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Abstract. The object of the present paper is to study a 3-dimensional normal

almost contact metric manifold admitting Ricci solitons and gradient Ricci solitons. At

first we give an example of a 3-dimensional normal almost contact metric manifold with

α, β = constant. We prove that a 3-dimensional normal almost contact metric manifold

admitting a Ricci soliton with a potential vector field V collinear with the characteristic

vector field ξ, is η-Einstein provided α, β = constant. Also we show that an η-Einstein

3-dimensional normal almost contact metric manifold with α, β = constant and V = ξ

admits a Ricci soliton. Finally we prove that if in a 3-dimensional normal almost contact

metric manifold with constant scalar curvature, g is a gradient Ricci soliton, then the

manifold is either α-Kenmotsu or an Einstein manifold provided α, β = constant.

1. Introduction

A Ricci soliton is a generalization of an Einstein metric. In a Riemannian

manifold (M, g), g is called a Ricci soliton if [15]

(£V g + 2S + 2λg)(X,Y ) = 0, (1.1)

where £ is the Lie derivative, S is the Ricci tensor, V is a smooth vector field onM

(called the potential vector field) and λ is a constant. Metrics satisfying (1.1) are

interesting and useful in physics and are often referred as quasi-Einstein (e.g. [7],

[8], [12]). Compact Ricci solitons are the fixed points of the Ricci flow ∂
∂tg = −2S
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projected from the space of metrics onto its quotient modulo diffeomorphisms and

scalings, and often arise as blow-up limits for the Ricci flow on compact manifolds.

Theoretical physicists have also been looking into the equation of Ricci soliton

in relation with string theory. The initial contribution in this direction is due to

Friedan who discusses some aspects of it [12].

The Ricci soliton is said to be shrinking, steady and expanding according as

λ is negative, zero and positive respectively. If the vector field V is the gradient

of a potential function −f , then g is called a gradient Ricci soliton and equation

(1.1) assumes the form

∇∇f = S + λg. (1.2)

A Ricci soliton on a compact manifold has constant curvature in dimension 2 [15]

and also in dimension 3 [16]. For details we refer to Chow and Knopf [9]. We

also recall the following significant result of Perelman [22]: A Ricci soliton on

a compact manifold is a gradient Ricci soliton.

The roots of contact geometry lie in differential equations as in 1872 Sophus

Lie introduced the notion of contact transformation as a geometric tool to study

systems of differential equations. This subject has connections with the other

fields of pure mathematics, and substantial applications in applied areas such as

mechanics, optics, phase space of dynamical system, thermodynamics and control

theory. For more details see [1], [13], [18] and [19].

In [23], Sharma started the study of Ricci solitons in K-contact manifolds.

Also, in a subsequent paper [14]Ghosh, Sharma and Cho studied gradient Ricci

soliton of a non-Sasakian (k, µ)-contact manifold. In a K-contact manifold the

structure vector field ξ is Killing, that is, £ξg = 0, which is not in general, in a

normal almost contact metric manifold. Recently in [5] C. Calin and M. Cras-

mareanu have studied Ricci solitons in f−Kenmotsu manifolds.

Motivated by these circumtances, in this paper we study Ricci solitons and

gradient Ricci solitons in 3-dimensional normal almost contact metric manifolds.

The paper is organized as follows: After preliminaries in section 3 among ot-

hers we prove that in a 3-dimensional normal a.c.m. manifold if g is a Ricci soliton

and the vector field V point-wise collinear with ξ, then V is a constant multiple

of ξ and g is η-Einstein and also we show that an η-Einstein 3-dimensional nor-

mal almost contact metric manifold with α, β = constant and V = ξ admits a

Ricci soliton. Finally we prove that if a 3-dimensional normal a.c.m. manifold ad-

mits a gradient Ricci soliton, then the manifold is either α-Kenmotsu or Einstein

manifold provided α, β = constant. We obtain some consequences of this result.
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2. Preliminaries

Let M be an almost contact manifold and (φ, ξ, η) its almost contact struc-

ture. This means, M is an odd-dimensional differentiable manifold and φ, ξ, η

are tensor fields on M of types (1, 1), (1, 0), (0, 1), respectively, such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1.

