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ABSTRACT
We consider query answering using views on graph
databases, i.e. databases structured as edge-labeled graphs.
We consider views and queries specified by Regular Path
Queries. These are queries selecting pairs of nodes in a graph
database that are connected via a path whose sequence of
edge labels belongs to some regular language.

A view V determines a query Q if for all graph databases
D, the view image VpDq always contains enough information
to answer Q on D. In other words, there is a well defined
function from VpDq to QpDq.

Our main result shows that when this function is mono-
tone, there exists a rewriting of Q as a Datalog query over
the view instance VpDq. In particular the query can be
evaluated in time polynomial in the size of VpDq.

As a side result we also prove that it is decidable whether
an RPQ query can be rewritten in Datalog using RPQ views.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query pro-
cessing ; H.2.3 [Database Management]: Languages—
Query languages

General Terms
Algorithms, Security, Theory, Verification

Keywords
Regular Path Queries, Views, Rewriting, Datalog

1. INTRODUCTION
We consider the problem of answering queries using

views on graph databases. Graph databases are relational
databases where all relation symbols are binary. In other
words a graph database can be viewed as an edge-labeled
directed graph.

Graph-structured data can be found in many important
scenarios. Typical examples are the semantic Web via the
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format RDF and social networks. Graph-structured data
differs conceptually from relational databases in that the
topology of the underlying graph is as important as the data
it contains. Usual queries will thus test whether two nodes
are connected and how they are connected [4].

In many contexts it is useful to know whether a given set
of queries can be used to answer another query. A typical
example is the data integration setting where data sources
are described by views of a virtual global database. Queries
over the global database are then rewritten as queries over
the views. Another example is caching: answers to some
set of queries against a data source are cached, and one
wishes to know if a newly arrived query can be answered
using the cached information, without accessing the source.
This problem also finds application in the context of security
and privacy. Suppose access to some of the information in a
database is provided by a set of public views, but answers to
other queries are to be kept secret. This requires verifying
that the disclosed views do not provide enough information
to answer the secret queries.

All these problems can be phrased in terms of views and
query rewriting using views, which is a typical database
problem, not specific to graph databases, that has received
considerable attention (see [12, 13, 3] among others). When
graph databases are concerned, the difference lies only in the
kind of queries under consideration [6, 8, 7, 9].

Over graph databases, typical queries have at least the
expressive power of Regular Path Queries (RPQ), defined
in [10] (see also the survey [4]). An RPQ selects pairs of
nodes connected by a path whose sequence of edge labels
satisfies a given regular expression. A view, denoted by V,
is then specified using a finite set of RPQs. When evaluated
over a graph database D, the view V yields a new graph
database VpDq where each Vi P V is a new edge relation
symbol.

We are interested in knowing whether the view V always
provides enough information to answer another RPQ query
Q, i.e. whether QpDq can be computed from VpDq for all
databases D. When this is the case we say that V determines
Q and we then look for an algorithm computing QpDq from
VpDq or, even better, we would like to exhibit a rewriting of
Q in terms of V, i.e. a new query, in some query language,
over the graph database schema derived from V.

These two related questions, determinacy and query
rewriting, have been studied for relational databases and
graph databases. Over relational databases, determinacy is
undecidable already if the queries and views are defined by
union of conjunctive queries, and its decidability status is
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open for views and queries specified by conjunctive queries
(CQ) [13]. Over graph databases and RPQ queries and
views, the decidability status of determinacy is also open [7].
Determinacy has been shown to be decidable in a scenario
where views and queries can only test whether there is a
path of distance k between the two nodes, for some given
k [3]. This scenario lies at the intersection of CQ and RPQ
and contains already non trivial examples. For instance the
view Path3 and Path4, giving respectively the pairs of nodes
connected by a path of length 3 and 4, determines the query
Path5 asking for the pairs of nodes connected by a path of
length 5 [3].

Clearly when Q can be rewritten in terms of V, the rewrit-
ing witnesses that V determines Q. On the other hand de-
terminacy does not say that one can find a rewriting defin-
able in a particular language, nor with particular computa-
tional properties.

It is then natural to ask which rewriting language LR
is sufficiently powerful so that determinacy is equivalent to
the existence of a rewriting definable in LR. This clearly
depends on the language used for defining the query and
the view.

Consider again the case of Path5 that is determined by
Path3 and Path4. A rewriting Rpx, yq of Path5 in terms of
Path3 and Path4 is defined by:

Du Path4px, uq ^ @v pPath3pv, uq Ñ Path4pv, yqq

and it can be shown that there is no rewriting definable
in CQ, nor in RPQ. In the case of views and queries de-
fined by CQs it is still an open problem to know whether
first-order logic is a sufficiently powerful rewriting language.
Even worse, it is not even known whether there always ex-
ists a rewriting that can be evaluated in time polynomial
in the size of the view [13]. A similar situation arises over
graph-databases and RPQ views and queries [7].

It can be checked that in the example above there ex-
ists no monotone rewriting of Path5 (see also Example 1 in
Section 2). In particular, as RPQs define only monotone
queries, no rewriting is definable in RPQ. Monotone query
languages such as CQ, Datalog, RPQ and their extensions
are of crucial importance in many database applications.
The possibility of expressing rewritings in these languages is
subject to a monotonicity restriction.

This is why in this paper we are considering a stronger
notion of determinacy, referred to as monotone determinacy,
by further requiring that the mapping from view instances
to query results is monotone.

In the case when views and queries are defined in CQ,
monotone determinacy can be shown to be equivalent to the
existence of a rewriting in CQ [13]. As this latter problem is
decidable [12], monotone determinacy for CQs is decidable.

We consider here monotone determinacy for graph
databases and views and queries defined by RPQs.

We first observe that monotone determinacy corresponds
to the notion called losslessness under the sound view as-
sumption in [7], where it was shown to be decidable. We
then concentrate on the rewriting problem.

It is decidable whether a rewriting definable in RPQ ex-
ists [8], and we know that there exist cases of monotone
rewritings that are not expressible in RPQ [7] (see also Ex-
ample 2 in Section 4). We thus need a more powerful lan-
guage in order to express all monotone rewritings.

It is not too hard to show that if V determines Q then

there exists a rewriting with NP data complexity, as well as
a rewriting with coNP data complexity. Our main result
shows that if moreover V determines Q in a monotone way,
there exists a rewriting definable in Datalog, which therefore
can be evaluated in polynomial time.

Our proofs are constructive, hence the Datalog rewriting
can be computed from V and Q.

As a corollary this implies that it is decidable whether a
query Q has a rewriting definable in Datalog using a view
V, where both V and Q are defined using RPQs. This
comes from the fact that our main result implies that the
existence of a rewriting in Datalog is equivalent to monotone
determinacy, a decidable property as mentioned above.

Related work.
The work which is most closely related to ours is that of

the “Four Italians”. In particular, the notion of losslessness
under the exact view assumption introduced in [7] corre-
sponds to what we call determinacy; similarly the notion of
losslessness under the sound view assumption corresponds
to what we call monotone determinacy. Monotone determi-
nacy is also mentioned in the thesis [14] under the name of
“strong determinacy”. It is shown there that it corresponds
to the existence of a monotone rewriting.

