
Explaining Differences Between Unaligned Table Snapshots
Manuel Fink

Data and Web Science Group

University of Mannheim

manuel@informatik

.uni-mannheim.de

Christian Meilicke

Data and Web Science Group

University of Mannheim

christian@informatik

.uni-mannheim.de

Heiner Stuckenschmidt

Data and Web Science Group

University of Mannheim

heiner@informatik

.uni-mannheim.de

ABSTRACT

We study the problem of explaining differences between two

snapshots of the same database table including record insertions,

deletions and in particular record updates. Unlike existing al-

ternatives, our solution induces transformation functions and

does not require knowledge of the correct alignment between

the record sets. This allows profiling snapshots of tables with

unspecified or modified primary keys. In such a problem setting,

there are always multiple explanations for the differences. Our

goal is to find the simplest explanation. We propose to measure

the complexity of explanations on the basis of minimum descrip-

tion length in order to formulate the task as an optimization

problem. We show that the problem is NP-hard and propose a

heuristic search algorithm to solve practical problem instances.

We implement a prototype called Affidavit to assess the explana-

tory qualities of our approach in experiments based on different

real-world data sets. We show that it can scale to both a large

number of records and attributes and is able to reliably provide

correct explanations under practical levels of modifications.

1 INTRODUCTION

When the content of a database table is frequently changing, it

is difficult to find and understand the differences manually. For

this reason, a large number of tools has been developed with

the goal of supporting database administrators in situations like

these [1, 7–9, 24]. Most of them cannot only identify deleted and

inserted records but also highlight changes of individual attribute

values of records that exist in both snapshots. However, the exist-

ing solutions share a big limitation. They require knowledge of

the correct record alignment, usually derived from primary key

attributes. In certain use cases though, immutability of primary

keys is not a valid assumption. Our research is motivated by a

use case of an industry project that aims to understand database

updates caused by proprietary software updates. We found exist-

ing solutions not well suited because keys of the same records

sometimes get reassigned during the update.

Figure 1 serves as a running example for such a problem in-

stance. It shows two table snapshots S1 and T1 whose uncolored

records have been deleted and inserted respectively. Equally col-

ored records resemble a correctly aligned pair of records in which

the record from T1 was derived from the record in S1 with the

transformations specified below the table.

Snapshots S1 and T1 could belong to a company’s ERP system

whose database was transformed as part of an update to a newer

software revision. While the attribute value changes were likely

done to meet a new data format specification, the deletions and

insertions constitute changes of the table content or noise from

continued use of both databases between transformation and

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

snapshotting. The company might be interested in an explana-

tion for the changes because the conversion script is unavailable,

proprietary or legacy code that is difficult to understand. A direct

benefit of reverse-engineering the transformation is that, addi-

tional full system conversions can be avoided if more data needs

to be transformed later on, reducing both costs and downtime.

Other application domains include data integration, e.g. dupli-

cate detection when integrating multiple sources with redundant

records in the target schema, as well as analysis of changes of

third-party data sources without access to the transaction log.

What makes the running example interesting, are the changes

to the composite primary key {ID1, ID2, Date} that make it neces-

sary to identify other suitable attributes for record linking. ID2

looks very promising because it is part of the primary key and

has perfect discriminability and coverage [3]: The provenance

of every single target record is reduced to exactly one source

record. However, the correct alignment shows that these charac-

teristics can be highly misleading. ID2 in T1 was most likely filled

using a skolem function [2] as part of an auto-increment policy.

Linking with Date is another promising option, yet it would fail

to explain the provenance of the three records T13, T14, T15 in

which ‘99991231’ in Date was replaced by ‘20180701’. On the other

hand, once the correct transformation function for Val has been
learned, it would be very helpful for aligning the records without

missing out on these three pairs. Learning this function without

the alignment is difficult though.

Intuitively, we can expect at least some attributes to be un-

changed in practice and use them to partially resolve the align-

ment problem. For example, Type and Org suggest an alignment

of records S11 and T13. The division function of Val implied by

the input-output example ‘65’ 7→ ‘0.065’ generalizes to other

alignment clusters, too, often resolving them.