Then also φξ = 0, η ◦ φ = 0. Let R be the real line and t a coordinate on R.
Define an almost complex structure J on M × R by

J

(
X,

fd

dt

)
=

(
φX − fξ, η(X)

d

dt

)
,

where the pair (X, fd/dt) denotes a tangent vector to M × R, f is a smooth

function on M × R, X and fd/dt being tangent to M and R, respectively.
M and (φ, ξ, η) are said to be normal if the structure J is integrable [2], [3].

The necessary and sufficient condition for (φ, ξ, η) to be normal is

[φ, φ] + 2dη ⊗ ξ = 0,

where [φ, φ] is the Nijenhuis torsion of φ defined by

[φ, φ](X,Y ) = [φX, φY ] + φ2[X,Y ]− φ[φX, Y ]− φ[X,φY ],

for any X,Y ∈ χ(M), χ(M) being the Lie algebra of vector fields on M .

A Riemannian metric g on M satisfying the condition

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for any X,Y ∈ χ(M), is said to be compatible with the structure (φ, ξ, η). If g

is such a metric, then the quadruple (φ, ξ, η, g) is called an almost contact metric

(shortly a.c.m.) structure on M and M is an almost contact metric manifold.

On such a manifold we also have η(X) = g(X, ξ) for any X ∈ χ(M) and we can

always define the 2-form Φ by Φ(X,Y ) = g(X,φY ), where X,Y ∈ χ(M).

It is no hard to see that if dimM = 3, then two Riemannian metrics g and

g′ are compatible with the same almost contact structure (φ, ξ, η) on M if and

only if g′ = σg + (1− σ)η ⊗ η, for a certain positive function σ on M .

A normal a.c.m. (φ, ξ, η, g) satisfying additionally the condition dη = Φ is

called Sasakian. Also a normal a.c.m. structure satisfying the condition dΦ = 0

is said to be quasi-Sasakian [4].
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For an a.c.m. structure (φ, ξ, η, g) on M , we have [20]

(∇Xφ)(Y ) = g(φ∇Xξ, Y )ξ − η(Y )φ∇Xξ, (2.1)

∇Xξ = α{X − η(X)ξ} − βφX, (2.2)

(∇Xη)(Y ) = α{g(X,Y )− η(X)η(Y )} − βg(φX, Y ), (2.3)

where 2α = div ξ and 2β = tr(φ∇ξ), div ξ is the divergence of ξ defined by

div ξ = trace{X −→ ∇Xξ} and tr(φ∇ξ) = trace{X −→ φ∇Xξ}.

R(X,Y )ξ = {Y α+ (α2 − β2)η(Y )}φ2X − {Xα+ (α2 − β2)η(X)}φ2Y

+ {Y β + 2αβη(Y )}φX − {Xβ + 2αβη(X)}φY, (2.4)

S(Y, ξ) = −Y α− (φY )β − {ξα+ 2(α2 − β2)}η(Y ), (2.5)

ξβ + 2αβ = 0, (2.6)

where R denotes the curvature tensor and S is the Ricci tensor.

On the other hand, the curvature tensor in dimension three always satis-

fies [24]

R̃(X,Y, Z,W ) = g(X,W )S(Y, Z)− g(X,Z)S(Y,W )

+ g(Y,Z)S(X,W )− g(Y,W )S(X,Z)

− r

2
[g(X,W )g(Y,Z)− g(X,Z)g(Y,W )], (2.7)

where R̃(X,Y, Z,W ) = g(R(X,Y )Z,W ) and r is the scalar curvature.

From (2.4), we can derive that

R̃(ξ, Y, Z, ξ) = −(ξα+ α2 − β2)g(φY, φZ)− (ξβ + 2αβ)g(Y, φZ). (2.8)

By (2.5), (2.7) and (2.8), we obtain for α, β = constant,

S(Y, Z) =
(r
2
+ α2 − β2

)
g(φY, φZ)− 2(α2 − β2)η(Y )η(Z), (2.9)

and

QY =
(r
2
+ α2 − β2

)
Y −

(r
2
− α2 + β2

)
η(Y )ξ. (2.10)

Applying (2.9) in (2.7), we get

R(X,Y )Z =
[r
2
+ 2(α2 − β2)

]
[g(Y, Z)X − g(X,Z)Y ]
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+ g(X,Z)
[(r

2
+ 3(α2 − β2)

)
η(Y )ξ

]

−
[r
2
+ 3(α2 − β2)

]
η(Y )η(Z)X

− g(Y,Z)
[(r

2
+ 3(α2 − β2)

)
η(X)ξ

]

+
[r
2
+ 3(α2 − β2)

]
η(X)η(Z)Y. (2.11)

It is to be noted that the general formulas can be obtained by straightforward

calculation.