A lot of attention has been devoted to the problem of
computing the set of certain answers to a query w.r.t a set
of views, under the sound view assumption (see the precise
definition of certain answers in Section 5.1). For RPQ views
and queries, the problem is shown to be equivalent to testing
whether the given instance homomorphically embeds into a
structure TQ,V computed from the view V and the query
Q [6]. In general this shows that the data complexity of
computing the certain answers is coNP-complete. Building
on results on Constraint Satisfaction Problems [11], it was
also shown in [6] that for an RPQ view V, an RPQ query
Q and for each l, k, with l ¤ k, there is a Datalog program
Ql,k which is contained in the certain answers to Q given V
and is, in a sense, maximally contained: i.e. Ql,k contains all
Datalog programs which are contained in the certain answers
and use at most l head variables and at most k variables in
each rule.

If we assume that V determines Q in a monotone way, it
is easy to see that the query computing the certain answers
under the sound view assumption is a rewriting of Q using V
(i.e the certain answers of a view instance VpDq are precisely
the query result QpDq). However there are possibly other
rewritings (they only need to agree on instances of the form
VpDq, but may possibly differ on instances not in the image
of V.) While the certain answers query is coNP-hard to
compute, our main result shows that there exists another
rewriting which is expressible in Datalog, and has therefore
polynomial time data complexity.

Nevertheless our proof makes use of the structure TQ,V

mentioned above, and our Datalog rewriting turns out to be
the query Ql,k associated with Q and V for some suitable
values of l and k.

2. PRELIMINARIES

Graph databases and paths.
A binary schema is a finite set of relation symbols of arity

2. All the schemas used in this paper are binary. A graph
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database D is a finite relational structure over a (binary)
schema σ. We will also say a σ-structure. Alternatively D
can be viewed as a directed edge-labeled graph with labels
from the alphabet σ. The elements of the domain of D are
referred to as nodes. The number of elements in D is denoted
by |D|. If A is a set of elements of D, we denote by DrAs
the substructure of D induced by A.

Given a graph database D, a path π in D from x0 to xm is
a finite sequence π � x0a0x1 . . . xm�1am�1xm, where each
xi is a node of D, each ai is in σ, and aipxi, xi�1q holds in D
for each i. A simple path is a path such that no node occurs
twice in the sequence. The label of π, denoted by λpπq,
is the word a0a1 . . . am�1 P σ

�. By abuse of notation, we
sometimes view a path π as a graph database, which contains
only the nodes and edges that occur in the sequence.

Queries and query languages.
A (binary) query Q over a schema σ is a mapping associat-

ing to each graph database D over σ a finite binary relation
QpDq over the domain of D. We will only consider binary
queries and work with the following query languages.

A Regular Path Query (RPQ) Q over σ is given by a reg-
ular expression over the alphabet σ. We denote by LpQq the
language corresponding to the regular expression of Q. On
a graph database, such a query selects all the pairs px, yq
of nodes such that there exists a path π from x to y with
λpπq P LpQq.

For instance the query Path3 of the introduction is an
RPQ corresponding to the regular expression σσσ (also de-
noted σ3). The RPQ pσσq� would select pairs of nodes
connected via a path of even length.

A Conjunctive Regular Path Query (CRPQ) over σ is a
conjunctive query whose atoms are specified using RPQs
over σ. For instance the query

Dz V1px, zq ^ V2pz, yq ^ V3pz, yq

where V1 � a�, V2 � b and V3 � c selects pairs of nodes
px, yq which are connected via a path labeled a�b and an-
other path labeled a�c sharing their a� part. This cannot
be expressed by an RPQ.

A Datalog query over schema σ is defined by a finite set
of rules of the form

Ipx̄q :� I1px̄1q ^ � � � ^ Impx̄mq

where each Ii is a relational symbol, either a symbol from
σ, or an internal symbol. Ipx̄q is called the head of the
rule and I must be an internal symbol. The variables x̄ are
among x̄1 . . . x̄m and the variables of x̄i not occurring in x̄
should be understood as existentially quantified. One of the
internal symbols, referred to as the goal, is binary and is des-
ignated as being the output of the query. The evaluation of
a Datalog query computes the internal relations incremen-
tally starting from the empty ones by applying greedily the
rules (see [2]).

It is easy to see that any RPQ, and therefore any CRPQ,
can be expressed in Datalog. Hence Datalog is the most
expressive of the query languages presented above. It is
also well known that each Datalog query can be evaluated
in polynomial time, data complexity, using the procedure
briefly sketched above.

We will consider restrictions of Datalog limiting the maxi-
mal arity of the internal symbols and the number of variables
in each rule. This is classical in the context of Constraint

Satisfaction Problems (CSP) [11] that we will use in Sec-
tion 5. In the context of CSP, Datalog programs are boolean
(i.e. the goal has arity 0) and Datalogl,k denotes the frag-
ment allowing at most k variables in each rule and internal
symbols of arity at most l. Here we are dealing with binary
Datalog programs. In order to stay close to the notations
and results coming from CSP, we generalize this definition
and let Datalogl,k denote the Datalog programs having at
most k � r variables in each rule and internal symbols of
arity at most l � r, where r is the arity of the goal (in our
case r � 2).

Views.
If σ and τ are (binary) schemas, a view V from σ to

τ is a set consisting of one binary query over σ for each
symbol in τ . If V consists of the queries tV1, . . . , Vnu, with
a little abuse of notation, we let each Vi also denote the
corresponding symbol in τ . For a graph database D over σ,
we denote by VpDq the graph database over τ where each
binary symbol Vi is instantiated as VipDq. We say that a
view consisting of the queries tV1, . . . , Vnu is an RPQ view
if each Vi is an RPQ.

In what follows whenever we refer to a view V and a query
Q, unless otherwise specified, we always assume that Q is
over the schema σ and V is a view from σ to τ .

Determinacy and rewriting.
The notion of determinacy specifies when a query can be

answered completely from the available view. The following
definitions are taken from [13].

Definition 1 (Determinacy). We say that a view V
determines a query Q if :

@D,D1, VpDq � VpD1q ñ QpDq � QpD1q

In other words, QpDq only depends on the view instance
VpDq and not on the particular database D yielding the
view. Observe that determinacy says that there exists
a function f defined on view images such that QpDq �
fpVpDqq for each database D. We call f the function in-
duced by Q using V.

A rewriting of Q using V is a query R over the schema τ
such that RpVpDqq � QpDq for all D.

Example 1. Consider again the view V defined by the
two RPQs V1 � σ3 and V2 � σ4 testing for the existence of
a path of length 3 and 4, respectively. Let Q � σ5 be the
query testing for the existence of a path of length 5.

It turns out that V determines Q [3]. This is not imme-
diate to see but one can verify that a rewriting of Q using V
can be expressed in first-order by the following query:

Du V2px, uq ^ @v pV1pv, uq ñ V2pv, yqq

As shown in Figure 1, the function induced by Q using V
is not monotone. This implies that no monotone query can
be a rewriting, in particular there exists no CQ nor RPQ
rewriting.

