the notations and show some preliminary results. Some characterization

theorems can be found in the third Section. At last, in the fourth Section, there

are lower Hermite–Hadamard type inequalities (for more information of this type

of inequalities, see [HP09] or [HM17], and the references therein).

2. Preliminary results

Here and hereafter, unless stated otherwise, D denotes a non-empty, convex

subset of a linear space X. We say that a function f : D×D → R is Schur-convex

if

f(tx+ (1− t)y, (1− t)x+ ty) ≤ f(x, y) (1)

for all x, y ∈ D and t ∈ [0, 1]. If the above inequality stands only for one fixed

t ∈]0, 1[ and f is symmetric, we say that f is t-Schur-convex.

With special choices of f , we get known convexity notions:

• f(x, y) = g(x) + g(y) gives Wright-convexity; (for more information about

Wright-convexity, see e.g. [Wri54], [Ng87], [MNP91], [Olb06], [Olb11],

[Olb15b], and the references therein);

• f(x, y) = max{g(x), g(y)} gives quasi-convexity. This concept has a great im-

portance in optimization theory, game theory and others (see e.g.

[Lue68], [ADSZ88], and the references therein).

Let Φ : D+D → R be an arbitrary function, then the function f : D×D → R
defined by f(x, y) = Φ(x + y) satisfies (1) with equality. So, the class of Schur-

affine functions is quite rich.

If a function is t-Wright-convex in the usual sense, then it is also t-Wright-

convex for all t from a dense subset of [0, 1]. This was proved in [MNP91] by

Maksa, Nikodem and Páles. The same question in connection with t-Schur-

convexity is an open problem at this moment, however, we can state the following

partial result.

Proposition 1. • If f : D × D → R is t-Schur-convex, then it is also

(1− t)-Schur-convex.

• If f : D × D → R is t-Schur-convex, then it is also tn-Schur-convex, where

t1 = t and tn+1 = (1− t)tn + t(1− tn).
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• If f : D × D → R is t-Schur-convex and s-Schur-convex, then it is also

st+ (1− s)(1− t)-Schur-convex.

Proof. The first one is a trivial consequence of inequality (1).

For the second one, substitute x = tx+ (1− t)y and y = (1− t)x+ ty, using

inequality (1) we have the statement by induction.

For the last one, x = sx+ (1−s)y and y = (1−s)x+sy, using inequality (1)

we have the statement. �

Corollary 2. If X is a normed linear space, f : D ×D → R is lower semi-

continuous, and t-Schur-convex for some t, then it is also 1
2 -Schur-convex.

Proof. It is easy to see that the sequence tn defined in the previous propo-

sition tends to 1
2 as n tends to ∞. From this and the lower semi-continuity

assumption, we have our statement. �

Let us define the following auxiliary function.

ϕx,y : [0, 1]→ R, ϕx,y(t) := f(tx+ (1− t)y, (1− t)x+ ty)

for every x, y ∈ D.

Proposition 3. A function f : D ×D → R is 1
2 -Schur-convex if and only if

the function ϕx,y has a global minimum at 1
2 for every fixed x, y ∈ D.

Proof. Assume that f is 1
2 -Schur-convex. Take the inequality (1) at t = 1

2 ,

substitute x by sx+ (1− s)y, and y by (1− s)x+ sy, we get

ϕx,y
(
1
2

)
≤ ϕx,y(s)

for every s ∈ [0, 1]. So, the first part is ready.

Assume now that ϕx,y(t) has a global minimum at t = 1
2 . Then

f

(
x+ y

2
,
x+ y

2

)
≤ f (tx+ (1− t)y, (1− t)x+ ty) x, y ∈ D, t ∈ [0, 1].

From this, we get the desired result with t = 1. �

The above statement motivates the following definition. With the previous

notations, a function f : D ×D → R is called weakly 1
2 -Schur-convex if ϕx,y has

a local minimum at 1
2 for every (x, y) ∈ D ×D.

We can state more, if f is Schur-convex.
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Theorem 4. Let f : D×D → R be a symmetric function. Then f is Schur-

convex if and only if for all arbitrarily fixed x, y ∈ D the function ϕx,y is monotone

decreasing on [0, 12 ], monotone increasing on [ 12 , 1], and ϕx,y has a global minimum

at 1
2 .

Proof. For the necessity, assume that f is Schur-convex.

