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ABSTRACT
Massive data processing infrastructures are commonplace in
modern data-driven enterprises. They facilitate data engineers
in building scalable data pipelines over shared datasets. Unfortu-
nately, data engineers often end up building pipelines that have
portions of their computations common across other pipelines
over the same set of shared datasets. Consolidating these data
pipelines is therefore crucial for eliminating redundancies and
improving production efficiency, thus saving significant opera-
tional costs. We had built CloudViews for automatic computation
reuse in Cosmos big data workloads at Microsoft. CloudViews
added a feedback loop in the SCOPE query engine to learn from
past workloads and opportunistically materialize and reuse com-
mon computations as part of query processing in future SCOPE
jobs — all completely automatic and transparent to the users.

In this paper, we describe our production experiences with
CloudViews. We first describe the data preparation process in
Cosmos and show how computation reuse naturally augments
this process. This is because computation reuse prepares data
further into more shareable datasets that can improve the perfor-
mance and efficiency of subsequent processing. We then discuss
the usage and impact of CloudViews on our production clusters
and describe many of the operational challenges that we have
faced so far. Results from our current production deployment
over a two month window show that the cumulative latency
of jobs improved by 34%, with a median improvement of 15%,
and the total processing time reduced by 37%, indicating bet-
ter customer experience and lower operational costs for these
workloads.

1 INTRODUCTION
Modern data-driven enterprises rely on large-scale data process-
ing infrastructures for deriving business insights. As a result, over
the last decade, a plethora of tools have been developed that have
democratized scalable data processing for data engineers and data
scientists. Examples include MapReduce [14], Spark [5], Hive [4],
Presto [34], BigQuery [19], Athena [6], and SCOPE [9, 47]. How-
ever, the large-scale data processing infrastructures also incur
massive operational costs and therefore improving their effi-
ciency becomes very important in production. Interestingly, easy
access to large scale infrastructure often leads data engineers to
quickly build data processing pipelines that later end up having
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portions of computations repeated across one another. Further-
more, these redundancies are hard to discover in large enterprises
with thousands of developers spread across different business
units. Thus, we need automated tools to consolidate these data
pipelines and improve operational efficiency, without impeding
the developer productivity in quickly going all the way from raw
data to actionable insights.

We see two key challenges when considering approaches for
automatic compute reuse. First, it is very tedious to automatically
detect the common computations in large volumes of complex an-
alytical queries that are declarative and often include custom user
code. Our analysis over a large window of production workloads,
consisting of 67 million jobs and 4.3 billion sub-computations
(referred to as query subexpressions), show that more than 75% of
the query subexpressions are repeated. However, not all of the
common computations are going to be viable candidates for reuse,
e.g., due to very large storage overheads. Therefore, carefully
detecting and selecting the common computations for reuse is a
challenge. And second, there is a shift towards serverless query
processing infrastructures [6, 9, 19], also sometimes referred to
as job services, where users simply submit their declarative SQL-
like queries without provisioning any infrastructure. As a result,
users do not have any spare offline cycles for materializing the
common computations before running their actual data analysis.
In fact, users want to get started with their analysis quickly and
they would rather have any optimizations applied in an online
and adaptive manner.

We also see two key opportunities. First, there is a presence of
large volumes of shared datasets in enterprises. This is because
raw logs and telemetry coming in from various products are
extracted and preprocessed into a shape and form that could be
easily consumed by thousands of downstream developers. The
resulting shared datasets are written once and read many times.
Furthermore, they get regenerated periodically without requiring
any fine-grained updates. As a result, the shared computations
also do not need to be maintained with updates. And second,
computation reuse holds the promise of significantly improving
both the job performance and the operational efficiency, which
are crucial in speeding up the time to insights and to enable
developers to do more with the same set of resources (that are
likely to have longer procurement cycles).

To address the above computation reuse problem, we had built
CloudViews for automatic computation reuse in big data work-
loads at Microsoft [26]. Specifically, CloudViews optimizes the
SCOPE query workloads in Cosmos big data analytics platform,
that is used in various business, such as Bing, Windows, Office,
Xbox, etc., across the whole of Microsoft. CloudViews identi-
fies the common computations (query subexpressions) across
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different SCOPE jobs, selects the ones that could lead to more
efficiency, materializes them as part of query processing with
minimal overhead, reuses them in future jobs — all completely au-
tomatic and transparent for the users. In contrast to prior works
on materialized views [20] and multi query optimizations [37],
CloudViews materializes common query subexpressions as part
of query processing, i.e., does not require any offline cycles, and
automatically replaces older materialized views with newer ones
when the shared datasets are bulk updated, i.e., no update main-
tenance. Production experiences with Cosmos showed that bulk
updates are a significant part of the workload, incremental up-
dates if required can be handled using techniques proposed by
Wang, et al.[42]. CloudViews considers only the same logical
query subexpressions (with some normalization) for reuse, i.e., it
does not consider view containment [21]. Although this is help-
ful in getting more accurate statistics for estimating the utility
and cost of reusing different candidate subexpressions. Cloud-
Views uses these estimates to select the set of subexpressions to
materialize such that they provide the maximize reuse within a
given storage budget [24]. We plan to add query containment to
CloudViews as part of future work.

In this paper, we describe our production experiences with
CloudViews. We delve deeper into the data preparation process
in Cosmos, referred to as data cooking, and discuss how compu-
tation reuse naturally augments data cooking by creating more
shareable datasets that can boost the performance and efficiency
of further downstream processing. While we previously showed
the impact of CloudViews on TPC-DS workloads and a small set
of production queries in pre-production environment, we now
analyze the usage of CloudViews in production and compare the
impact along several performance metrics. Apart from perfor-
mance improvements, CloudViews also introduced an automated
feedback loop in the SCOPE query engine, i.e., moving towards a
self-tuning model [25, 26]. As a result, there were several opera-
tional challenges that we have faced and valuable lessons learned
along the way. We discuss these challenges and also reflect back
on our journey from research to product.