Consider now the query Q1 � σ2. One can verify that
V does not determine Q1. Indeed the database consisting
of a single node with no edge, and the database consisting
of a single path of length 2, have the same empty view but
disagree on Q1.
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x0 x1 x2 x3 x4 x5
D :

x0

x1

x2

x3 x4

x5

D1 :

Figure 1: Illustration for Example 1: D and D1 are
such that VpDq � VpD1q, but px0, x5q P QpDq, whereas
px0, x5q R QpD1q. Hence the function induced by Q
using V is not monotone.

It is important at this point to understand the difference
between determinacy and rewriting. If V determines Q then
there exists a rewriting of Q using V. However there are
possibly many rewritings of Q using V. Each of them agrees
on f , the function induced by Q using V, when restricted
to view images, but can take arbitrary values on structures
that are not in the image of the view.

Consider for instance the view V and the query Q of Ex-
ample 1. The query:

Du, u1 V2px, uq ^ V1px, u
1q ^ @v pV1pv, uq ñ V2pv, yqq

is also a rewriting of Q using V. It is equivalent to the rewrit-
ing of Example 1 on τ -instances E such that E � VpDq
for some D. Indeed whenever V2px, uq holds in VpDq, the
database D contains a path of length four from x to u,
hence if u1 is the node at distance three from x in this path,
V1px, u

1q also holds in VpDq. However the two rewritings
may differ on instances which are not in the view image,
such as an instance consisting of a single V2-labelled edge.

The determinacy problem for a query language L is the
problem of deciding, given an input view V from L and a
query Q in L, whether V determines Q.

Determinacy does not say whether there exists a rewriting
definable in a particular query language, or computable with
a particular data complexity. This clearly depends on the
language used for specifying the views and queries. We say
that a language LR is a complete rewriting language for the
query language L if it is the case that, for all views and
queries in L, determinacy implies the existence of a rewriting
in LR.

The rewriting problem for a query language L and a
rewriting language LR is the problem of knowing whether
LR is a complete rewriting language for L.

These two problems have been thoroughly investigated in
the case that L is RPQ [7, 6, 8, 9]. However the determinacy
problem for RPQ remains wide open and it is not clear what
would be a good (low data complexity) complete rewriting
language for RPQ. Note that a similar situation arises in the
case that L is CQ [13, 3].

3. BASIC RESULTS ON THE REWRITING
PROBLEM

In this section we present some basic results about the
data complexity of rewritings for RPQs.

Let V and Q be RPQs such that V determines Q. A pos-
sible rewriting is defined by the following naive algorithm.
Given a τ -structure E, compute a σ-structure D such that
VpDq � E (reject if no such D exists) and return QpDq. As
we know that V determines Q this procedure always returns
the correct answers on view images. As Q is an RPQ, com-
puting QpDq can be done in time polynomial in |D|. Hence
it remains to compute a D such that VpDq � E.

Our first result below shows that if such a D exists then
there is one whose size is polynomial in |E|. As we will see,
this implies that there exists a rewriting with NP data com-
plexity, as well as a rewriting with coNP data complexity.
It is still open whether a rewriting with polynomial time
data complexity always exists.

We also show that it is NP-hard to test the existence of
D such that VpDq � E.

We now state more formally the results mentioned above.
The proofs, mostly standard, are postponed to Section 6.

A pumping argument proves the first lemma:

Lemma 1. Let V be an RPQ view from σ to τ . Let E be
a τ -structure. If E � VpDq for some D then E � VpD1q, for
some D1 of size quadratic in |E|.

Sketch of the proof (see Section 6 for more details). We
show that if there exists D such that E � VpDq then
there exists a new database D1 of size Op|E|2q such that
VpD1q � VpDq. D1 is obtained from D in several steps.
First D is “normalized”, without altering its view, so that
nodes not occurring in E appear in only one path linking
two nodes of E. The normalized D turns out to consist of
a constant number of disjoint paths between each pair of
nodes of E (where the constant only depends on the size of
the view automaton). Then a Ramsey argument is used to
show that these paths can be “cut” without changing the
view. The resulting database D1 thus consists of a constant
number of paths of constant length between each pair of
nodes of E. The size of D1 is therefore Op|E|2q. l

In view of Lemma 1, we know that if V determines Q then
there exists a rewriting R with NP data complexity. Indeed
R is the query computed by the following non-deterministic
polynomial time algorithm: on an input τ -structure E, guess
from E a database D of polynomial size, check that VpDq �
E and then evaluate Q on D. There also exists a rewriting
with coNP data complexity, that we exhibit by considering
all databases D of polynomial size such that VpDq � E.
Altogether we get:

Corollary 1. Let V and Q be RPQs such that V de-
termines Q. Then there exists a rewriting of Q using V
with NP data complexity, and another one with coNP data
complexity.

Note that Lemma 1 provides also an NP procedure for
testing, given E, the existence of D such that VpDq � E. As-
sume for a moment that this test could be done in time poly-
nomial in |E|. A simple reduction shows that this test can
also be done in polynomial time when one view is boolean
and tests that two constants are linked via a path satisfying
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a regular condition. Under this assumption, if V determines
Q, there exists a rewriting of Q using V that can be evalu-
ated in polynomial time as follows on input E: run the test
for E and V. If the test is positive, define V1 as VYtQa,bu,
where Qa,b tests that two constants a and b are linked by a

path in LpQq. For each pair px, yq of nodes of E, let E1 be
E expanded with the empty relation for Qa,b, and a and b

instantiated as x and y. Run the test for V1 and E1. It is
immediate to see that the test says yes iff px, yq R QpDq.

Unfortunately the following lemma shows that this test is
NP-hard.

Lemma 2. There is an RPQ view V from σ to τ such
that given a τ -structure E it is NP-hard to test whether there
exists a σ-structure D such that VpDq � E.

Sketch of the proof. We reduce 3-Colorability to our
problem. The proof is a simple variation of the reduction
found in [5] to prove that computing certain answers
under the sound view assumption is coNP-hard in data
complexity. l

It is not known whether, for RPQ views and queries, deter-
minacy implies the existence of a rewriting with polynomial
time data complexity. The complexity bounds of Corollary 1
are the current best known bounds. We will see in the next
sections that if we further assume that the function induced
by Q using V is monotone then there exists a rewriting of
Q using V definable in Datalog and therefore computable in
polynomial time.

4. MONOTONE DETERMINACY AND
REWRITING

As Example 1 shows, there is an RPQ view V and an RPQ
query Q such that V determines Q but the function induced
by Q using V is not monotone, therefore having no RPQ
rewriting. It is natural to wonder whether the monotonicity
of the function induced by the query is the only limit for the
existence of an RPQ rewriting. Recall from the introduction
that if V and Q are defined using CQs and V determines
Q, then the function induced by Q using V is monotone iff
there exists a CQ rewriting. In the case of RPQ views and
queries the analog does not hold. We will see that, even if
we assume monotonicity, an RPQ rewriting need not exist;
however in the next section we will show that a rewriting
definable in Datalog always exists. We start by formalizing
the notion of monotone determinacy.