Extending snapshot comparison with record linking and func-

tion synthesis creates a challenging duality. Scalable unsuper-

vised record linking methods need domain knowledge on how

to use the attributes to cluster records into blocks that are small

enough for detailed similarity comparisons. In the case of at-

tributes whose values have been systematically changed, algo-

rithms that induce string transformations from examples are

needed to learn how to use the attribute for blocking. However,

the records need to be aligned already to produce the required

input-output examples. Hence, these two sub-problems affect

each other and cannot be solved independently.

The core of our contribution is an unsupervised search algo-

rithm that iteratively learns which attributes have likely been

changed and induces the corresponding value transformation

functions. The resulting solution can deal with transformed or

unspecified primary keys and produces more than a report of

the differences. It yields an explanation that can be used to trans-

form additional, unseen records of the source table because it

generalizes the value changes instead of only listing them.

Series ISSN: 2367-2005 133 10.5441/002/edbt.2020.13

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.13

ID1 ID2 Date Type Val Unit Org

S01 0000 20130416 A 80000 USD IBM

S02 0001 20120128 A 180000 USD IBM

S03 0002 20130315 A 220000 USD IBM

S04 0003 20120128 B 3780000 USD IBM

S05 0004 20120731 B 425000 USD IBM

S06 0005 20120731 C 21000 USD IBM

S07 0006 20140503 C 422400 USD IBM

S08 0007 20140503 C 6540 USD SAP

S09 0008 20131021 C 9800 USD SAP

S10 0009 20121125 C 0 USD SAP

S11 0010 99991231 D 65 USD SAP

S12 0011 99991231 D 180000 USD BASF

S13 0012 99991231 D 220000 USD BASF

S14 0013 20150203 D 21000 USD BASF

S15 0014 20150213 D 65 USD BASF

S16 0015 20160807 E 80000 USD BASF

S17 0016 20161231 E 80000 USD BASF

Source table S1

ID1 ID2 Date Type Val Unit Org

T01 0000 99991231 A 80 k $ IBM

T02 0001 20120128 A 180 k $ IBM

T03 0002 20120731 C 21 k $ IBM

T04 0003 20120731 B 425 k $ IBM

T05 0004 20121125 B 0.022 k $ DAB

T06 0005 20130315 A 220 k $ IBM

T07 0006 20130416 A 80 k $ IBM

T08 0007 20131021 C 9.8 k $ SAP

T09 0008 20140503 C 422.4 k $ IBM

T10 0009 20140503 C 6.54 k $ SAP

T11 0010 20150213 D 0.065 k $ BASF

T12 0011 20161231 E 80 k $ BASF

T13 0012 20180701 D 0.065 k $ SAP

T14 0013 20180701 D 180 k $ BASF

T15 0014 20180701 D 220 k $ BASF

T16 0015 99991231 F 0.45 k $ SAP

Target table T1

F E1 =

©­­­­­­­­«

f E1
ID1

:

{S01 7→ T 07, S02 7→ T 02, S03 7→ T 06, S05 7→ T 04, S06 7→ T 03, S07 7→ T 09, S08 7→ T 10,
S09 7→ T 08, S11 7→ T 13, S12 7→ T 14, S13 7→ T 15, S15 7→ T 11 S17 7→ T 12},

f E1ID2
:

{0000 7→ 0006, 0001 7→ 0001, 0002 7→ 0005, 0004 7→ 0003, 0005 7→ 0002, 0006 7→ 0008,

0007 7→ 0009, 0008 7→ 0007, 0010 7→ 0012, 0011 7→ 0013, 0012 7→ 0014, 0014 7→ 0010,

0016 7→ 0011}, f E1
Date

: ‘9999123’x 7→ ‘2018070’x, otherwise x 7→ x,

f E1
Type

: x 7→ x, f E1
Val

: x 7→ x / 1000, f E1
Unit

: x 7→ ’k $’, f E1
Org

: x 7→ x

ª®®®®®®®®¬
Figure 1: Problem Instance I1 = (S1,T1,A1, F1) that shows the content of two snapshots of the same table. Primary key

attributes are bolded. The attribute functions specified in F E1 are part of a possible explanation E1 for the changes that

uses the colored records in S1 to create the records of the same color in T1. Note that the alignment of the colored records

is also given by f E1ID1
. Uncolored records are records which E1 explains as deleted and inserted respectively.