Let x, y ∈ D are arbitrarily fixed. Firstly, we intend to prove that ϕx,y is

monotone decreasing on [0, 12 [.

The Schur-convexity of f implies that

f(tu+ (1− t)v), (1− t)u+ tv) ≤ f(u, v) (u, v ∈ D, t ∈ [0, 1]).

Let 0 ≤ r < s < 1
2 , then substitute u by rx + (1 − r)y, v by (1 − r)x + ry and

t = s−r
1−2r ,

ϕx,y(r) = f(rx+ (1− r)y, (1− r)x+ ry)

≥ f
{
s−r
1−2r (rx+ (1− r)y) + 1−s−r

1−2r ((1− r)x+ ry),

1−s−r
1−2r (rx+ (1− r)y) + s−r

1−2r ((1− r)x+ ry)
}

= f(sx+ (1− s)y, (1− s)x+ sy) = ϕx,y(s).

The proof of that ϕx,y is monotone increasing on ] 12 , 1] comes from the fact that

ϕx,y(t) = ϕx,y(1− t).
Since f is also 1

2 -Schur-convex, we have that ϕx,y has a global minimum at 1
2 .

For the sufficiency, assume that ϕx,y is monotone decreasing on [0, 12 [, mono-

tone increasing on ] 12 , 1], and it has a global minimum at 1
2 . Then

f(tx+ (1− t)y, (1− t)x+ ty) = ϕx,y(t) ≤ ϕx,y(0) = f(y, x) = f(x, y)

for all t ∈ [0, 12 [, and, similarly,

f(tx+ (1− t)y, (1− t)x+ ty) = ϕx,y(t) ≤ ϕx,y(1) = f(x, y)

for all t ∈] 12 , 1]. The case t = 1
2 is clear. So, the proof is complete. �

In [Olb15b, Remark 1], the author mentioned that the corresponding suffi-

ciency part of the previous theorem is true in the case of Wright-convexity.
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3. Characterization of regular Schur-convex functions

In this section, we examine the properties of directionally differentiable and

differentiable Schur-convex functions. As a special case, we get classical charac-

terization theorems of convex functions. We say that a function g : D → R is

directionally differentiable at a point x0 ∈ D in a direction h ∈ X if there exists

the limit

g′(x0, h) := lim
t→0+

g(x0 + th)− g(x0)

t
.

The function g is directionally differentiable if it is directionally differentiable at

every point of D in any direction of X.

Theorem 5. Assume that f : D×D → R is directionally differentiable and

symmetric on D ×D. Then f is Schur-convex if and only if for (x, y) ∈ D ×D,

∂(x−y,y−x)f(y, x) ≤ 0. (2)

Proof. First assume that f is Schur-convex, then by (1) we get that

f(y + t(x− y), x+ t(y − x))− f(y, x)

t
≤ 0.

Taking the limit t→ 0+, we get (2).

Assume now that ∂(x−y,y−x)f(y, x) ≤ 0. Using the substitutions x ↔ (1 −
t)x+ ty and y ↔ tx+ (1− t)y, we have

0 ≥ ∂(1−2t)(x−y,y−x)f((1− t)x+ ty, tx+ (1− t)y).

Assume that t ∈ [0, 12 [, because of the positive homogeneity of the directional

derivative we have

0 ≥ ∂(x−y,y−x)f((1− t)x+ ty, tx+ (1− t)y) = ϕ′x,y(t).

This proves that ϕx,y is monotone decreasing on the interval [0, 12 [. Because of

the identity ϕx,y(t) = ϕx,y(1 − t), we get the monotone increasing property on

the interval ] 12 , 1]. Moreover, the directional differentiability of f entails differ-

entiability of ϕx,y. So, ϕx,y is continuous, which together with the previously

mentioned monotonicity implies that ϕx,y has a global minimum at 1
2 . Applying

Theorem 4, we get that f is Schur-convex. �

The next corollary (see [Sch23]) is an easy consequence of the previous the-

orem. Let I be a nonempty open real interval.
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Corollary 6. Assume that f : I × I → R is differentiable and symmetric on

I × I. Then f is Schur-convex if and only if for (x, y) ∈ I × I,

(∂1f(x, y)− ∂2f(x, y))(x− y) ≥ 0. (3)

Proof. Let f : I × I → R be a function, then

∂(x−y,y−x)f(y, x) = f ′(y, x)(x− y, y − x)

= (∂1f(x, y), ∂2f(x, y))T (x− y, y − x)

= (∂1f(x, y)− ∂2f(x, y))(x− y),

which proves the statement. �

Example 7. As it has been mentioned earlier, if f(x, y) = g(x) + g(y), we get

the notion of Wright-convexity. It comes from the theorem of Ng [Ng87] that g

is a sum of a convex and an additive function. If g is additionally differentiable,

we have that g is convex in the ordinary sense. Using the previous theorem, we

have that

(g′(x)− g′(y))(x− y) ≥ 0, x, y ∈ I,

which is the well-known characterization inequality of differentiable, convex func-

tions.