Definition 2 (Monotone determinacy). We say
that a view V determines a query Q in a monotone way if
V determines Q and the function induced by Q using V is
monotone.

It is rather immediate to see that monotone determinacy
is equivalent to the following property for V and Q:

@D,D1, VpDq � VpD1q ñ QpDq � QpD1q

This turns out to coincide with the notion of losslessness
under the sound view assumption defined in [7], that was
shown to be decidable, actually ExpSpace-complete, for
RPQs.

Corollary 2. The monotone determinacy problem for
RPQs is ExpSpace-complete.

We now assume given an RPQ view V and an RPQ query
Q such that V determines Q in a monotone way. It was
observed in [7] that even in this case there might be no
rewriting definable in RPQ.

In fact, given V and Q defined using RPQs, it is de-
cidable whether an RPQ rewriting exists and the problem
is 2ExpSpace-complete [8]. As testing monotone determi-
nacy is ExpSpace-complete, a simple complexity argument
shows that an RPQ rewriting is not guaranteed to exist un-
der monotone determinacy.

Here is a concrete example witnessing this fact. 1

Example 2. Let σ � ta, b, cu. Let Q and V be defined as
follows:


 Q � ab�a | ac�a


 V � tV1, V2, V3u with

– V1 � ab�

– V2 � ac�

– V3 � b�a | c�a

One can verify that V determines Q as witnessed by the
following rewriting Rpx, yq:

Dz V1px, zq ^ V2px, zq ^ V3pz, yq

That R is a rewriting is illustrated in Figure 2. Con-
sider the database D of Figure 2 which is a typical database
such that px, yq P QpDq. The choice of z witnessing
px, yq P RpVpDqq is then immediate. Conversely, consider
the database D1 of Figure 2. It is a typical database such that
px, yq P RpVpDqq. The top path shows that px, yq P QpDq.

a ab b b b

x z y
D :

a

a

b b

c

b

c

b a

x z y

D1 :

Figure 2: Databases D and D1 for Example 2.

Since R is monotone, V determines Q in a monotone way.
It can also be shown (for instance using the decision proce-
dure provided in [8]) that no RPQ rewriting exists.

In the previous example we have exhibited a rewriting in
CRPQ. However the following example suggests that CRPQ
is not expressive enough as a rewriting language.

Example 3. Let σ � tau. Let V and Q be defined as
follows:


 Q � apa6q� | aapa6q�

(words of length 1 or 2 modulo 6)

1A similar example was claimed in [7, Example 4] but it
seems that in this example V and Q are such that V does
not determine Q.

111




 V � tV1, V2u with

– V1 � a | aa (words of length 1 or 2)

– V2 � aa | aaa (words of length 2 or 3)

It can be verified that V determines Q in a monotone way
as witnessed by the following rewriting Rpx, yq:

Dz V1px, zq ^ T
�pz, yq

where T px, yq is defined as:

Dz1, z2 V1px, z1q ^ V2px, z1q ^ V1pz1, z2q^

V2pz1, z2q ^ V1pz2, yq ^ V2pz2, yq

The query T is such that if T px, yq holds in VpDq, then in
D the nodes x and y are either linked by a path of length 6
or by both a path of length 5 and a path of length 7. This
fact can be checked by a simple case analysis. One such case
is illustrated in Figure 3. In this case there is no path of
length 6 in D, but the top path has length 5, and the path
starting with the bottom segment and then the last two top
segments has length 7.

From this, a simple induction shows that if T�px, yq holds
in VpDq, then in D the nodes x and y are either linked by
a path of length 0 modulo 6, or by both a path of length 1
modulo 6 and a path of length 5 modulo 6.

Assume now that Rpx, yq holds in VpDq. Then in D there
exists a z such that x is at distance 1 or 2 from z, and such
that T�pz, yq holds in VpDq. Assume first that z and y are
at distance 0 modulo 6 in D. In this case, regardless of the
distance between x and z, Qpx, yq holds in D. Otherwise, in
D there exist both a path of length 1 modulo 6 and a path of
length 5 modulo 6 from z to y. Therefore, if x and z are a
distance 1, the first path from z to y yields a path of length 2
modulo 6 and, if x and z are at distance 2, the second path
from z to y yields a path of length 1 modulo 6, see Figure 4.

Conversely, it is easy to check that Rpx, yq holds in VpDq
whenever Qpx, yq holds in D. This follows from the fact that
T px, yq holds in VpDq for all x and y that are at distance 6
in D.

Notice that R is monotone. A tedious combinatorial argu-
ment can show that R cannot be expressed in CRPQ.

x y
z1 z2

V1 : a V1 : aa V1 : aa

V2 : aaa V2 : aa V2 : aa

Figure 3: An arbitrary database D whose view satis-
fies T px, yq. Each arrow of the form Vi : w from a node
u to a node v should be understood as a path from
u to v whose label is w which witnesses pu, vq P VipDq.

Remark 1. The careful reader has probably noticed that
in both examples above a rewriting can be expressed in MSO.
As we will see later, it easily follows from the results of [6]
that this is always true in general: if V and Q are defined by
RPQs and V determines Q in a monotone way, then there
exists a rewriting of Q using V definable in MSO (actually
universal MSO).

x yz

V1 : a or a2 T� : pa6q�

x yz

V1 : a

T� : apa6q�

T� : a5pa6q�

x yz

V1 : aa

T� : apa6q�

T� : a5pa6q�

Figure 4: The three cases of Example 3. The parts
that are not used for Q are shaded out.

5. DATALOG REWRITING
In this section we prove our main result, namely:

Theorem 1. If V and Q are RPQs and V determines Q
in a monotone way then there exists a Datalog rewriting of
Q using V.

Theorem 1 also implies that the monotone determinacy
problem for RPQs coincides with the problem of the exis-
tence of a Datalog rewriting. The latter is therefore decid-
able by Corollary 2:

Corollary 3. Let V and Q be RPQs. It is decidable,
ExpSpace-complete, whether there exists a Datalog rewrit-
ing of Q using V.

Our proof being constructive, the Datalog rewriting can
be computed from V and Q.

Main idea and sketch of the proof.
The starting point is the relationship between rewriting

and certain answers under monotone determinacy. One can
easily show that if the view determines the query in a mono-
tone way then the certain answer query is a rewriting. How-
ever certain answers for RPQ views and queries are coNP-
hard to compute [5]. Here we show that there exists another
rewriting (which of course coincides with certain answers
on view images) that is expressible in Datalog. This other
rewriting is suggested by the relationship between certain
answers and Constraint Satisfaction Problems (CSP). Fol-
lowing [6] we adopt here the homomorphism point of view
for CSPs: Each CSP is defined by a structure, called the
template, and its solutions are all the structures mapping
homomorphically into the template.
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Indeed [6] showed that, for RPQs V and Q, certain an-
swers can be expressed as a CSP whose template depends
only on V and Q. It is known from [11] that for every
l and k with l ¤ k, and every template, there exists a
Datalogl,k query approximating the CSP defined by this
template. Even if its Datalogl,k “approximation” does not
compute precisely the CSP associated to V and Q, if it is
exact on view images, then it is a rewriting. We show that
if the view determines the query in a monotone way then
there is an l and a k, depending only on V and Q, such that
the Datalogl,k approximation is exact on view images. This
proves the existence of a Datalog rewriting.