2 RELATEDWORK

The problem presented in this work extends the classic task of re-

porting differences of table snapshots in two dimensions: record

linking and function synthesis. Handling both efficiently at once

is not as trivial as combining the best solutions of both fields. It

is not even straight-forward how to apply the respective state-of-

the-art techniques at all in this context due to their requirements.

Our contribution is an exploration of the intersection of the two

problems. It is not our goal to improve the state-of-the-art in

either of these fields. Instead, we aim to solve them in the context

of a comparison tool that requires minimal user effort to make it

practical to profile database snapshots with hundreds of tables.

Table Comparison Tools In the industry, there is a high de-

mand for database analysis software which resulted in a large

number of both free and commercial solutions for the comparison

of relational database tables. Exploring this market, we found,

among others, options such as ApexSQL Data Diff [1], Repli-

cator [8], Redgate SQL Data Compare [24], Devart Data Com-

pare [9] or SQL Delta [7]. However, to the best of our knowledge,

they can only be used on tables for which a primary key is spec-

ified and none of the available products is able to cope with

changes of the primary key attributes as it is common standard

to use them to link the records for comparison. If they do include

functionality to link records in a different way, it requires man-

ual effort by the user, for example by explicitly defining linkage

rules. Furthermore, while most of the products are able to export

executable SQL scripts that implement the transformation of the

data, they do not generalize well to unknown records because

the value changes are explicitly stated per record and there is

no learning of systematic transformation functions on the level

of attributes. As a consequence, the generated reports lack an

explanation of the changes in case a systematic pattern exists.

Record Linking Record linking has been frequently studied

in academic research and is also known as record, entity or in-

stance matching, identity resolution or deduplication [5]. There

are several solutions available that implement both supervised

and unsupervised algorithms for linking structured data, for ex-

ample Magellan [17] inlcuding DeepMatcher [20], JedAI [21],

dedupe [4], SILK [16], or WInte.R [18].

In a supervised setting, a set of annotated examples is given.

Each example corresponds to a record described in two different

representations that usually share some attributes but not nec-

essarily the whole schema. While powerful, we do not consider

techniques centered around supervision as users typically use

comparison tools as a first attempt to understand changes in large

amounts of data without investing manual annotation effort.

134

JedAI is a suite of unsupervised algorithms that do not re-

quire an annotated training dataset to link records. It contains

methods for data cleaning, blocking and matching that can be

configured by a user to guide the matching process. JedAI of-

fers a rather generic approach where it is not required to define

attribute-specific similarity functions. However, the lack of an-

notated examples means, the user needs to choose a suitable

configuration of the different algorithms manually. This depends

on the individual data and requires domain knowledge. Our solu-

tion is unsupervised without user guidance by using a universally

applicable cost function to search for good linking criteria.

A major difference to both supervised and unsupervised ap-

proaches, is that we aim to learn transformation functions that

transform records from one representation to the other. At the

same time, this yields a strong criterion for the task of separating

deleted or inserted records from transformed data. Most record

linking algorithms however, link records purely based on a fuzzy

notion of similarity. They are designed to support use cases in

which no transformation function might exist, e.g. linking data

from different sources.

Induction of Transformation Functions Learning string ma-

nipulations from input-output examples is a research field that

has real-world applications in widespread tasks such as data

preparation and spreadsheet manipulation. This is exemplified

by several works of Gulwani et al. [12–14, 23] that laid the founda-

tions for different add-ins of Microsoft Excel and Azure, marketed

under the names QuickCode and FlashFill. FlashMeta [23] on the

other hand, is a framework into which the authors were able to

cast several different instances of the problem by separating the

induction algorithm from the domain-specific language of the

transformations.

The language of transformation functions that can be induced

by these algorithms spans a subset of regular expressions that

includes loops and conditionals. These kinds of transformations

are more expressive but have many more parameters than the

function families we consider in this work. As it is usually impos-

sible to learn all function parameters from a single input-output

example, a set of examples is used to unambiguously induce a

specific function. Typically, a user is supposed to give a handful

of examples.