In summary, we make the following key contributions in this
paper:

(1) We provide a detailed description and analysis of data
cooking in Cosmos and reason about how compute reuse
with CloudViews helps augment the data cooking process.
We also discuss the impact of various design decisions that
were made in CloudViews. (Section 2)

(2) We present an analysis of the usage and impact of Cloud-
Views on our production workloads. Results from our
production deployment show that over a two month win-
dow the cumulative latency of jobs improved by 34%, the
total processing time reduced by 37%, and the total num-
ber of containers used for processing dropped by 36%. We
also highlight some of the other non-obvious implications,
including smaller inputs (by 36%), less data read (by 39%),
and shorter queue lengths (by 13%). (Section 3)

(3) We discuss several operations challenges faced, includ-
ing challenges in view selection when considering job
scheduling, correctness guarantees, dependencies with
other components, customer on-boarding, customer ex-
pectations, and quantifying the impact over constantly
changing workloads. (Section 4)

(4) Finally, we reflect back on the journey from taking a re-
search prototype to production, describe how the ability
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Figure 1: Illustrating typical data cooking in Cosmos.

to create derived data as part of query processing is a
powerful mechanism in general, and present insights for
many of the open opportunities that we see going forward
(Section 5).

2 DATA COOKING
Cosmos powers the internal big data analytics atMicrosoft, with a
massive infrastructure consisting of multiple 50k+ node analytics
clusters [35], and processing declarative analytical queries using
the SCOPE query engine. Cosmos runs hundreds of thousands
of batch SCOPE jobs per day, consuming millions of containers
and crunching over several petabytes of data generated per day.
Almost 80% of the SCOPE workloads are recurring in nature [28],
i.e., similar jobs templates are executed periodically at regular
intervals over new data sets and parameters. Furthermore, SCOPE
jobs have dependencies across each other. In fact, 80% of the jobs
depend on at least one other job, while 68% have dependencies in
a recurring fashion [12]. This is because of the presence of large
volumes of shared data sets in Cosmos. Below we describe this
enterprise pattern in more detail.

2.1 An Enterprise Pattern
Figure 1 illustrates the typical data cooking pipeline in Cosmos,
where the raw telemetry data from different Microsoft products
and services are ingested into the Cosmos store. Thereafter, the
data cooking process extracts the structured data, transforms it
into better representation, and correlates across multiple sources.
The resulting shared datasets are generated periodically and
consumed in multiple downstream batch-oriented analytics. Ag-
gregated data is then loaded into interactive query processing
systems like SQL databases for interactive analysis, reporting,
and visualization using tools such as PowerBI or Excel. We can
see that data cooking and the ability to collect and process large
volumes of shared datasets across various developers and even
business units is at the core of the above pipeline.

Figure 2 shows cumulative distributions of shared data sets
and their consumers in five of our production clusters over a one-
week window. We can see that more than half of the datasets are
shared across multiple distinct consumers. Furthermore, several
datasets are consumed tens to hundreds of times, with few getting
reused thousands of times as well. Cluster1 in particular sees
more shared data sets since that feeds into the Asimov platform
that implements a new mechanism for user feedback, allow for the
testing of new features to gauge user acceptance, track bugs, and
easily roll out new functionality and fixes [33]. In fact, 10% of the
inputs on this cluster get reused by more than 16 downstream
consumers. For other clusters, 10% of the inputs are consumed
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Figure 2: Shared data sets in five production clusters.

0
25

50
75

100

1/
13

/2
02

0
1/

23
/2

02
0

1/
31

/2
02

0
2/

8/
20

20
2/

16
/2

02
0

2/
24

/2
02

0
3/

8/
20

20
3/

21
/2

02
0

3/
31

/2
02

0
4/

8/
20

20
4/

16
/2

02
0

4/
24

/2
02

0
5/

2/
20

20
5/

10
/2

02
0

5/
18

/2
02

0
5/

26
/2

02
0

6/
3/

20
20

6/
11

/2
02

0
6/

19
/2

02
0

6/
27

/2
02

0
7/

5/
20

20
7/

13
/2

02
0

7/
21

/2
02

0
7/

29
/2

02
0

8/
6/

20
20

8/
14

/2
02

0
8/

22
/2

02
0

8/
30

/2
02

0
9/

7/
20

20
9/

15
/2

02
0

9/
23

/2
02

0
10

/1
/2

02
0

10
/9

/2
02

0
10

/3
0/

20
20

Percentage Repeated Query Subexpressions

0
2
3
5

6

1/
13

/2
02

0
1/

23
/2

02
0

1/
31

/2
02

0
2/

8/
20

20
2/

16
/2

02
0

2/
24

/2
02

0
3/

8/
20

20
3/

21
/2

02
0

3/
31

/2
02

0
4/

8/
20

20
4/

16
/2

02
0

4/
24

/2
02

0
5/

2/
20

20
5/

10
/2

02
0

5/
18

/2
02

0
5/

26
/2

02
0

6/
3/

20
20

6/
11

/2
02

0
6/

19
/2

02
0

6/
27

/2
02

0
7/

5/
20

20
7/

13
/2

02
0

7/
21

/2
02

0
7/

29
/2

02
0

8/
6/

20
20

8/
14

/2
02

0
8/

22
/2

02
0

8/
30

/2
02

0
9/

7/
20

20
9/

15
/2

02
0

9/
23

/2
02

0
10

/1
/2

02
0

10
/9

/2
02

0
10

/3
0/

20
20

Average Repeat Frequency

�1

Figure 3: Overlaps in production clusters.

by 7 or more downstream consumers. Thus, we see that shared
data sets are prevalent in Cosmos.

2.2 Augmented Data Cooking
We saw that enterprise data analytics involves cooking mas-
sive volumes of data into a form that is consumable by several
users. The shared datasets are therefore also a natural habitat for
shared data analytics. Furthermore, it turns out that computation
reuse is a natural problem in shared data analytics since often
there are same sets of transformations that are applied repeat-
edly by analysts over the same shared datasets. Ideally, these
shared computations could be captured in the cooking process
itself. However, that is hard practically due to the lack of vis-
ibility into the downstream analytics (e.g., by different teams
or business units consuming the shared datasets), complexity
of SCOPE queries where it is non-trivial to identify the shared
computations (portions of declarative large queries, including
user defined functions, that may end up getting compiled to the
same query sub-plan), or even due to the evolving nature of the
analytics (new reports or dashboards being created). In a way,
computation reuse can augment the handcrafted data cooking
process by further fine-tuning the shared datasets with reusable
views that are automatically identified, adapted, and created just
in time, based on the workloads. Thus, we argue for computation
reuse to be a first-class citizen in conjunction with data cooking
for shared data analytics.