This is done in two steps. We first show that there ex-
ists a Datalog approximation which is exact on view images
of simple path databases. Then we show how to lift this
result on all view images. The first step is proved by a care-
ful analysis of the properties of view images of simple path
databases. The second steps exploits monotonicity.

We now provide more details.

5.1 Monotone rewritings, certain answers
and CSP

Let V be a view from σ to τ and Q be a query on σ-
structures. The certain answers of Q on a τ -structure E
w.r.t. V are defined as

certQ,VpEq �
£

D | E�VpDq

QpDq

This notion is usually referred to as certain answers under
the sound view assumption or open world assumption in the
literature [1, 9]. It is straightforward to check that if V
determines Q in a monotone way, the query certQ,V is a
rewriting of Q using V, i.e. certQ,VpVpDqq � QpDq for each
σ-structure D.

Therefore any language known to express certain answers
is a suitable rewriting language under monotone determi-
nacy.

The following proposition, proved in [6], shows that, for
RPQ views and queries, certain answers (and therefore
rewritings) can be expressed as (the negation of) a CSP.

Proposition 1 ([6]). Let V be an RPQ view from σ to
τ and Q be an RPQ query over σ. There exists a τ -structure
TQ,V having a set of distinguished source nodes and a set of
distinguished target nodes such that, if V determines Q in
a monotone way, the following are equivalent, for each σ-
structure D and each pair of nodes u, v of D:

1. pu, vq P QpDq

2. pu, vq P certQ,VpVpDqq

3. VpDq has no homomorphism to TQ,V sending u to a
source node and v to a target node. 2

In the sequel, by  CSPpTQ,Vq (resp. CSPpTQ,Vq) we re-
fer to the set of all triplets pE, u, vq such that E is a τ -
structure, u, v are nodes of E and, there is no homomor-
phism (resp. there is a homomorphism) from E to TQ,V

2More precisely [6] further proved that 2. and 3. are equiv-
alent not only for VpDq but for all τ -structures, and even
without the assumption that V determines Q in a monotone
way.

sending u to a source node and v to a target node3. In view
of Proposition 1, if V determines Q in a monotone way,
pVpDq, u, vq P  CSPpTQ,Vq iff pu, vq P QpDq.

Observe that  CSPpTQ,Vq naturally defines a binary
query associating with each τ -structure E the set of all pairs
pu, vq of nodes of E such that pE, u, vq P  CSPpTQ,Vq. By
abuse of notation, when clear from the context, we will let
 CSPpTQ,Vq also denote this binary query.

Remark 2. The structure TQ,V of Proposition 1 can be
effectively computed from Q and V. Moreover observe that
CSPpTQ,Vq can be expressed in existential MSO. This shows,
as mentioned in Remark 1, that if V and Q are RPQs and V
determines Q in monotone way, then there always exists a
rewriting of Q using V definable in (universal) MSO; more-
over this rewriting can be effectively computed from Q and
V.

Although under monotone determinacy the certain answer
query is a rewriting, as we will see shortly, under standard
complexity assumptions, no polynomial time language can
express certQ,V for all RPQs Q and V, not even under the
assumption that V determines Q in a monotone way. Indeed
it has been shown [5] that there exists Q and V defined by
RPQs such that certQ,V has coNP-hard data complexity.
An easy reduction from this problem shows that the lower
bound remains valid if we further assume that V determines
Q in a monotone way:

Proposition 2. There exist an RPQ view V and an
RPQ query Q such that V determines Q in a monotone way
and it is coNP-hard to decide – given a τ -structure E and
nodes pu, vq of E– whether pu, vq P certQ,VpEq.

We show next that when V determines Q in a monotone
way there is another rewriting expressible in Datalog, hence
computable in polynomial time.

5.2 Datalog rewritings
We now show that for each RPQ query Q and each RPQ

view V such that V determines Q in a monotone way, there
exists a Datalog rewriting.

The existence of such a rewriting stems from links between
CSPs and Datalog. Recall from Proposition 1 that if V
determines Q in a monotone way,  CSPpTQ,Vq, viewed as
a binary query, is a rewriting of Q using V. It is known
that to each CSP problem (i.e. arbitrary template), one can
associate a canonical Datalogl,k program, for each l, k, with
l ¤ k. This program can equivalently be described in terms
of a two-player game, and can be thought of as a maximal
“approximation” of the complement of a CSP problem, in
a precise sense (the interested reader is referred to [11] for
more details). Our main contribution consists in proving
that, for some explicit values of l and k (depending on Q and
V), this Datalogl,k approximation is “exact” when restricted
to view images (i.e. computes precisely  CSPpTQ,Vq), and
is therefore a rewriting over such instances.

We now present the pl, kq-two-player game of [11], and its
correspondence with Datalog.
3CSP are usually defined as boolean problems, i.e. without
the nodes u, v. As RPQ queries are binary, these parameters
are necessary for our presentation. The problem CSPpTQ,Vq,
as defined here, can be viewed as a classical CSP problem
by extending the signature with two unary predicates, inter-
preted as the source and the target nodes, as done in [6].
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Definition 3 (pl, kq-two-player game). Let l, k be
two integers, with l ¤ k, let E be a τ -structure and u, v be
two nodes of E. The pl, kq-game on pE, TQ,V, u, vq is played
by two players as follows:


 The game begins with A0 � H and h0 being the empty
function over A0.

For i ¥ 0, round i� 1 is defined as follows:


 Player 1 selects a set Ai�1 of nodes of E, with |Ai�1| ¤
k and |Ai XAi�1| ¤ l.


 Player 2 responds by giving a homomorphism hi�1 :
ErAi�1s Ñ TQ,V that coincides with hi on Ai X Ai�1

and such that hi�1puq is a source node and hi�1pvq is
a target node whenever u or v are in Ai�1.

Player 1 wins if at any point Player 2 has no possible move.
Player 2 wins if she can play forever.

The existence of a winning strategy for Player 1 is ex-
pressible in Datalog:

Lemma 3 ([11, 6]). Let l, k be two integers, with l ¤ k,
and Q and V be an RPQ query and an RPQ view. Then
there exists a program Ql,kpx, yq in Datalogl,k such that for
every graph database E, Ql,kpEq is the set of pairs pu, vq such
that Player 1 has a winning strategy for the pl, kq-two-player
game on pE, TQ,V, u, vq.

Moreover the program in the above lemma can be effec-
tively constructed from TQ,V, and therefore from Q and V.
It will be simply denoted by Ql,k when Q and V are clear
from the context.

We are now ready to state the main technical result of our
paper.

Proposition 3. Let V and Q be an RPQ view and an
RPQ query such that V determines Q in a monotone way.
There exists l such that Ql,l�1 is a rewriting of Q using V.

Theorem 1 is an immediate consequence of this proposi-
tion. The rest of this section is devoted to proving Proposi-
tion 3. This is done in two steps. We first prove that there
exists l such that Ql,l�1 is a rewriting of Q using V, when
restricted to view images of simple path graph databases.
We then show that this suffices for Ql,l�1 to be a rewriting
of Q using V.