Unfortunately, the authors in [26] found that current meth-

ods do not scale well to a large number of examples which led

them to develop an iterative algorithm that re-uses intermedi-

ate search results from previous examples. The third-party scala

re-implementation of FlashFill [19] that we were able to try was

indeed too slow to be used on large tables as its induction time

was in the range of seconds for a single example. On the other

hand, there is no mention in [26] of how it deals with mislabeled

or noisy examples, leading us to belief that it is not well suited for

such scenarios. While in our setting one can reasonably expect

to be able to provide a set of input-output examples that includes

some correct ones, the examples can be extremely noisy due to

record deletions and insertions as well as the unknown align-

ment of records. This makes it difficult to use state-of-the-art

techniques that support complex transformations if the goal is

to scale to large tables.

An alternative to induction for learning transformation func-

tions, is the retrieval of a fitting transformation from a corpus.

TDE [15] follows such an approach with 50K functions crawled

from Github and Stackoverflow and recently showed substan-

tially better performance than induction-based systems.

3 PROBLEM STATEMENT

Given two table snapshots with unaligned records, our goal is to

explain the differences with a set of operations that transform

the source snapshot to the target snapshot. Allowed operations

are record insertions, deletions and transformation functions on

an attribute level, for example to express a primary key mapping.

Definition 3.1. (Problem Instance) A problem instance I =

(S,T ,A, F) is a set of source (S) and target (T) records given

as value tuples under the same schemaA which is a tuple of d at-

tributes. F ⊃ {id} contains candidate transformation functions.

We will describe F implicitly with meta functions (see Table 1)

used to solve a problem instance, such as prefixing or integer ad-

dition. F contains all their instantiations (i.e. parameter choices)

that transform at least one source value to a target value of the

same attribute, e.g. x 7→ x + 5. We do not define a problem in-

stance directly by meta functions because the space of possible

explanations depends on the concrete instantiations (see Def. 4.1).

The definition of all other symbols is to be understood in

relation to one specific, fixed problem instance. It should be clear

from the context which problem instance they refer to.

Definition 3.2. (Explanation) An explanation is a tuple E =

(SE−,T E+, F E) of source records labeled as deleted (SE− ∈ S),

target records labeled as inserted (T E+ ∈ T) and a tuple F E =

(f Ea1 , . . . , f
E
ad) of attribute functions from F .

Definition 3.3. (Core) SE := S \ SE− is called the core of an

explanation E.

The core contains all source records which are not labeled as

deleted. It is used to produce the target records which are not

labeled as inserted.

Definition 3.4. (Core Image) The result T E of applying the

attribute functions of F E to the core SE is called core image:

T E := F E (SE) := Πf Ea
1
, ..., f Ead

(SE), and so for s ∈ SE :

F E (s) =
(
f Ea1 (Πa1 (s)), ..., f

E
ad (Πad (s))

)
.

We are only interested in explanations that state the origin of

every single target record, either as the result of transforming a

source record or as an insertion. Moreover, we demand that each

target record provenance is unambiguous by enforcing F E to be

a bijection between SE and T E .

Definition 3.5. (Validity) An explanation E is called valid if

T E+ = T \ T E and |SE | = |T E |. The set of valid explanations

for a problem instance I is denoted by EI .

From now on, when we talk about explanations, we implicitly

mean valid explanations.

Proposition 3.6. Given a problem instance I and attribute

functions F E , a valid explanation E can be constructed from F E

by appropriately choosing SE− and T E+.

Proof. Let SE = {s | s ∈ S and F E (s) ∈ T }. If multiple

core records are transformed into the same target record, remove

all but one such record from SE . This yields T E = F E (SE)

(Definition 3.4) with |SE | = |T E |. Finally, construct SE− =

S \ SE (Definition 3.3) and T E+ = T \ T E (Definition 3.5). �

We use Figure 1 to elaborate on these definitions. It visualizes

some problem instance I1 with S1, T1, A1 as depicted by the

two tables. F1 could be defined implicitly by the following meta

135

functions which have a varying number of parameters: identity,

constant value, division, prefix replacement and value mappings

(see Table 1).