We analyzed the overlaps in our workloads in five of our
production clusters over a 10-month window (January–October,
2020). Overall, there were 67 million jobs consisting of 4.3 billion
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Figure 4: Illustrating computation reuse across three ana-
lysts working on the same datasets.

query subexpressions from 2.5𝐾 users and 776 virtual clusters1.
Figure 3 shows that more than 75% of query subexpressions are
consistently overlapping over the 10-month window. Further-
more, the average repeat frequency consistently hovers around
5, indicating that materializing and reusing could be helpful for
many of these overlapping computations. We refer interested
readers to [26] for more fine-grained analysis of overlaps over a
single day window.

In summary, computation reuse can fill the gaps in data cook-
ing, and we see significant opportunities for computation reuse
in our production workloads.

2.3 CloudViews Overview
Figure 4 illustrates an example scenario of computation reuse
across three different users who are analyzing the same shared
datasets (which include Customer, Sales, and Parts tables) and
analyzing the sales behavior in the same Asia region. We can see
how the insights that they are looking for is expressed as SQL
queries that get compiled into query plans, and even though the
user queries might appear very different, their query plans turn
out to have significant portions in common (shown in orange
and blue boxes). The analysts may identify that they are all ana-
lyzing the same market segment, i.e., the plain sentence version
of the insights they are looking for has “In Asia" in common. This
may lead them to create indexes or vertical partitions on the cus-
tomer table. However, the query plans in the bottom of Figure 4a
1A virtual cluster represents a sub-cluster that is dedicated for one particular
customer or business unit.
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shows much large computations, called query subexpressions, are
shared across them. Furthermore, different sets of computations
are shared across different sets of users. To really discover these
opportunities, the analysts would have to understand their an-
alytics more deeply and then coordinate amongst themselves
to manually share the common computations, requiring a lot of
manual effort that is simply not possible at enterprise scale.

CloudViews addresses the above challenges by introducing
automatic computation reuse in an online fashion. Figure 5 shows
the overall system architecture of CloudViews and the various
steps involved. We briefly summarize them below. CloudViews
leverages the presence of large workloads in modern clouds [25].
It extracts the query workload into a denormalized subexpres-
sions table that pre-joins the logical query subexpressions with
their runtime metrics as seen in the history. Thereafter, we iden-
tify the common subexpressions across queries using a strict
subexpression hash, known as signature, that uniquely captures
a subexpression instance including its inputs used. From the set
of all common subexpressions, we select the useful set of ex-
pressions to materialize and reuse. Some of the considerations
for reuse include storage cost for materialization, processing
time saved when reused, saving opportunities per customer, and
the presence of concurrent queries that may not benefit from
materialization-based reuse. Users can provide storage and other
constraints (e.g., maximum number of views to create) for view
selection. The view selection output is also made available to cus-
tomers for insights and expected overall benefits. For the selected
views, we collect their corresponding recurring signatures that
discard time varying attributes like parameter values and input
GUIDs, and are likely to remain the same in future instances
of the recurring workloads. For easier lookup and control, we
generate tags for each of the signatures that help fetch relevant
signatures for a given SCOPE job and could also be used for ac-
cess control. These tagged signatures are then polled by insights
service and stored using Azure SQL databases. We also generate
a query annotations file with the selected signatures that could
be used for quickly debugging any job. For instance, in case of a
customer incident, we can reproduce the compute reuse behavior
by compiling a job with the annotations file.

At query time, for an incoming SCOPE job, the compiler ex-
tracts its tags and fetches the annotations from the insights ser-
vice. These annotations are then parsed and stored in the opti-
mizer context. During core search, the optimizer tries to match
top down (match larger subexpressions first) whether any of
the query subexpressions is already materialized. If yes, then
it modifies the query plan to reuse the common subexpression
with scan over previously materialized subexpression, updates
more accurate statistics, and inserts the modified plan into the
memo for overall costing. The plan using a materialized subex-
pression is chosen only if its cost is lower than the plan without
the materialized subexpression. In either case, there is a follow-up
optimization phase to check (in bottom-up manner) if any of the
subexpressions are candidates for materialization. If yes, then an
exclusive lock is obtained from the insights service and a spool
operator with two consumers is added to that subexpression:
one feeds into the rest of the query processing while the other
materializes the common subexpression to stable storage. During
execution, the job manager makes the view available even before
the query finishes (referred to as early sealing in Cosmos), and
notifies the insight service to release the view creation lock and
start reusing it wherever possible. The modified query plans are

surfaced to the users in the query monitoring tool and also logged
into the telemetry for future analyses.

We refer interested readers to [26] for more details on each of
the components in the above architecture.

2.4 Design Decisions and Limitations
We now highlight some of the key decisions that have served our
workloads well while discussing some of the key limitations of
our approach. The key things that worked well include:

• Preserving query boundaries. One way to reuse com-
putation could be to combine query plans of overlapping
SCOPE jobs into merged query plans. However, this is in-
convenient since it requires changes to submission system
and hard to explain the cost of merge query to different
users. Also, fault tolerance becomes more intertwined due
to the hard dependency between multiple jobs. Cloud-
Views keeps job boundaries intact while opportunistically
reusing computations wherever possible.

• Online materialization. CloudViews materializes com-
mon computations in an online manner as part of query
processing, i.e., it does not require any offline cycles forma-
terialization. As a result, CloudViews is easier to manage
operationally without requiring uses to submit additional
queries while also hiding the materialization latencies in
large complex query DAGs.

• Just-in-time views. CloudViews are also materialized
just-in-time when the first query hits a particular query
subexpression instance. This means that: (i) the storage
space for materialized views is consumed only when the
views are about to be reused, and (ii) if the workload
changes and a selected subexpression is no longer found
in the workload then it will automatically stop being ma-
terialized.