From (2.6) it follows that if α, β = constant, then the manifold is either

β-Sasakian, or α-Kenmotsu, or cosymplectic [17].

Proposition 2.1. A three-dimensional normal a.c.m. manifold with α, β =

constant is either β-Sasakian, or α-Kenmotsu or cosymplectic.

We note that β-Sasakian manifolds are quasi Sasakian [4], [21].

Cosympletic manifolds provide a natural setting for time dependent mecha-

nical systems as they are locally product of a Kaehler manifold and a real line or

a circle [6].

3. Example of a 3-dimensional normal almost contact metric manifold

We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3, z 6= 0}, where
(x, y, z) are standard coordinate of R3.

The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = z

∂

∂z

are linearly independent at each point of M .

Let g be the Riemannian metric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1,

that is, the form of the metric becomes

g =
dx2 + dy2 + dz2

z2
.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M).
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Let φ be the (1, 1) tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

Then using the linearity of φ and g, we have

η(e3) = 1, φ2Z = −Z + η(Z)e3,

g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(M).

Then for e3 = ξ, the structure (φ, ξ, η, g) defines an almost contact metric

structure on M .

Let ∇ be the Levi–Civita connection with respect to metric g. Then we have

[e1, e3] = e1e3 − e3e1 = z
∂

∂x

(
z
∂

∂z

)
− z

∂

∂z

(
z
∂

∂x

)

= z2
∂2

∂x∂z
− z2

∂2

∂z∂x
− z

∂

∂x
= −e1.

Similarly

[e1, e2] = 0 and [e2, e3] = −e2.

The Riemannian connection ∇ of the metric g is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]), (3.1)

which is known as Koszul’s formula.

Using (3.1) we have

2g(∇e1e3, e1) = −2g(e1, e1) = 2g(−e1, e1). (3.2)

Again by (3.1)

2g(∇e1e3, e2) = 0 = 2g(−e1, e2) (3.3)

and

2g(∇e1e3, e3) = 0 = 2g(−e1, e3). (3.4)

From (3.2), (3.3) and (3.4) we obtain

2g(∇e1e3, X) = 2g(−e1, X),
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for all X ∈ χ(M). Thus

∇e1e3 = −e1.

Therefore, (3.1) further yields

∇e1e3 = −e1, ∇e1e2 = 0, ∇e1e1 = e3,

∇e2e3 = −e2, ∇e2e2 = e3, ∇e2e1 = 0,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0. (3.5)

(3.5) tells us that the manifold satisfies (2.2) for α = −1 and β = 0 and ξ = e3.

Hence the manifold is a normal almost contact metric manifold with α, β =

constant.

4. Ricci soliton

Suppose a 3-dimensional normal a.c.m. manifold admits a Ricci soliton defi-

ned by (1.1). It is well known that ∇g = 0. Since λ in the Ricci soliton equation

(1.1) is a constant, so ∇λg = 0. Thus £V g + 2S is parallel. In [10] the authors

prove that if a 3−dimensional normal a.c.m. manifold admits a symmetric paral-

lel (0, 2) tensor, then the tensor is a constant multiple of the metric tensor. Hence

£V g+2S is a constant multiple of the metric tensor g, i.e., £V g+2S = ag, where

a is non-zero constant. Hence £V g + 2S + 2λg reduces to (a+ 2λ)g. Using (1.1)

we get λ = −a/2. So we have the following:

Proposition 4.1. In a 3 dimensional normal a.c.m. manifold the Ricci soli-

ton (g, λ, V ) is shrinking or expanding according as a is positive or negative.