The record coloring visualizes a possible explanation E1. The

colored target records are producible from the source records of

the same color using the specified attribute functions. E1 has the

following formal components:

SE1− =
{
s ∈ S1 | ΠID1(s) ∈ {S10, S04, S14, S16}

}
T E1+ =

{
t ∈ T1 | ΠID1(t) ∈ {T01,T05,T16}

}
F E1 = as shown below the tables in Figure 1

For instance, applying its attribute functions to the first source

record (S01) produces the seventh target record (T07):

F E1 ((S01, 0000, 20130416,A, 80000,USD, IBM))

=
(
f E1
ID1
(S01), f E1

ID2
(0000), f E1

Date
(20130416), f E1

Type
(A),

f E1
Val
(80000), f E1

Unit
(USD), f E1

Org
(IBM)

)
= (T07, 0006, 20130416,A, 80, k $, IBM)

E1 is a valid explanation because every target record is either

producible from exactly one core record or is included in T E1+.

3.1 Explanation Quality

The example above can be used to demonstrate that, even if sys-

tematic operations are used to change a table, it is in general

impossible to be sure about the correct explanation given two

snapshots. Besides E1, there are many more valid explanations

using the same meta functions. For instance, the twelfth target

record (T12) could also be created from the sixteenth (S16) source

record instead of the seventeenth (S17). A second valid expla-

nation E2 could therefore be constructed by adjusting the set

of core records and replacing two value mappings in f E1
ID1

and

f E1
ID2

. This would not affect the brevity of the explanation. How-

ever, we would also have to replace f E1
Date

with a function that

additionally maps 20160807 to 20161231. For this, we could not

instantiate a simple meta function anymore and we would need

a value mapping. As it would have more parameters than a prefix

replacement, explanation E2 is less intuitive than E1.

Our formal definition of an explanation’s quality is motivated

by [11] in which the cost of a schema mapping induced from data

instances is measured by the number of variables and constants

in its minimum repair. Schema mapping repairs are defined as

first-order formulas that state exceptions to the schema mapping

to make it fit the given data example. The corresponding concept

in our problem are records outside of the core whose origin can

not be explained with the induced functions. The central task

becomes the balancing of the size of the core with the complexity

of the functions which does not have a straight-forward solution.

We decide to loosely follow the concept of minimum description

length [25] and prefer explanations that maximally compress the

problem instance. Specifically, we evaluate the description length

of our input data S and T under an explanation and ignore the

contribution of inputs A and F as their description length is

independent of the choice of E.

Proposition 3.7. S and T are implicitly described by a valid

explanation E = (SE−,T E+, F E) and its core SE .

Proof. S = (S \ SE−) ∪ SE−
(Def. 3.3)
= SE ∪ SE−,

T
(Def. 3.5)
= T E+ ∪ T E

(Def. 3.4)
= T E+ ∪ F E (SE) �

Note that every source record is described exactly once (in the

two disjoint sets SE and SE−) and the choice of E only affects

the distribution of the source records to these two sets. However,

from the records in T , only those contained in T E+ need to be

described. Therefore, an explanation compresses inputs S and

T if its attribute functions F E can be described shorter than the

core image T E which are the records from S and T that can be

reconstructed from E and SE . For this reason, we optimize the

description lengths of T E+ and F E but not SE− or SE .

To measure the description length of the records in T E+ by

strictly following the definition of minimum description length,

we would need to determine the minimum number of bits needed

to represent T E+. We decide to loosen this requirement both for

semantic and practical reasons. In the context of this work, it is

sufficient to count the number of data values that appear in the

formal description of an explanation.

Definition 3.8. The description length of the record set T E+

is defined by L(T E+) := |A| · |T E+ |.

Concerning the description length of an explanation’s attribute

functions, it is difficult to find a general definition that captures

the brevity of a function’s signature.We decide to use the smallest

number of parameters that are needed to instantiate the function

from a meta function, which again is a count of data values. It

shall be denoted byψ (f).

Definition 3.9. The description length of an explanation’s at-

tribute functions F E is defined by L(F E) :=
∑
a∈A ψ (f

E
a).

Definition 3.10. (Costs of Explanations) The costs c(E) of an

explanation are defined by c(E) := 2αL(T E+)+ 2(1− α)L(F E).

Parameter α ∈ [0, 1] can be used to prioritize one of the compo-

nents. For example, in the standard setting α = 0.5, explanation

E1 of Figure 1 has costs c(E1) = L(T
E1+)+L(F E1) = 7|T E1+ |+∑

a∈A ψ (f
E
a) = (7·3)+(13·2+13·2+2+0+1+1+0) = 21+56 = 77.