• Accurate cost estimates. Traditional view selection ap-
proaches suffer from poor cardinality and cost estimates
in query optimizers [40, 43] since they explore alternate
query plan expressions that may not have been executed
in the past. However, by considering only the same logical
subexpressions for reuse, CloudViews is able to leverage
the actual runtime statistics seen in the past instances of
those subexpressions. As a result, it can make better de-
cisions about the views that could improve performance
when reused and the storage costs associated with them.

• Scalable view selection. View selection over large work-
loads is non-trivial since it explodes the search space ex-
ponentially. This is because traditional view selection al-
gorithms consider more generalized sets of views, ones
that may not have appeared in past query executions, and
select the most useful ones from them. However, by re-
stricting to common subexpressions, CloudViews can run
subexpressions selection to Cosmos scale by running it as
a label propagation problem in a distributed manner [24].

• Lightweight view matching. Traditional view match-
ing require expensive containment checks during query
optimization to determine whether a query could be an-
swered from a view or not. CloudViews replaces that with
lightweight hash equality checks that only require to re-
cursively compute a signature for each subexpression and
then match them with the signatures of one or more avail-
able views.

Some of the limitations of our approach are as follows:
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Figure 5: The CloudViews architecture for computation reuse in Cosmos.

• Exact logical subexpression match. The most obvious
limitation of CloudViews is that it can only reuse the
exact same logical query subexpressions, although they
can have different physical implementations. While there
are numerous opportunities for such reuse, there is even
more potential for creating more generalized views and
reusing them in queries that are contained in those views.
We discuss this further in Section 5.

• Concurrent queries. CloudViews requires materializ-
ing common subexpressions before they can be reused in
subsequent queries. Although the materialized views are
made available as soon as the subexpression portion of the
first query finishes (early sealing), still CloudViews cannot
help queries that are submitted concurrently unless their
submission schedule is altered, which is typically harder
in production environments.

• Not maintained. CloudViews are treated as cheap throw-
away views that are recreated whenever the inputs change.
While this eradicates the need for viewmaintenance strate-
gies, it also results in recreating views over sets of inputs
where most have remained unchanged. This is particularly
true for recurring queries with a sliding window, e.g., last
seven days, where all except the most recent input in the
window might remain same.

• No DDL for user visibility or tuning. CloudViews are
created transparently to the users without registering
them as any DDL statements. As a result, users do not
have direct visibility into the catalog of available views
at any given point nor can they reason about them. They
can, however, see the CloudViews-generated files, given
that they are stored in user-specified location, and even
purge views whenever necessary.

• User expectations. CloudViews causes the first query
hitting a common subexpression to slow down due to
additional materialization overhead. Therefore, the users

Jobs 257,068
Pipelines 619
Virtual Clusters 21
Runtime Versions 12
Views Created 58,060
Views Used 344,966
Latency Improvement 33.97%
Processing Time Improvement 38.96%
Bonus Processing Time Improvement 45.01%
Containers Count Improvement 35.76%
Input Size Improvement 36.38%
Data Read Improvement 38.84%
Queuing Length Improvement 12.87%

Table 1: Production Impact Summary

need to be informed about some queries getting impacted
for overall workload efficiency.

3 PRODUCTION IMPACT
In this section, we describe the impact of CloudViews when de-
ployed for several customers over a two-monthwindow (February–
March 2020). Table 1 shows the summary of workload and the
performance impact. Below we discuss them in more detail.

3.1 Usage
Let us first look at the usage numbers. Our current deployment
strategy was opt-in, i.e., the feature was made available for cus-
tomers and they can choose to enable it on their virtual clusters.
Overall, we see more than 250k analytical SCOPE jobs across
21 virtual clusters using CloudViews. These jobs were from 619
unique data pipelines and ran over 12 different SCOPE runtime
versions. Figure 6a shows the number of views materialized and
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Figure 6: The usage and impact of CloudViews on production workloads.

reused over a two-month window. After an initial customer on-
boarding period, we see a periodic view creation and reuse pat-
tern. Naturally, much more views are reused than created every
day. Overall, approximately 58k views were created and they
were reused 350k times, each view being reused almost 6 times
on average. Our current eviction policies expire each of the views
after one week of creation, thus consuming a fixed amount of stor-
age (that is configured by the customers and affects the number
of views selected for reuse) in the stable state.

3.2 Latency
Latency is a crucial metric for customers and so we next explore
the impact of CloudViews on job latencies. Figure 6b shows the
daily cumulative latencies of jobs when CloudViews was enabled,
compared to if it was not enabled, over the same two-month win-
dow. We can see that even though view materialization incurs
an overhead, overall there is a gain in cumulative latencies of
the jobs. This is because we materialize CloudViews in an online
fashion in a separate stage that runs in parallel and hence the
impact of latency is typically less. At the same time, we also see
that the latency improvements are staggered and minimal on
several days. This is because computation reuse could only im-
prove latency if the portions of the query graph that was reused
lies on the critical path of the job. Given that our view selection
strategies do not optimize for that (since the objective function
is to maximize for total compute), latency improvements are not
guaranteed, especially with large query DAGs where overlap-
ping computations may not be on the critical path. Still, we see

a median per-job latency improvement of 15% and a cumula-
tive overall improvement of close to 34%, that is significant for
improving the customer experience in production workloads.

3.3 Processing Time
We now look at the impact on total processing time (i.e., the sum
of processing time of all the containers used in the jobs) which is
often considered a better measure of compute efficiency. Figure 6c
shows the cumulative processing costs per day when CloudViews
was enabled compared to if it was not enabled. Indeed, in contrast
to latency, we can see more distinct change in processing time,
with close to 39% improvement overall. This is because processing
time savings do not depend on the critical path and any reuse in
the query graph contributes to some savings, modulo the time
spent in reading the materialized shared computation. Strictly
speaking we also need to discount the extra processing time
spent in writing the shared computation in the first job. Since we
look at the observed processing times in the cluster all of these
overheads automatically get accounted for. The processing time
savings validate the utility of CloudViews to improve cluster
efficiency and to free up spare resources that will let developers
do more with the same set of resources.