In particular, let V be point-wise collinear with ξ i.e. V = bξ, where b is a

function on the 3-dimensional normal a.c.m. manifold. Then

(£V g + 2S + 2λg)(X,Y ) = 0,

which implies that

g(∇Xbξ, Y ) + g(∇Y bξ,X) + 2S(X,Y ) + 2λg(X,Y ) = 0,
or,

bg(∇Xξ, Y ) + (Xb)η(Y ) + bg(∇Y ξ,X) + (Y b)η(X) + 2S(X,Y ) + 2λg(X,Y ) = 0.
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Using (2.2), we obtain

bg(α(X − η(X)ξ)− βφX, Y ) + (Xb)η(Y ) + bg(α(Y − η(Y )ξ)− βφY,X)

+(Y b)η(X) + 2S(X,Y ) + 2λg(X,Y ) = 0,

which yields

2bαg(X,Y )− 2αbη(X)η(Y ) + (Xb)η(Y ) + (Y b)η(X)

+ 2S(X,Y ) + 2λg(X,Y ) = 0. (4.1)

In (4.1) replacing Y by ξ and using (2.9) it follows that

Xb+ (ξb)η(X) + 2(−2(α2 − β2)η(X)) + 2λη(X) = 0. (4.2)

Replacing X by ξ in (4.2) we get

ξb = 2(α2 − β2)− λ. (4.3)

Putting this value in (4.2), we obtain

db = {2(α2 − β2)− λ}η. (4.4)

Applying d on (4.4) we get

{λ+ 2(α2 − β2)}dη = 0. (4.5)

Since dη 6= 0 in a normal almost contact metric manifold, we have

2(α2 − β2)− λ = 0. (4.6)

Using (4.6) in (4.4) yields b is a constant. Therefore from (4.1) it follows

S(X,Y ) = −(λ+ αb)g(X,Y ) + αbη(X)η(Y ), (4.7)

which implies M is an η-Einstein manifold. This leads to the following:

Theorem 4.1. If in a 3-dimensional non-cosymplectic normal a.c.m. mani-

fold the metric g is a Ricci soliton and V is point-wise collinear with ξ, then V is

a constant multiple of ξ and g is η-Einstein provided α, β = constant.
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Conversely, let M be an 3-dimensional η-Einstein normal a.c.m. manifold

with α, β = constant and V = ξ. Then

S(X,Y ) = γg(X,Y ) + δη(X)η(Y ), (4.8)

where γ and δ are certain scalars.

Now using (2.2)

(£ξg)(X,Y ) = g(∇Xξ, Y ) + g(∇Y ξ,X) = 2α(g(X,Y )− η(X)η(Y )),

Therefore

(£ξg)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 2(α+ γ + λ)g(X,Y )

− 2(α− δ)η(X)η(Y ). (4.9)

From equation (4.9) it follows thatM admits a Ricci soliton (g, ξ, λ) if α+γ+λ = 0

and δ = α = constant. From (4.8) we have using (2.9), −2(α2 − β2) = γ + δ.

Hence γ = −2(α2 − β2)− α = constant. So we have the following:

Theorem 4.2. If a 3-dimensional non-cosymplectic normal a.c.m. manifold

with α, β = constant, is η-Einstein of the form S = γg+δη⊗η, then the manifold

admits a Ricci soliton (g, ξ,−(γ + δ)).

Now let V = ξ. Then the equation (1.1) reduces to

£ξg + 2S + 2λg = 0. (4.10)

Using (2.2), we get

(£ξg)(X,Y ) = 2α{g(X,Y )− η(X)η(Y )}. (4.11)

Therefore

A(X,Y ) = (£ξg + 2S)(X,Y ) = (£ξg)(X,Y ) + 2S(X,Y ). (4.12)

Now using (2.9) and (4.11) from (4.12) we obtain

A(X,Y ) = {(τ + 2(α2 − β2 + α))g(X,Y )

− (τ + 2(3(α2 − β2) + α))η(X)η(Y )}. (4.13)
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Applying (4.13) in (4.10) we get

{τ + 2(α2 − β2) + α) + λ}g(X,Y )−
{
β
τ

2
+ 3(α2 − β2)

}
η(X)η(Y ) = 0. (4.14)

Now taking X = Y = ξ in (4.14) we obtain

λ = −1

3
(τ + 2α). (4.15)