We will use the following simple formula for the following theorem. If f is

symmetric and differentiable, it is easy to see that

∂1f(u, u) = ∂2f(u, u) for all u ∈ D.

Theorem 8. Assume that f : I × I → R is twice differentiable and Schur-

convex on I × I, then for all y ∈ I and h ∈ R \ {0},

(∂21f(y, y)− ∂1∂2f(y, y))(h, h) ≥ 0. (4)

Proof. Assume that f is Schur-convex, then using Theorem 5, f also sat-

isfies (3). Substituting x− y by th, where h ∈ R and t is arbitrary small positive

number such that th ∈ I, then dividing by t2,

(∂1f(y + th, y)− ∂2f(y + th, y))h

t
≥ 0.

Taking the limit t→ 0, then computing,
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lim
t→0

(∂1f(y + th, y)− ∂2f(y + th, y))h

t

= lim
t→0

∂1f(y + th, y)− ∂1f(y, y)

t
h− lim

t→0

∂2f(y + th, y)− ∂2f(y, y)

t
h

=
(
∂1

(
lim
t→0

f(y + th, y)− f(y, y)

t

)
− ∂2

(
lim
t→0

f(y + th, y)− f(y, y)

t

))
h

= (∂21f(y, y)− ∂1∂2f(y, y))(h, h),

which proves the statement. �

Unfortunately, the reverse statement is not true, so we have not got a second-

order characterization of smooth Schur-convex functions, however, we can prove

a weaker statement.

Theorem 9. Let f : I × I → R be twice continuously differentiable, sym-

metric function on I × I, and assume that f satisfies (4) with strict inequality.

Then f is weakly 1
2 -Schur-convex on I × I.

Proof. Let x, y ∈ D be arbitrary fixed. Let us consider the function

ϕx,y(t) := f((1− t)x+ ty, tx+ (1− t)y) on [0, 1]. Then

ϕ′x,y(t) = ∂1f((1− t)x+ ty, tx+ (1− t)y)(y − x)

+ ∂2f((1− t)x+ ty, tx+ (1− t)y)(x− y)

= (∂1f((1− t)x+ ty, tx+ (1− t)y)

− ∂2f((1− t)x+ ty, tx+ (1− t)y))(y − x).

Then, substituting t = 1
2 , and using the symmetry of the partial derivative, we

have that

F ′x,y( 1
2 ) = ∂1f(x+y2 , x+y2 )(y − x) + ∂2f(x+y2 , x+y2 )(x− y) = 0

Computing the second derivative of ϕx,y, we get that

ϕ′′x,y(t) = (∂21f((1− t)x+ ty, tx+ (1− t)y)(y − x)

+ ∂1∂2f((1− t)x+ ty, tx+ (1− t)y)(x− y))

− (∂1∂2f((1− t)x+ ty, tx+ (1− t)y)(y − x)

+ ∂22f((1− t)x+ ty, tx+ (1− t)y)(x− y))(y − x)

= 2
(
∂21f((1− t)x+ ty, tx+ (1− t)y)

− ∂1∂2f((1− t)x+ ty, tx+ (1− t)y)
)

(y − x, y − x).
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Then substituting t = 1
2 , and using (4) with strict inequality, we have that

ϕ′′x,y
(
1
2

)
is positive, thus ϕx,y has a local minimum at 1

2 , which means that f

is weakly 1
2 -Schur-convex on I × I. �

Example 10. Now, we give an example for smooth weakly 1
2 -Schur-convex

function, which is not Schur-convex.

f(x, y) := − sin(x) sin(y) x, y ∈ R

It can be seen that it is a symmetric and it is also continuously differentiable

twice on R×R. Computing the derivatives of f , we can get that, for all x, y ∈ R,

∂1f(x, y) = − cosx sin y ∂2f(x, y) = − sinx cos y

∂21f(x, y) = sinx sin y ∂1∂2f(x, y) = − cosx cos y

Hence,

(∂21f(y, y)− ∂1∂2f(y, y))(h, h) = (sin2(y) + cos2(y))(h, h) = 1 > 0,

which means that by Corollary 17, f is weakly 1
2 -Schur-convex. On the other

hand, there exists x, y ∈ R (namely, x = π
2 , y = π

4 ), such that

− sin2
(x+ y

2

)
> − sinx sin y,

which means that f is not 1
2 -Schur-convex.