3.4 Bonus Processing Time
Cosmos employs an opportunistic resource allocation policy to
improve cluster utilization [8]. The idea is to allocate unused re-
sources opportunistically to jobs in case they could use them, e.g.,
one or more stages in a job has more partitions than the number
of containers available to the job or stages that could start making
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Figure 7: Other non-obvious impact of CloudViews on production workloads.

progress in parallel. We record the processing time using oppor-
tunistic resources as bonus processing time, and this is helpful to
not only improve the utilization but to also improve SCOPE job
performance by dynamically leveraging unused cluster capacity.
Unfortunately, bonus processing also leads to unpredictability
in performance, i.e., the job runtimes may vary a lot based on
the unused capacity at any given time in the cluster. Therefore,
reducing the reliance on bonus processing is desirable for more
predictable job behavior. Interestingly, it turns out that by shar-
ing common computations and not re-executing them with a lot
of variance each time, CloudViews can reduce the reliance on
bonus processing and hence improve job predictability. Figure 6d
shows the reduction in bonus processing time with CloudViews.
We can see a significant change in bonus processing time with
an overall reduction of 45%, which is important for improving
the overall system reliability.

3.5 Containers
While latency and processing are expected to be impacted by
computation reuse in CloudViews, we also discover other rather
unexpected implications. In particular, the total number of con-
tainers used in each SCOPE job is an important measure of re-
source consumption and computation reuse can also help im-
prove that. Figure 7a shows the change in the cumulative number
of containers used with CloudViews. We can see that similar to
the total processing time, total number of containers also show
significant improvement both for each day (and also for each
job) and also overall (36% fewer containers used). This is because
eliminating re-computation of large expensive chunks of query
DAGs also eliminates the corresponding set of resources used to

process those computations. Furthermore, due to the challenges
in estimating cardinality over big data workloads, SCOPE query
engine often ends up overestimating cardinalities and thus over-
partitioning the intermediate outputs, leading to many more
containers getting instantiated and each processing relatively
smaller amounts of data [43]. Computation reuse automatically
circumvents this issue by avoiding re-execution of such common
computations in the first place and thus saving resources that
would been otherwise be consumed due to mis-estimation. In
fact, computation reuse further helps feed more accurate statis-
tics from the previously materialized subexpressions to the rest
of the query plan.

3.6 Input
Another less anticipated effect of computation reuse is the size
of the input read. Figure 7b shows a sizeable reduction in the
total inputs sizes read by all queries in that workload. This is
because quite often the inputs datasets are filtered, selectively
joined, or aggregated before they are materialized as common
subexpressions, which end up being much smaller than the ini-
tial input sizes. Smaller input sizes not only reduce IO but also
improve the container efficiency since SCOPE jobs are widest
at the beginning (due to very large input sizes) and then their
width drops significantly, causing lots of allocated containers
remaining unused in a large portion of the query [7]. Smaller
input sizes avoid such extreme container usage over the course
of a job execution. Furthermore, it also eases the pressure on
the storage layer, which is increasingly disaggregated from the
compute in modern clouds [35], and thereby helps in reducing
the throttling during peak load conditions.
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3.7 Data Read
Apart from the input data read, let us also look at the total data
read. Figure 7c shows the change in the overall data read and it
is very similar to the trend of input read, although overall, data
read improves by 39%, which is more than the improvements
in input read. Reducing data reads eases the overall IO pressure
including both the persistent store and also the local temporary
store that is used to write intermediate outputs for each of the
SCOPE jobs. This is significant because there could be hotspots
with significant intermediate IO for large SCOPE DAGs and fewer
data read can alleviate some of these hotspots.

3.8 Queue Lengths
SCOPE jobs are processed in a job service form factor, where
users submit their jobs and they are queued until there are enough
resources available for them to be scheduled. Interestingly, com-
putation reuse can even help reduce the queue length due to
less computations being done by each job which causes them
to finish faster. Figure 7d shows the cumulative queue lengths
seen by all jobs for each day in the workload, with a reduction
in queue lengths on several days and an overall reduction of 13%.
Shorter queue lengths improve the user experience and reduces
their time to insights, enabling tighter SLAs in many cases. It
also helps execute queries with more recently optimized query
plans, e.g., leveraging more recently generated CloudViews, that
would otherwise be missed by jobs sitting in longer queues.

4 OPERATIONAL CHALLENGES
In this section, we describe some of the operational challenges
that we have faced. Note that these exclude the multiple rounds
of customer feedback and feature improvements we did before
deploying CloudViews in production.

• Schedule-aware views. Cosmos customers have built
several workflow tools to schedule and monitor SCOPE
jobs periodically. In some cases, these tools trigger all jobs
at the start of every period, with the goal of finishing
them before the period ends and to avoid missing their
SLAs. Given that CloudViews requires materializing the
common computation before it can be reused, jobs that
get scheduled (and thus compiled) at the same time can-
not benefit from such reuse. One option could be to alter
the job submission and add a little lag to jobs that could
reuse common computations. However, it turned out to
be very hard to convince customers to change their job
submission schedules. Instead, we modified our view selec-
tion algorithms to account for concurrent job submissions;
specifically, we only consider subexpressions that could
finish materializing before the start of other consuming
jobs.

• Per-customer view selection. The data cooking pro-
cess could create shared datasets across multiple customer
virtual clusters (VCs), leading to computation reuse oppor-
tunities across multiple VCs as well. However, customers
often care about the reuse and performance improvements
in each of their individual VCs. This is because they want
to benefit from better SLAs and do more processing on
a per-VC basis. Furthermore, the cost of storing the com-
mon computations could be significant (depending on how
much reuse is done) and customers often want to keep it
separate for each VC. This means that selecting the views
to materialize globally is not enough but rather we need

to select them for each virtual cluster. Given that there
are thousands of virtual clusters in Cosmos, it is not pos-
sible to run view selection separately for each of them.
At the same time, a single view selection script that parti-
tions workloads by virtual clusters needs to also consider
the constraints per VC (see top left in Figure 5). It also
makes it hard to maintain the single script with evolving
requirements for different customers.