Also

(∇ZA)(X,Y ) = dτ(Z)(g(X,Y )− η(X)η(Y ))

−(τ + 6(α2 − β2) + 2α){(∇Zη)(X)η(Y ) + η(X)(∇Zη)(Y )}. (4.16)

From the proof of proposition 2 we find that the tensor A is parallel. Therefore

putting X = Y = ei in (4.16), where {ei} is an orthonormal basis of the tangent

space at each point of the manifold and using (2.3) we obtain

dτ = 0,

which implies that the scalar curvature τ is constant. Hence we have the follo-

wings:

Theorem 4.3. If a 3-dimensional non-cosymplectic normal a.c.m. manifold

admits a Ricci soliton (g, ξ, λ), then the manifold is of constant scalar curvature

provided α, β = constant.

Theorem 4.4. If a 3-dimensional non-cosymplectic normal a.c.m. manifold

admits a Ricci soliton (g, ξ, λ), then the Ricci soliton is shrinking, steady and

expanding according as τ + 2α > 0, τ + 2α = 0 and τ + 2α < 0 respectively

provided α, β = constant.

In [23] Sharma proved that a compact Ricci soliton of constant scalar cur-

vature is Einstein. Hence from Theorem 4.3 we state the following:

Corollary 4.1. If a 3-dimensional normal non-cosymplectic a.c.m. manifold

admits a compact Ricci soliton, then the manifold is Einstein provided α, β =

constant.

5. Gradient Ricci soliton

If the vector field V is the gradient of a potential function −f , then g is

called a gradient Ricci soliton and (1.1) assume the form

∇∇f = S + λg. (5.1)
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This reduces to

∇Y Df = QY + λY, (5.2)

where D denotes the gradient operator of g. From (5.2) it is clear that

R(X,Y )Df = (∇XQ)Y − (∇Y Q)X. (5.3)

Differentiating (2.10) we have

(∇WQ)(X) =
dτ(W )

2
(X − η(X)ξ)

−
(τ
2
+ 3(α2 − β2)

)
{(∇W η)(X)ξ − η(X)∇W ξ}. (5.4)

In (5.4) replacing W by ξ yields

(∇ξQ)(X) =
dτ(ξ)

2
(X − η(X)ξ)

−
(τ
2
+ 3(α2 − β2)

)
{(∇ξη)(X)ξ − η(X)∇ξξ}. (5.5)

Then we have

g((∇ξQ)(X)− (∇XQ)(ξ), ξ) = −
(τ
2
+ 3(α2 − β2)

)
{(∇ξη)(X)

− g((∇Xη)ξ, ξ) + g(∇Xξ, ξ)} = 0. (5.6)

Using (5.6) from (5.3), we obtain

g(R(ξ,X)Df, ξ) = 0. (5.7)

From (2.8) we get

R(ξ, Y,Df, ξ) = (α2 − β2){η(X)η(Df)− g(X,Df)}+ 2αβg(φX,Df).

Using (5.7) in the above equation yields

(α2 − β2){η(X)η(Df)− g(X,Df)}+ 2αβg(φX,Df) = 0. (5.8)

Replacing X by φX in (5.8) we get

−(α2 − β2)g(φX,Df)− 2αβg(X,Df) + 2αβη(X)g(ξ,Df) = 0.
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Replacing the value of g(φX,Df) in(5.8), since α 6= β in a 3-dimensional normal

almost contact metric manifold, we obtain

Df = (ξf)ξ. (5.9)

Using (5.9) in (5.2) we have

S(X,Y ) + λg(X,Y ) = g(∇Y Df,X) = g(∇Y (ξf)ξ,X)

= g(Y (ξf)ξ + (ξf)∇Y ξ,X)

= Y (ξf)η(X) + (ξf)α{g(X,Y )

− η(Y )η(X)} − (ξf)βg(φY,X) (5.10)

Putting X = ξ in (5.10) and using (2.5) we get

S(Y, ξ) + λη(Y ) = Y (ξf) = {λ− 2(α2 − β2)}η(Y ). (5.11)

Interchanging X and Y in (5.10) we obtain

S(X,Y ) + λg(X,Y ) = X(ξf)η(Y ) + (ξf)α{g(X,Y )