Observe that if there is a homomorphism from a τ -
structure E to TQ,V sending u to a source node and v to
a target node, then Player 2 has a winning strategy for
the pl, kq-two-player game on pE, TQ,V, u, vq. This strategy
consists in always playing the restriction of the homomor-
phism on the set selected by Player 1. In this sense the
program Ql,k is a Datalogl,k under-approximation of the
 CSPpTQ,Vq problem: if pu, vq P Ql,kpEq then pE, u, vq P
 CSPpTQ,Vq. If moreover E � VpDq for some σ-structure
D then, by Proposition 1, pu, vq P Ql,kpVpDqq implies
pu, vq P QpDq. We will refer to this property by saying that
Ql,k is always sound.

The converse inclusion does not necessarily hold. If
pu, vq R Ql,kpEq then Player 2 has a winning strategy, but
this only means that she can always exhibit partial homo-
morphisms from E to TQ,V (sometimes called local consis-
tency checking); this is in general not sufficient to guarantee
the existence of a suitable global homomorphism.

However here we are not interested in arbitrary τ -
structures, but only structures of the form VpDq for some
simple path graph database D. We now show that, thanks
to the particular properties of these structures, local con-
sistency checking is sufficient to obtain a global homomor-
phism, for some suitable l and k � l�1. In other words, the
program Ql,l�1 computes precisely  CSPpTQ,Vq on views of
simple path graph databases.

The case of simple path graph databases.

Proposition 4. Let V and Q be an RPQ view and an
RPQ query. There exists l such that for every simple path
database D from u to v,

pu, vq P Ql,l�1pVpDqq iff pVpDq, u, vq P  CSPpTQ,Vq.

In particular if V determines Q in a monotone way,

pu, vq P Ql,l�1pVpDqq iff pu, vq P QpDq.

Proof. Let V and Q be an RPQ view and an RPQ query,
and let D be a graph database consisting of a simple path
from node u to node v. Assume u, v P VpDq.

We will show, in Lemma 4 below, that for large enough
l, if Player 2 has a winning strategy on the game on
pVpDq, TQ,V, u, vq then we can exhibit a homomorphism wit-
nessing the fact that pVpDq, u, vq P CSPpTQ,Vq. Before that
we prove crucial properties of VpDq which will be exploited
in the sequel. For that we need the following simple defini-
tions and claims.

Let D consist of the simple path π �
x0a1x1 . . . xmamxm�1, with x0 � u and xm�1 � v.
Moreover let E � VpDq and let A � xSV, δV, q

0
V, FVy be

the product automaton of all the deterministic minimal
automata of all the regular expressions of the RPQs in V.
Let NpVq be the number of states of A, i.e. |SV|.

In what follows, for q P SV and w P σ�, δVpq, wq denotes
the set of states p P SV such that there is a run of A on w
starting in state q and arriving in state p.

For every k ¤ m � 1, and every i, j ¤ k, we say that
xi �k xj in VpDq if, for all V P V, for all r ¥ k,

pxi, xrq P V pDq ô pxj , xrq P V pDq

For all k, the relation �k is an equivalence relation over
txi | i ¤ ku. We now prove the main property of VpDq,
namely that the index of all �k is bounded by the size of V.

Claim 1. For all k ¤ m� 1:���txi | i ¤ ku{ �k

��� ¤ NpVq

Proof. To each node xi in π with i ¤ k, we associate a
state ϕpxiq P SV defined as :

ϕpxiq � δVpq
0
V, λpπiÑkqq

where πsÑt is defined as the subpath of π that starts
at position s and ends at position t, that is πsÑt �
xsasxs�1as�1 . . . at�1xt.

Assume that there exists two nodes xi and xj , with i, j ¤
k, that have the same image in ϕ. It follows that:

δVpq
0
V, λpπiÑkqq � δVpq

0
V, λpπjÑkqq

Let us prove that xi �k xj . Assume that there exists r ¥ k
and V P V such that pxi, xrq P V pDq. Then δVpq

0
V, λpπiÑrqq
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is final for V . Remark that λpπiÑrq � λpπiÑkqλpπkÑr),
from which we can deduce that :

δVpq
0
V, λpπiÑrqq � δVpϕpxiq, λpπkÑrqq

Hence,

δVpq
0
V, λpπiÑrqq � δVpϕpxjq, λpπkÑrqq

We can now conclude that δVpq
0
V, λpπjÑrqq is final for V ,

which means that pxj , xrq P V pDq. A symmetric argument
easily proves the other direction of the equivalence. Hence,
xi �k xj , and we can finally conclude that there cannot be
more that NpVq distinct equivalence classes of �k over the
nodes txi | i ¤ ku of π.

The following easily verified property of the equivalence
relations �k will also be useful:

Claim 2. Let k1, k2 ¤ m� 1, with k1 ¤ k2. Let x and y
be two elements of π that occur before xk1 . Then x �k1 y
implies x �k2 y.

We are now ready to prove the statement of the Proposi-
tion.

Let l � |TQ,V| �NpVq. We prove that pu, vq P Ql,l�1pEq iff
pE, u, vq P  CSPpTQ,Vq. In view of the fact that Ql,l�1 en-
codes the pl, l�1q-two-player game in the sense of Lemma 3,
it is enough to prove the following:

Lemma 4. Player 2 has a winning strategy for the pl, l �
1q-two-player game on pE, TQ,V, u, vq iff there is an homo-
morphism from E to TQ,V sending u to a source node and v
to a target node.

Proof. The right-left direction is obvious. If there is a
suitable homomorphism h : E Ñ TQ,V, then Player 2 has a
winning strategy which consists in playing according to h.

Conversely, assume that Player 2 has a winning strat-
egy for the pl, l� 1q-two-player game on pE, TQ,V, u, vq. Let
ts1, s2, . . . , sru be an ordering of the elements of E, accord-
ing to the order on π, that is, in such a way that @j ¤ k, sj
occurs before sk in π. Clearly s1 � u and sr � v. If r ¤ l�1,
Player 1 can select all elements of E in a single round, and
then Player 2 has to provide a full homomorphism from E
to TQ,V, which concludes the proof.

Assume r ¡ l � 1. For ease of notations, we will number
rounds starting from l�1. This can be seen just as a techni-
cality, or equivalently as Player 1 selecting the empty set for
the first l rounds. Since Player 2 has a winning strategy, she
has, in particular, a winning response against the following
play of Player 1 :


 On round l � 1, Player 1 plays Al�1 � ts1, . . . , sl�1u.
Player 2 has to respond with a partial homomorphism
hl�1, which she can do, since she has a winning strat-
egy.


 Assume that, on round i, Ai is of size l� 1 and its el-
ement of biggest index is si (as it is the case on round
l � 1). Given the choice of l, the set Ai is sufficiently
“big”, that is by Claim 1, there exist two elements
sj , sk P Ai such that sj �i sk, and hipsjq � hipskq. On
round i�1, Player 1 picks Ai�1 � pAi�tsjuqYtsi�1u.
This choice maintains that Ai�1 is of size l � 1 and
that its element of biggest index is si�1. Once again,
Player 2 has to respond with a partial homomorphism
hi�1, which she can do.