4. Lower Hermite–Hadamard type inequalities

for Schur-convex functions

For a function f : D ×D → R, we say that f is hemi-P , if, for all x, y ∈ D,

the function

ϕx,y(t) = f((1− t)x+ ty, tx+ (1− t)y) (t ∈ [0, 1]) (5)

has property P . For example, f is hemi-integrable, if for all x, y ∈ D the mapping

defined by (5) is integrable.

In the sequel, denote by C([0, 1]) and B([0, 1]) the space of continuous and

bounded Borel measurable real valued functions defined on the interval [0, 1]
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equipped with the usual supremum norm. Denote by pi : [0, 1]→ R the following

polynomials:

pi(u) := ui, (i = 0, 1, 2).

Let µ be a Borel probability measure on [0, 1], and denote by µ1 the first moment

of µ, namely
∫
[0,1]

tdµ(t).

First, we recall a Korovkin type theorem, which will play an important role

in the proof of the main result Theorem 11. For the historical background of these

theorems, see the classical Korovkin theorem ([Kor53], [AC94], [MP12]), which

has a great importance in functional analysis.

We say that a linear operator T : B([0, 1]) → B([0, 1]) is positive if for all

g ≥ 0 from B([0, 1]), Tg ≥ 0. It is easy to see that if T is positive, then it is also

monotone.

Let µ be a Borel probability measure on [0, 1], and define a sequence of linear

operators Tµn : B([a, b])→ B([a, b]) by the following formula:

(Tµnϕ)(u) :=

∫
[0,1]

. . .

∫
[0,1]

ϕ
(
1
2 + 1

2 (2t1−1) . . . (2tn − 1)
)
dµ(t1) . . . dµ(tn)p0(u). (6)

The following theorem is the main goal of this section and gives a connection

between a lower Hermite–Hadamard type inequality and 1
2 -Schur-convexity.

Theorem 11. Let f : D×D → R be hemi-bounded, lower hemi-continuous

and symmetric. Assume that µ is a Borel probability measure on [0, 1], such that

µ /∈ {αδ0 + (1 − α)δ1 | α ∈ [0, 1]}. Moreover, assume that, for all x, y ∈ D, the

function f satisfies the following Hermite–Hadamard type inequality:∫
[0,1]

f(tx+ (1− t)y, (1− t)x+ ty)dµ(t) ≤ f(x, y). (7)

Then f is 1
2 -Schur-convex.

The proof of Theorem 11 is similar to the proof of the main theorem of

[HM17], and it is based on the following lemmas.

Lemma 12. If f : D × D → R is lower hemi-continuous and fulfills the

approximate Hermite–Hadamard inequality (7), then, for all n ∈ N, the function

f also satisfies the Hermite–Hadamard inequality∫
[0,1]

. . .

∫
[0,1]

f
(
Tnx+ (1− Tn)y, f(1− Tn)x+ Tny

)
dµ(t1) . . . dµ(tn) ≤ f(x, y) (8)

for all x, y ∈ D, whenever n ∈ N, where

T1 = t1, and Tn+1 = tn+1(1− Tn) + (1− tn+1)Tn. (9)
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Proof. We prove by induction on n. If n = 1, (8) holds. Let x, y ∈ D, and

assume that (8) holds for some n ∈ N. Write x by (1− tn+1)x+ tn+1y, and y by

tn+1x+ (1− tn+1)y in (8). Using the definition of Tn+1, we obtain:∫
[0,1]

. . .

∫
[0,1]

f(Tn+1x+ (1− Tn+1)y, (1− Tn+1)x+ Tn+1y
)
dµ(t1) . . . dµ(tn)

≤ f((1− tn+1)x+ tn+1y, tn+1x+ (1− tn+1)y)

Integrating with respect to tn+1, and applying the inductive assumption and (7),

we obtain that∫
[0,1]

. . .