Our cost definition captures two desirable qualities of an ex-

planation. The first term rewards explanations that use a large

core to produce a big subset of the records in T . Therefore, expla-

nations that successfully align many records are preferred. The

second term promotes simple explanations, as complicated at-

tribute functions with many parameters, such as value mappings,

are penalized for their lengthy description.

We can now formally express the requirements of an optimal

solution for a problem instance.

Definition 3.11. (Optimal Solution)Given a problem instance

I, the set of optimal solutions is defined by E∗ := arдmin
E ∈ EI

c(E).

We call the problem of finding such an optimal solution Explain-

Table-Delta.

In practice, E∗ is unlikely to contain more than one optimal

explanation. In some problem instances though, multiple source

records can be used to produce the same target record and more

than one provenance leads to an explanation with optimal costs.

Note that EI , ∅ as E∅ = (S,T , {id}
d) is a trivial explanation

for every problem instance I that can always be given. It lists all

source records as deleted and all target records as inserted. For

example, onI1 andα = 0.5, this explanation has costs |A1 | · |T1 | =

7 · 16 = 112.

3.2 Problem Complexity

Theorem 3.12. (NP-Hardness) The problem Explain-Table-

Delta is NP-hard for α > 0.

136

ci # v1 v2 v3 v4

v 1
∨
v 2
∨
v 3

c1 1 1 0 -

v 1
∨
v 4

c2 0 - - 1

v 3 c3 - - 1 -

Source records S

v1 v2 v3 v4 ci

c1 0 0 0 -

v 1
∨
v 2
∨
v 3c1 0 1 0 -

c1 0 1 1 -

c1 1 0 0 -

c1 1 1 0 -

c1 1 0 1 -

c1 1 1 1 -

c2 0 - - 0

v 1
∨
v 4

c2 0 - - 1

c2 1 - - 1

c3 - - 1 - v 3

Target records T

Figure 2: Reduction of an example 3-sat instance c = (v1∨
v2 ∨v3) ∧ (v1 ∨v4) ∧ v3 to a problem instance of Explain-

Table-Delta with 3 source and 11 target records.

Proof. Via polynomial-time reduction from 3-sat.

Figure 2 shows an example reduction. Let c =
n∧
i=1

ci be an instance

of 3-satwith clauses ci over variables from a setV = {v1, ...,vd }.
Then, we can create a problem instance I = (S,T ,A, F) for

which the optimal solution specifies a model of c if c is satisfiable.
For this, we set A := (#,v1, ...,vd). We let F contain only two

possible attribute functions, id (x 7→ x) and boolean negation

(x 7→ x). The latter shall swap the truth values {‘0’, ‘1’} and

otherwise behave like id .
We construct S to have n records. For each clause ci , S con-

tains a record si such that Π#(si) = ‘c’ ◦ i and

Πvj (si) =


‘1’, vj positive in ci
‘0’, vj negative in ci
‘-’, vj not in ci .

T is constructed to contain a maximum of 7n records. For a clause
ci with k literals, the 2

k − 1 different models over the variables

in ci are used to define one target record each. Letmk be such a

model for clause ci . Then, the corresponding target record ti ,k
has Π#(ti ,k) = ‘c’ ◦ i . and

Πvj (ti ,k) =


‘1’, vj positive in ci and vj true inmk or

vj negative in ci and vj false inmk
‘0’, vj positive in ci and vj false inmk or

vj negative in ci and vj true inmk
‘-’, vj not in ci .

The description length L(F E) is 0 for every explanation as

the two possible functions id and boolean negation have no pa-

rameters that need to be instantiated. Consequently, for α > 0,

the costs of explanations for I are solely determined by |T E+ |.

Note that any explanation E can only produce exactly one

target record from the source record of clause ci because of the

functionality of F E . Because of attribute #, this target record

needs to belong to a model of ci , independent of the choice of f
E
#
.

For the same reason, a target record describing a model of clause

ci can only be produced by the source record corresponding to

clause ci . This means that for a fixed clause ci , it is impossible to

produce more than one target record that describes a model of ci .
Hence, each clause ci for which E produces a target record from

the corresponding source record reduces |T E+ | by 1. An optimal

solution is one that fulfills this criterion on the most clauses.