 Following this play, on round r, Ar contains sr, the ele-
ment of biggest index in E. From now on, we no longer
care about Player 1’s move, that is, we arbitrarily set
Ai � H for all i ¡ r.

We can now define h as follows :

hpsiq �

"
hl�1psiq if i ¤ l � 1
hipsiq if l � 1   i ¤ r

Observe that, by definition, the mapping h sends u to a
source node and v to a target node (since so do all the hi’s
used in the game). It remains to prove that h is an ho-
momorphism from E to TQ,V. We prove by induction on
i ¥ l � 1 that :

pH1q h is a homomorphism from Erts1, . . . , sius to TQ,V.

pH2q h coincides with hi on Ai.

pH3q for all j ¤ i, there exists s P Ai such that sj �i s and
hpsjq � hpsq.

Base case : For i � l � 1, the mapping h coincides by
definition with hl�1 on ts1, . . . , sl�1u. Hence, pH1q and pH3q
follow easily.

Inductive case : Assume that there exists i with l�1 ¤
i   r such that pH1q,pH2q and pH3q holds for i; we prove
them for i� 1.

pH2q Let s P Ai�1. If s � si�1, then, by definition,
hpsi�1q � hi�1psi�1q. Otherwise, s P Ai XAi�1. pH2q
for i implies that hpsq � hipsq, and the definition of
hi�1 thus yields hi�1psq � hipsq � hpsq. Hence, pH2q
holds for i� 1.

pH3q Let j ¤ i � 1. If j � i � 1, then sj P Ai�1, and the
result is obvious. Otherwise, pH3q for i implies that
there exists s P Ai such that sj �i s and hpsjq � hpsq.
From Claim 2, we deduce that sj �i�1 s. If s P Ai�1,
there is nothing more to prove. Otherwise, it means
that s is exactly the element that was removed from Ai
on round i� 1, which means that there exists another
element s1 P Ai X Ai�1 such that s �i s

1 and hipsq �
hips

1q. Then Claim 2 and pH2q imply that sj �i�1 s
1

and hpsjq � hps1q. Hence pH3q holds for i� 1.

pH1q By definition, h already preserves any self-loop. More-
over, pH1q for i implies that h is a homomorphism from
Erts1, . . . , sius to TQ,V. Hence, any edge between two
elements of ts1, . . . , siu in E is already preserved by h.
Let sj P ts1, . . . , siu. Remark that, since π is a simple
path, there are no edges from si�1 to sj in E. Thus,
we just have to prove that all edges from sj to si�1 are
preserved by h.

pH3q for i � 1 implies that there exists an element
s P Ai�1 such that sj �i�1 s and hpsjq � hpsq. Since
hi�1 is a homomorphism on ErAi�1s, it preserves all
edges from s to si�1. Moreover, pH2q for i� 1 implies
that h and hi�1 coincide on Ai�1, which means that h
preserves all edges from s to si�1. Finally, the defini-
tion of �i�1 implies that sj and s have the same edges
to si�1. Hence, h preserves all edges from sj to si�1.

Finally, pH1q applied for r proves that h is indeed a homo-
morphism from E to TQ,V.

This completes the proof of Lemma 4.
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Now assume V determines Q in a monotone way, then
from Proposition 1 it immediately follows that pu, vq P
Ql,l�1pVpDqq iff pu, vq P QpDq. This completes the proof
of Proposition 4. l

From simple paths to arbitrary graph databases.
Proposition 4 shows that if Q determines V in a monotone

way then Ql,l�1 is a rewriting of Q using V, when restricted
to simple path databases. It remains to lift this result to
arbitrary graph databases. In a sense, the following result
shows that the general case can always be reduced to the
simple path case.

Proposition 5. Let V and Q be an RPQ view and an
RPQ query such that V determines Q in a monotone way.
Assume P is a query of schema τ such that:

1. P is closed under homomorphisms: for all databases
E,E1, and all pair of elements pu, vq of E, if pu, vq P
PpEq and there exists a homomorphism h : E Ñ E1

then phpuq, hpvqq P PpE1q.

2. P is sound and complete for all simple path databases:
for all simple path databases D from u to v such that
u and v are in the domain of VpDq, we have pu, vq P
PpVpDqq iff pu, vq P QpDq.

3. P is always sound: for all graph databases D and el-
ements u and v of VpDq, if pu, vq P PpVpDqq then
pu, vq P QpDq.

Then P is a rewriting of Q using V.

Proof. Let D be a database, and pu, vq be a pair of ele-
ments of VpDq, such that pu, vq P QpDq. Then there exists
in D a path π0 from u to v, such that λpπ0q P LpQq.

Consider the simple path π � x0a0x1 . . . xmamxm�1 de-
fined such that λpπq � λpπ0q. Since V determines Q in a
monotone way and λpπq P LpQq, then x0 and xm�1 are in
the domain of Vpπq, and px0, xm�1q P Qpπq. Hence, (2)
implies that px0, xm�1q P PpVpπqq.

Additionally, it is clear that there exists a homomorphism
h from π to D with hpx0q � u and hpxm�1q � v. Observe
that h extends to the views of π and D, that is h is an
homomorphism from Vpπq to VpDq, and (1) thus implies
that pu, vq P PpVpDqq.

The other direction is immediately given by (3).

We now have all the elements to prove Proposition 3. Let
V and Q be an RPQ view and an RPQ query such that V
determines Q in a monotone way. By Proposition 4 there
exists l such that Ql,l�1 is sound and complete over simple
path databases. Moreover each Datalog query is preserved
under homomorphisms, and we have already observed that
all Ql,k are always sound. It then follows from Proposition 5
that there exists l such that Ql,l�1 is a rewriting of Q using
V. This proves Proposition 3 and therefore Theorem 1.

6. MISSING PROOFS FROM SECTION 3
In this section, we provide the missing proofs of Section 3.

Lemma 1. Let V be an RPQ view from σ to τ . Let E be
a τ -structure. If E � VpDq for some D then E � VpD1q, for
some D1 of size quadratic in |E|.

Proof. Let V and E be as in the statement of the lemma.
Assume that there exists a database D such that E � VpDq.
We prove the lemma by constructing a new database D1 such
that VpD1q � VpDq, with |D1| � Op|E|2q.

Let A � xSV, δV, q
0
V, FVy be the product automaton of

all the deterministic minimal automata of all the regular
expressions of the RPQs in V. Let NpVq be the number of
states of A, i.e |SV|.

In what follows, for w P σ�, δVp�, wq denotes the function
from SV to SV sending q to p such that there is a run of A
on w starting in state q and arriving in state p.

We say that a path π from u to v in a database D1 is
V-minimal if u, v P VpD1q and no other nodes of π are in
VpD1q.

We first build a database D1 such that :


 VpD1q � VpDq;


 each node of D1 is in a V-minimal path and no two
V-minimal paths in D1 intersect;


 the number of V-minimal paths in D1 is bounded by
|VpDq|2 �NpVqNpVq.