∫
[0,1]

f
(
Tn+1x+ (1− Tn+1)y, (1− Tn+1)x+ Tn+1y

)
dµ(t1) . . . dµ(tn+1)

≤
∫

[0,1]

f((1− tn+1)x+ tn+1y, tn+1x+ (1− tn+1)y)dµ(tn+1) ≤ f(x, y),

which proves the statement. �

Now, we recall the following lemma from Házy–Makó [HM17].

Lemma 13. Let Tn be definied by (9), then

Tn = 1
2 −

1
2 (2t1 − 1) · · · · · (2tn − 1). (10)

In the proof of the following, we also use the following Korovkin type theorem

from [HM17].

Proposition 14. Assume that µ is a Borel probability measure on [0, 1],

such that µ /∈ {αδ0 + (1− α)δ1 | α ∈ [0, 1]}, and for all n ∈ N define Tµn by (11).

Then, for all lower semicontinuous h ∈ B([0, 1]),

h
(
1
2

)
≤ lim inf

n→∞
(Tµnh)(u) (u ∈ [0, 1]). (11)

Lemma 15. Let µ be a Borel probability measure on [0, 1], such that µ /∈
{αδ0 + (1 − α)δ1 | α ∈ [0, 1]}. If f : D × D → R is a symmetric lower hemi-

continuous function, then

lim inf
n→∞

∫
[0,1]

. . .

∫
[0,1]

f
(
Tnx+ (1− Tn)y, (1− Tn)x+ Tny

)
dµ(t1) . . . dµ(tn)

≥ f
(
x+y
2 , x+y2

)
. (12)
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Proof. Let x, y ∈ D be fixed, and define ϕx,y : [0, 1]→ R by

ϕx,y(t) := f
(
(1− t)x+ ty, tx+ (1− t)y

)
.

Since f is lower hemi-continuous, ϕx,y is lower semi-continuous. Using Lemma 13,

we have that the operator Tµn defined by (11) can be expressed as

Tµnϕx,y =

∫
[0,1]

. . .

∫
[0,1]

ϕx,y(Tn)dµ(t1) . . . dµ(tn).

By Proposition 14, we get that (12) also holds. �

Proof of Theorem 11. Assume that the conditions of Theorem 11 hold,

and f : D×D → R is an upper hemi-continuous solution of (7). Using Lemma 12,

we obtain (8). Then taking the limit lim inf in (8), then applying Lemma 15, we

obtain that the function f is 1
2 -Schur-convex. �

In the sequel, let D be a nonempty open convex subset of the normed space X

(see [HM17]).

Corollary 16. Assume that µ is a Borel probability measure on [0, 1], such

that µ /∈ {αδ0 + (1 − α)δ1 | α ∈ [0, 1]}. Let λ ∈ R and assume that g : D → R
is lower semi-continuous and, for all x, y ∈ D, satisfies the following Hermite–

Hadamard type inequality∫
[0,1]

g(tx+ (1− t)y)dµ(t) ≤ λg(x) + (1− λ)g(y) (13)

then g is Jensen-convex.

Proof. Assume that g : D → R satisfies the inequality (13). Changing the

role of x and y, and adding the inequalities, we obtained that∫
[0,1]

g(tx+ (1− t)y) + g((1− t)x+ ty)dµ(t) ≤ g(x) + g(y).

Applying Theorem 11 for the function

f(x, y) := g(x) + g(y),

we obtained that f is 1
2 -Schur-convex, which means that g is Jensen-convex. �
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The following corollary provides connection between a lower Hermite–Hada-

mard inequality and quasi-convexity.

Corollary 17. Assume that µ is a Borel probability measure on [0, 1], such

that µ /∈ {αδ0 + (1−α)δ1 | α ∈ [0, 1]}. Let λ ∈ R, and assume g : D → R is lower

semi-continuous, and, for all x, y ∈ D, satisfies the following Hermite–Hadamard

type inequality∫
[0,1]

max
(
g(tx+ (1− t)y), g((1− t)x+ ty)

)
dµ(t) ≤ max(g(x), g(y)),

then g is Jensen-quasi-convex, i.e. it satisfies the inequality:

g
(x+ y

2

)
≤ max(g(x), g(y)) (x, y ∈ D). (14)

Proof. Applying Theorem 11 for the function

f(x, y) = max(g(x), g(y)),

we get the required inequality (14). �
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