− η(Y )η(X)} − (ξf)βg(φX, Y ). (5.12)

Adding (5.10) and (5.12) we get

2S(X,Y ) + 2λg(X,Y ) = 2β(ξf)g(X,Y )− 2β(ξf)η(X)η(Y )

+ Y (ξf)η(X) +X(ξf)η(Y ). (5.13)

Using (5.11) in (5.13) we have

S(X,Y )+λg(X,Y ) = (ξf)αg(X,Y )+{λ−2(α2−β2)−(ξf)α}η(X)η(Y ). (5.14)

Then using (5.2) we have

∇Y Df = α(ξf)Y + {λ− 2(α2 − β2)(ξf)α}η(Y )ξ. (5.15)

Using (5.15) we calculate

R(X,Y )Df = ∇X∇Y Df −∇Y ∇XDf −∇[X,Y ]Df

= αX(ξf)Y − αX(ξf)η(Y )ξ − αY (ξf)X + αY (ξf)η(X)ξ

+ (λ− 2(α2 − β2)− α(ξf)){(∇Xη)(Y )ξ − (∇Y η)(X)ξ}
+ (λ− 2(α2 − β2)− α(ξf)){η(Y )∇Xξ − η(X)∇Y ξ}. (5.16)



Ricci solitons and gradient Ricci solitons on 3-dimensional. . . 139

Taking inner product with ξ in (5.16),we get

0 = g(R(X,Y )Df, ξ) = 2β(λ− 2(α2 − β2)− α(ξf))g(φY,X).

Thus we have

2β(λ− 2(α2 − β2)− α(ξf)) = 0.

Now we consider the following cases:

Case i) β = 0,

Case ii) λ+ 2(α2 − β2)− α(ξf) = 0,

Case iii) β = 0 and λ+ 2(α2 − β2)− β(ξf) = 0.

Case i) If β = 0, then the manifold reduces to a α−Kenmotsu manifold.

Case ii) Let λ+ 2(α2 − β2)− α(ξf) = 0. Using this in (5.11) yields

Y (ξf) = α(ξf)η(Y ).

Substituting this value in (5.13) we obtain

S(X,Y ) + λg(X,Y ) = α(ξf)g(X,Y ).

Contracting this equation, we get

τ + 3λ = 3α(ξf),

which implies that

(ξf) =
τ

3α
+

λ

α
.

If τ = constant, then (ξf) = constant = c (say). Therefore from (5.9) we have

Df = (ξf)ξ = cξ.

Thus we can write from this equation

g(Df,X) = cη(X),

which means that

df(X) = cη(X).

Applying d on the above equation, we get

cdη = 0.
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Since dη 6= 0 in a contact metric manifold, we have c = 0. Hence we get Df = 0.

This means that f = constant. Therefore equation (5.1) reduces to

S(X,Y ) = 2(α2 − β2)g(X,Y ),

that is, M is an Einstein manifold.

Case iii) Using β = 0 and λ + 2(α2 − β2) − α(ξf) = 0 in (5.11) we obtain

Y (ξf) = α(ξf)η(Y ). Now as in Case ii) we conclude that the manifold is an

Einstein manifold.

Thus we have the following:

Theorem 5.1. If a 3-dimensional non-cosymplectic normal a.c.m. manifold

with constant scalar curvature admits gradient Ricci soliton, then the manifold

is either α-Kenmotsu or an Einstein manifold provided α, β = constant.

In [11], De, Yıldız and Yalınız proved that a 3-dimensional normal a.c.m.

manifold is locally φ-symmetric if and only if the scalar curvature is constant

provided α, β = constant. Hence from Theorem 5.1 we obtain the following:

Corollary 5.1. If a locally φ-symmetric 3-dimensional non-cosymplectic

normal a.c.m. manifold admits gradient Ricci soliton, then the manifold is either

α-Kenmotsu or an Einstein manifold provided α, β = constant.

Using the result of Perelman [22], we can state the following:

Corollary 5.2. If the metric g of a compact 3-dimensional non-cosymplectic

normal a.c.m. manifold with constant scalar curvature is a Ricci soliton, then the

manifold is either α-Kenmotsu or an Einstein manifold provided α, β = constant.
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