D1 is constructed as follows: All elements of VpDq are
elements of D1. Moreover, for each function f : SV Ñ SV

and each pair px, yq of elements of VpDq, if there exists a
V-minimal path π from x to y in D and such that f �
δVp�, λpπqq, then we add to D1 a copy of π that uses only
fresh, non-repeating nodes, except for x and y. Figure 5
illustrates the main idea of this construction.

It is now easy to check that D1 has the desired properties.
The second bullet holds by construction. Clearly the number
of f : SV Ñ SV is bounded by NpVqNpVq hence the third
bullet holds. It remains to check that VpD1q � VpDq. There
is an obvious canonical homomorphism sending D1 to D.
Hence VpD1q � VpDq. For the converse direction, consider
a path π witnessing the fact that pu, vq P VpDq. Decompose
π into V-minimal paths. By construction, each of these
V-minimal paths can be simulated in D1. Hence pu, vq P
VpD1q.

From D1 we construct the desired D1 by replacing each V-
minimal path of D1 by another one whose length is bounded
by a constant r and without affecting the view image. Alto-
gether D1 will have a size bounded by r � |VpDq|2 �NpVqNpVq,
hence polynomial in |VpDq| as desired.

Let r be the Ramsey’s number that guarantees the ex-
istence of a monochromatic 3-clique in an r-clique using

NpVqNpVq � 2NpV q
NpV q

colors.
Consider a V-minimal path π � xa0x1a1 . . . xmamy in D1

such that m ¡ r. For 1 ¤ s   t ¤ m we denote by πsÑt the
subpath of π that starts at position s and ends at position
t, that is πsÑt � xsasxs�1as�1 . . . at�1xt.

To each pair of nodes pxi, xjq in π with i   j, we attribute
the color pfij ,∆ijq where:

fij � δVp�, λpπiÑjqq

∆ij � tf : SV Ñ SV | Dα, i   α   j and

f � δVp�, λpπiÑαqqu.

Then, by our choice of r, we know that there exist i  
j   k such that fij � fjk � fik and ∆ij � ∆jk � ∆ik. Let
π1 be the path constructed from π by replacing the subpath
πiÑk by πjÑk.
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Let D2 be the database constructed from D1 by replacing
π by π1. We now prove that VpD2q � VpD1q. As D2 still
has all the properties of D1 listed above, by repeating this
operation until all V-minimal paths have length less than r
we eventually get the desired database D1.

Let pu, vq P VpD1q as witnessed by a path µ in D1. Then
µ neither starts nor ends in an internal node of π as internal
nodes do not appear in VpD1q. Hence either µ does not use
π or it uses all of it. In the former case, µ witnesses the
fact that pu, vq P VpD2q. In the latter, notice that fik � fjk
implies that λVp�, λpπqq � λVp�, λpπ

1qq, hence replacing π by
π1 in µ witnesses the fact that pu, vq P VpD2q. Altogether
we have shown that VpD1q � VpD2q.

Suppose now that pu, vq P VpD2q as witnessed by a path µ
in D2. If µ does not go through xj (i.e. xj is not an internal
node of µ), it is also a path in D1 and pu, vq P VpD1q. If
µ goes through xj but does not end between xj and xk we
can also conclude that pu, vq P VpD1q using the fact that
fik � fjk. It remains to consider the case when µ ends with
xjaj . . . aβ�1xβ for some β with j   β   k (in particular
v � xβ). As ∆ij � ∆jk there exists α with i   α   j
such that δVp�, λpπiÑαqq � δVp�, λpπjÑβqq. From this we
can construct a path µ1 in D1 replacing in µ the segment
xjaj . . . aβ�1xβ by xiai . . . aα�1xα, witnessing the fact that
pu, xαq P VpD1q, a contradiction as xα is not an element of
VpD1q. Altogether we have proved that VpD2q � VpD1q.
Hence, VpD2q � VpD1q � VpDq.
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Figure 5: Illustration of the transformation from D
to D1 in Lemma 1. Nodes are colored white or black
depending on whether they appear in VpDq or not.

Lemma 2. There is an RPQ view V from σ to τ such
that given a τ -structure E it is NP-hard to test whether there
exists a σ-structure D such that VpDq � E.

Proof. We prove this by reducing 3-Colorability to
our problem.

Let σ � trg, gr, bg, gb, rb, bru and τ � tV1, V2u. By abuse
of notation, we will refer to an element of σ as αβ, with α

and β two symbols in tr, g, bu, and α � β. Let V be the
following view from σ to τ :


 V � tV1, V2u


 LpV1q � trg, gr, bg, gb, rb, bru


 LpV2q � tα1β1 � α2β2 | β1 � α2u.

Let G � pU,W q be a connected graph. From G we define
a τ -structure EG, in which the interpretation of V1 is:

tpx, yq | px, yq PW or py, xq PW u

and the interpretation of V2 is the empty relation.
We show that G is 3-colorable iff there exists D such that

VpDq � EG.
Intuitively, the idea is that σ describes the colors of the

edges of G, that is the color of the two end points of each
edge. For instance, if x and y are linked by rg, then it should
be understood that x is red and y is green. V1 checks that
each pair of nodes that are connected in G are colored with
(at least) two different colors, and V2 checks if there is any
error, that is, if a node is required to have more than one
color. Since V2 is empty, any graph database D such that
VpDq � E cannot have any such error, and would thus be
3-colorable.

More precisely, assume that G is 3-colorable. Then there
exists a coloring function c : U Ñ tr, g, bu such that cpxq �
cpyq for all px, yq PW . We define D as the σ-structure such
that, for each αβ P σ, the interpretation of αβ in D is:

tpx, yq | px, yq PW or py, xq PW,

and cpxq � α, cpyq � βu.

It is then easy to check that VpDq � EG. Indeed, for all
x, y, z P D, if α1β1px, yq and α2β2py, zq hold in D, then β1 �
cpyq � α2, hence px, zq R V2pDq, so V2pDq is empty.

Conversely, assume that there exists a graph database D
such that VpDq � EG. Consider the coloring function c :
U Ñ tr, g, bu defined as: cpxq � α if there exists y such that
αβpx, yq holds in D. Since V2pDq is empty, it is immediate
to check that cpxq is uniquely defined and that c is a proper
3-coloring of G.

7. CONCLUSIONS
We have seen that if an RPQ view V determines an RPQ

query Q in a monotone way then a Datalog rewriting can be
computed from V and Q.

As a corollary it is decidable whether there exists a Dat-
alog rewriting to an RPQ query using RPQ views.

We may wonder whether a simpler query language than
Datalog could do the job. For instance all examples we are
aware of use only the transitive closure of binary CRPQs.
It is then natural to ask whether linear Datalog (at most
one internal predicate may occur in the body of each rule)
using internal predicates of arity at most 2 can express all
monotone rewritings. We leave this interesting question for
future work.

A possible continuation of this work would be to study
monotone determinacy with more powerful views and
queries. This seems to require new ideas already for CR-
PQs.

Finally we conclude by mentioning the open problem con-
sisting in deciding whether an RPQ view determines an RPQ
query, without the monotonicity assumption.
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