• Signature correctness. The core of CloudViews relies on
a signature (i.e., a hash) to identify logical subexpressions.
While this is trivial for native operators in the SCOPE
engine, things can get murky with the user defined oper-
ators (UDOs) and the libraries used in it. In particular, it
could be very difficult to compute the signatures in user
code that involves recursively dependent libraries (there
are extreme cases in Cosmos with very deep dependency
chains). Traversing these long chains could slow down the
entire compilation process. Furthermore, in some extreme
cases, the UDOs may even contain non-determinism by
design, e.g., DateTime.Now, UTCNow, Guid.NewGuid(), or
new Random().Next(). It is not clear what the correct se-
mantics are when computing signatures over such UDOs.
Our approach is to exclude such extreme cases to avoid
failures or incorrect results, i.e., we skip any computation
reuse if the dependency chain is too long or if a UDO is
found to contain non-determinism.

• Impact of changed signatures.While it is understood
that the signatures will change with the workloads, some-
times they also evolve with new SCOPE runtime (due to
changes in compilation, optimizer representation, or other
code changes). As a result, all existing materialized views
get invalidated. Thus, evolving signatures is very tricky
since we need to keep track of changes that can affect
signatures and re-run any prior workload analysis.

• Other dependencies. From Figure 5, we can see that
CloudViews depends on other components, such as the of-
fline workload analysis, insights service, the job manager
to seal the view early, and the various customer interac-
tions. However, these components often evolve indepen-
dently and so they need to be kept in sync. For instance,
the early sealing had to be ported to new job manager
versions, the view storage locations need to be migrated
to ADLS [13], and the insights service had to be scaled.

• Handling GDPR requirements. The emergence of new
privacy regulations, such as [16], mean that we cannot sim-
ply look at the input paths but need to also keep track of
when the inputs have changed due to forget requests and
automatically stop consuming them henceforth. When in-
puts change, Cosmos handles updates as incremental files
or delta updates. We handled input changes by ensuring
that the input GUIDs are updated both with recurring up-
dates and with GDPR related updates, which are handled
separately in our storage layer.

• Opt-in vs opt-out. Given that CloudViews trades compu-
tation reuse for storage costs (and some latency overheads
in the first job that hits the common computation), we
need to make customers aware of the expected costs and
benefits. As a result, we adopted an opt-in model of de-
ployment where only the customers who bought in were
onboarded. This also helped us address bug fixes and other
deployment issues more gradually. However, opt-in also
requires significant customer interaction eating up a lot
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of program manager time. As a result, it is not scalable
to large number of customers. Therefore, after sufficient
hardening of the CloudViews feature in production, we
have now started enabling it using an opt-outmodel, where
virtual clusters are grouped into tiers (based on business
importance) and they are automatically onboarded tier by
tier, starting with the lowest tier.

• Multi-level control. We ended up placing several lev-
els of control to enable or disable CloudViews. These in-
clude job-level control for individual developers to toggle
CloudViews in their jobs, VC-level control for enabling or
disabling specific VCs once they decide to onboard or opt-
out, cluster-level to make the feature enabled or disabled
across the board for the entire cluster instead of doing
it for each of the thousands of VCs on each cluster, and
insight service level control as the uber control for gate
keeping and toggling during customer incidents.

• Measuring impact. Finally, while it is easy to measure
performance improvements in a pre-production environ-
ment by re-running both the baseline and the modified
version, it is less simple to measure performance once a
feature is deployed in production. This is because it is very
difficult to draw the baseline in a constantly changing pro-
duction environment, e.g., when input sizes in recurring
jobs change significantly [40]. It is also not possible to
re-run all production jobs with CloudViews disabled to
establish a baseline. Therefore, we took the following ap-
proach to identify baseline performance: we took previous
instances of the queries that qualified for CloudView opti-
mization and collected four weeks’ worth of observations
before enabling CloudViews on them. Thereafter, we took
the 75th percentile value of each of the performance met-
rics, such as latency and processing time, and compared
them with each of the newer instance of that query once
CloudViews was enabled.

5 LOOKING BACK AND FORTH
We now reflect back on our journey from research to production
and discuss many of the next set of problems we see in the area
of computation reuse.

5.1 From Research to Production
CloudViews has come a long way from research to production,
starting from our initial research ideas in 2015 and then us spend-
ing the next five years for prototyping in the SCOPE codebase,
rallying product team support around it, getting valuable cus-
tomer feedback, fixing many of the bugs that were discovered, on-
boarding customers first by opt-in and later by opt-out approach,
and finally addressing many of the operational challenges. More
significantly, however, CloudViews introduced a self-tuning feed-
back loop to the SCOPE query engine, a significant departure
from using just the compile-time estimates to leveraging how
things went in the past for query optimization. Along the way, we
also learned valuable lessons for doing applied research within a
product group setting [23]. A key amongst them is the realization
that productization of research ideas is often a much longer and
sometimes even a painful journey, that requires perseverance and
willingness to adapt. This is because production features need
to consider a lot of corner cases. The new DevOps model where
there is no dedicated testing team anymore, combined with the
cloud service form factor of modern software, acts as a forcing

Figure 8: Opportunities for more generalized views: the
x-axis shows the subexpressions that join the same sets
of inputs, and the y-axis shows their corresponding fre-
quency.

function for product teams to put all requisite safeguards for
a consistent user experience and lower maintenance overhead.
Finally, applied research turns out to be a highly collaborative
endeavor, right in the trenches of product teams, and therefore it
needs to be appreciated as such.

5.2 Towards Broader Workload Optimization
CloudViews helped open up the area of workload optimization
for cloud query engines, leveraging the large workload telemetry
that are visible, with appropriate anonymizations, in modern
cloud environments [25]. This resulted in a mindset change from
optimizing just a query at a time to also consider optimizing the
entire workload, something which customers care a lot in order
to manage their total cost of ownership (TCO). Specifically, the
notion of signatures to uniquely identify query subexpressions
turned out to be very helpful not just for computation reuse,
but also for applications such as discovering interesting query
patterns in the workload, learning high accuracy micro-models
for specific portions of the workload [27], compressing work-
loads into a representative set for pre-production evaluation, and
surfacing data and job dependencies for interesting pipeline opti-
mizations. Likewise, the insights service evolved into an indepen-
dent component that could serve many different kinds of insights,
e.g., cardinality [43], cost [40], or resources [39]. The insights
could be scaled and bulk loaded upfront to the SCOPE optimizer,
with an end to round trip latency of around 15 milliseconds. All
of the above resulted in common pieces of infrastructure that
could be leveraged across several new optimizations in SCOPE,
and even for other query engines like Spark.

5.3 Generalized Reuse
CloudViews identifies view candidates using per-operator signa-
ture matching, which establishes syntactic equivalence but does
not consider views that differ syntactically but are otherwise logi-
cally equivalent (e.g., SELECT * FROM Sales WHERE CustomerId > 5

and SELECT * FROM Sales WHERE 2 * CustomerId > 10). However,
while relaxing this constraint may offer additional performance
improvements by enabling the reuse of more views, comput-
ing logical equivalence is expensive and in general undecidable.
Nonetheless, recent work has pushed down this cost to the point
where exploiting these opportunities may be feasible for many
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Figure 9: Concurrently executing joins on a Cosmos cluster
occurring in a single day. This workload contained two
outliers that were concurrently executed 2016 and 23,040
times.

queries [10, 11, 38, 48, 49]. Evaluating this precise trade-off, and
quantifying the number of materialized views that more general
logical equivalence would allow, remains a ripe avenue for future
research.

Similarly, equivalence itself (logical or otherwise) is more re-
strictive than necessary for view reuse, and in many cases con-
tainment may offer similar opportunities for reusing computation
(e.g., materializing SELECT * FROM Sales WHERE CustomerId > 5

and using it to answer the query SELECT * FROM Sales WHERE

CustomerId > 6). Like logical equivalence, containment is a hard
problem (in general NP-complete, although polynomial-time al-
gorithms exist for some subproblems), has been extensively ex-
plored in the literature, and is expensive to compute. Nonetheless,
some recent work has used machine learning to evaluate contain-
ment rates [22], and many techniques used to efficiently compute
logical equivalence may be applicable to containment as well.

Figure 8 shows the reuse opportunity when considering one
kind of generalization: subexpressions that join the same sets of
inputs. These subexpressions could still have different projections,
selections, or group by operations, which could be merged to
create more general materialized views and then later query
could be rewritten using containment checks. Figure 8 shows the
opportunity over the same five clusters as in Figures 2 and 3, and
we see lots of generalized subexpressions with frequencies on
the order of 10s to 100s.

5.4 Reuse in Concurrent Queries
CloudViews materializes views for reuse in subsequent queries,
which is necessary for queries that are temporally non-overlapping.
However, opportunities for reuse exist for concurrent queries,
which does not require pre-materialization since intermediate
results may be directly pipelined. While at first this might seem
like an infrequent occurrence, we observed thousands of such
opportunities per day in our production workloads. Figure 9 il-
lustrates these opportunities for concurrently-executing joins
within a single Cosmos cluster over a single day. We see that
several join instances that are found to be concurrent hundreds
to thousands of times.

Extending CloudViews to support concurrently executing
queries and extending its feedback loop to efficiently learn the

trade-offs between immediate reuse and materialization remains
a ripe direction for future exploration.

5.5 Reuse in Other Engines
The idea of computation reuse goes beyond the SCOPE query en-
gine. In fact, we adapted the computation reuse ideas to the Spark
query engine as part of the SparkCruise project [36]. SparkCruise
selects high utility common computations and performs auto-
matic materialization and reuse for Spark SQL queries. Like
CloudViews, SparkCruise analyzes past application workload
logs to select common subexpressions for reuse. The list of com-
mon subexpressions is provided to the Spark query optimizer for
future materialization and reuse. All these actions are performed
automatically without any active involvement from the customer.
On TPC-DS benchmarks, SparkCruise can reduce the running
time by approximately 30% [36].

Even though both CloudViews and SparkCruise share the
same ideas, there are differences in the target systems and the
deployment environments. SCOPE query engine is developed
by Microsoft and we added the signatures and optimizer rules
deep inside the query optimizer. However, Spark is an open-
source project and making any code changes in Spark will tie
us to a specific version and delay the upgrade process in the
future. Therefore, we use the optimizer extensions API in Spark
to add two additional rules to the query optimizer — first for
online materialization, and second for computation reuse. We
also implemented an event listener for Spark SQL that can log
query plans and compute signature annotations on the logical
query plan object. The user simply needs to add SparkCruise
library and set a couple of configuration parameters. With these
changes, we can provide computation reuse in Spark without
modifying its code.

Currently, SparkCruise is deployed on Azure HDInsight [32].
Azure HDInsight offers Spark cluster-as-a-service. Users can
spin up ephemeral Spark clusters, run their query workloads, and
delete the cluster after the job has finished. This scenario requires
a fast workload-based feedback loop. To enable this fast feedback
loop, we gave the control of the workflow to the end users or the
data engineers. The users can schedule the workload analysis
and view selection job periodically, or as often as the changes
in the query workload. To help users understand their query
workloads and decide whether SparkCruise will benefit their
workload or not, we provide an interactive Workload Insights
Notebook in Python [31]. The Workload Insight Notebook shows
the workload statistics in aggregate as well as the redundancies
in the workload. The results from the notebook can convince the
users to enable the computation reuse feature on their workloads.

CloudViews and SparkCruise show that the benefits of com-
putation reuse are not limited to a specific query engine. We
believe that computation reuse should be a fundamental prin-
ciple, like data locality and fault tolerance, when designing big
data processing systems.

5.6 Other Applications of Reuse
The CloudViews mechanism of producing artifacts as part of
query execution is useful in many other related applications:

• Checkpointing.Computation reuse can be applied for au-
tomatic checkpoint and restart in large analytical queries.
The idea is to select intermediate subexpressions in a job’s
query plan to materialize and reuse them in case the job is
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restarted after a failure. Job failures are common in produc-
tion clusters, with a small fraction failing every day. There
are many reasons for failures including but not limited
to storage errors, lack of compute capacity, missing input
files, and network timeouts [46]. These transient errors
are especially problematic for long running jobs that run
for hours and fail towards the end. Typically, the failed
jobs are resubmitted after a short delay. However, these
jobs execute from the start all over again, thus wasting
valuable compute resources and also delaying the final
results. CloudViews can be used in this scenario to re-
cover quickly from failures. During the compilation phase,
we use query history to find which operators are more
likely to fail and add a checkpoint just before them [50].
Then, during the resubmission, CloudViews can load the
last available checkpoint thereby avoiding re-computation.
Going forward, it would be interesting to select views that
increase cluster utilization by maximizing the reuse across
queries and minimizing the recovery time at the same
time.

• Pipeline Optimization. Enterprise data analytics con-
sists of data pipelines where analytical queries are inter-
connected by their outputs and inputs. Furthermore, the
output of each producer query in the pipeline is typically
consumed by multiple downstream queries. Unfortunately,
the producers are not aware of the right data representa-
tions, or physical designs, required by their consumers.
As a result, downstream queries need to prepare the data
before they can run the actual processing. Therefore, it is
crucial to leverage the data dependencies for creating the
right physical designs tailored to the downstream queries.
This can be done by producing the right physical design
as part of query execution of producer job, i.e., a Cloud-
Views that captures the required physical designs needed
by downstream jobs.

• Sampling. Sampling is a powerful technique used for ap-
proximate query execution. Approximate query execution
helps lower the latency and cost of running complex an-
alytical queries on large datasets [29]. CloudViews style
computation reuse can be applied for reducing the cost
of approximate query execution even further. This can be
achieved by sampling the views created by CloudViews.
Sampled views will particularly help reduce query latency
and cost in queries where substantial work happens af-
ter the sampler. Likewise, we could create statistics on
the common subexpressions to provide insights to data
scientists and analysts.

• Bit-vector Filtering. Bit-vector filters such as bitmap fil-
ters, Bloom filters and similar variants have been proposed
by both industry and academia to perform semi-join reduc-
tions [15]. Semi-join reductions help filter rows which do
not qualify join condition early-on in the query execution
plan. Bit-vector filters have a low storage and compute
overhead. They are commonly used in hash joins during
query processing. CloudViews style computation reuse
can be applied for generating bit-vectors during query
execution as well. During query execution, a spool opera-
tor could be used for generating the bit-vector filter from
right child of hash join and reuse it in subsequent queries.

6 OTHER RELATEDWORK
Compute reuse is a hot topic in industry and we discuss some of
the trends in other major companies below.

Snowflake is a cloud-based data warehouse company. The
Snowflake design caches results of every query executed in the
past 24 hours [41]. Users can then postprocess the cached result
for further analysis. However, caching only the final results has
limited applicability. CloudViews on the other hand reuses com-
putation at any point in the query plan and is thus a superset of
result set caching performed by Snowflake.

Google BigQuery is an interactive big data system that sup-
ports different kinds of caching and computation reuse. In par-
ticular, similar to Snowflake, it also supports caching arbitrary
query results [18]. However, same as Snowflake, users have to
manually rewrite their queries against the cached query results.
BigQuery also supports materialized views that are maintained
and support automatic query rewriting [17]. However, it only
supports queries with aggregate function to simply the query
rewriting problem.

Amazon Redshift is cloud data warehouse product from
Amazon. Redshift enables materialized views to be automati-
cally refreshed with automatic query rewrites [3]. However, the
materialized views are still created manually and unlike online
materialization in CloudViews, the responsibility of creating ma-
terialized views in Redshift lies with the user.

Alibaba [2] allows users to create materialized views. Once
created, the materialized views could be used in queries. How-
ever, Alibaba’s data warehouse engine requires manual re-writes
to reuse materialized views. Again, unlike the automatic materi-
alization and reuse in CloudViews.

Oracle deploys an algorithm called extended covering sub-
expressions (ECSE) to select materialized views for reuse [1].
It performs pairwise selection of ‘join sets’ and deploys other
heuristics to reduce the search space to polynomial size. The
authors test ECSE against a two-node configuration against a
small number of queries, and intend to deploy the technique to
their cloud in the future. By contrast, CloudViews is not restricted
to this smaller class of candidate materialized views and has
been continuously executing at extreme scale over hundreds of
thousands of queries per day.

Finally, there are several other works that apply computa-
tion reuse in other settings. Yuan et al. [45] apply computation
reuse on query workloads from Alibaba. Inspired by BigSubs
algorithm [24] of CloudViews, they formulate the subexpression
selection problem as ILP (Integer Linear Programming) and use
deep reinforcement learning to solve the ILP. AStream [30] is
a shared computation reuse framework for streaming queries.
AStream can dynamically adapt to changing streaming query
workloads without affecting the query execution topology. Com-
putation reuse was also applied on Machine Learning workloads
by Helix [44]. Helix finds common intermediate computation
between iterations and automatically materializes some of them
for future iterations.

7 CONCLUSION
Large-scale data processing infrastructures are key to data-driven
decisions in modern enterprises. Unfortunately, the scale and
complexity of these infrastructures could also make them un-
wieldy and highly inefficient. In this paper, we describe how
large scale data preparation, also referred to as data cooking, in
the Cosmos big data infrastructure at Microsoft often leads to
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redundant computations across different data pipelines and how
computation reuse naturally augments the data cooking process-
ing by fine-tuning the cooked datasets with more shareable ones.
We show the impact of CloudViews, an automatic computation
reuse infrastructure that we had build in the SCOPE query engine,
over large production workloads and discuss many of the opera-
tional challenges that we faced. CloudViews has not only helped
improve operational efficiency (37% less aggregated processing
time) and customer experience (34% less aggregated latency), but
it has also opened up new avenues and reusable infrastructure
for a broad range of feedback-driven workload optimizations —
the stepping stones towards a self-tuning intelligent cloud.
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