Lastly, note that F E describes an interpretation over the vari-

ables in V . A variable vi ∈ V in this interpretation is true if

f Evi = id and f alse if f Evi = boolean negation. Applying F E to

the source record of clause ci produces a record that contains the
truth values of all variables occuring in ci under this interpreta-
tion. If the resulting record is a target record, the interpretation

satisfies the clause as target records of ci describe models. We

can conclude that if the 3-sat instance c is satisfiable, an optimal

solution E∗
0
for the corresponding Explain-Table-Delta prob-

lem is able to produce a target record for every single clause by

letting F E
∗
0 describe a model of c . Therefore, given the optimal

solution E∗
0
, |SE

∗
0
− | = 0 can be used to check if c is satisfiable

and if it is, a model can be extracted from F E
∗
0 . �

4 AFFIDAVIT

In this section, we describe the components of the search algo-

rithm presented as Algorithm 1 to solve practical instances of

Explain-Table-Delta. We implement it in a prototype that is

called Affidavit
1
(Algorithm For Function-Inducing Delta

Analysis Via Integration of Tables). For a given problem

instance, it produces an explanation that serves as an affidavit to

declare that, to the best of its knowledge, the specified modifica-

tions were used to generate the target from the source table.

Thanks to Proposition 3.6, the task of finding explanations

can be reduced to a search for attribute functions. Consequently,

Explain-Table-Delta can be understood as a constraint satis-

faction problem. If the set of possible attribute functions is finite,

a brute-force solution could enumerate and assess all possible

attribute function tuples by treating each attribute as a variable

with domain F . Clearly, this approach does not scale and works

poorly in practice because meta functions like value mappings

cause F to grow exponentially with the size of the data.

We propose a best-first search instead, which starts from a

set of empty or partial function assignments and efficiently navi-

gates towards a full assignment with good quality. A transition

in the search space corresponds to deciding on the function of

an attribute. Each of the assignments of a search state acts as a

constraint on the possible alignment of source and target records.

The more attribute functions have been assigned, the more it

becomes clear which records belong together under these assump-

tions, making it easier to decide on functions for the remaining

attributes. A bad function choice eventually leads to high costs

because it results in a small core or complicated functions for the

remaining attributes. The search is guided by estimations of the

final explanation costs of partial function assignments.

4.1 Preliminaries

Definition 4.1. (Search Space) Given I with |A| = d , the

search space is defined byHI :=
{
(h1, ...,hd) | hi ∈ {∗,�} ∪F

}
.

This means, a search stateH ∈ HI is a d-tuple whose compo-

nent hi assigns either ∗, � or some function f from F to attribute

ai . In the case of ∗, the function of ai is still undecided. A �means

that Affidavit has identified the attribute as one for which a

value mapping is best suited. It will be resolved at the very end

of the search when the alignment is maximally determined.

Definition 4.2. (End State)H is called end state if the function

of each attribute is determined, i.e. if {ai ∈ A | hi ∈ {∗,�}} = ∅.

1
https://github.com/Finkman7/affidavit

137

Algorithm 1 Affidavit

function Affidavit(I)

Q ← Init-Start-States(I) ◃ Init Priority Queue Q

while Q , ∅ do
H ← Poll(Q) ◃ Remove Best State

if Is-End-State(H) then break

else

Q ← Q ∪ Extensions(H)

return Convert-To-Explanation(H) ◃ Proposition 3.6

function Extensions(H)

A∗ ← Order-By-Indeterminacy({ai ∈ A| hi = ∗})
Hext ← ∅, A� ← ∅ ◃ Extensions and �-attributes

A ′ ← Poll(A∗, β) ◃ Poll β attributes

R ← Sample-Random-Alignment(ΦH)
whileHext = ∅ and A ′ , ∅ do

for a in A ′ do

Ha ← ∅ ◃ Promising attribute extensions

д← Induce-Greedy-Map(R, a)
Hд ← Extend(H , a, д)

for f in Induce-Functions(ΦH , a) do
Hf ← Extend(H , a, f)
if c(Hf) < c(Hд) then

Ha ←Ha ∪ {Hf }

if Ha , ∅ then
Hext ←Hext ∪Ha

else ◃ a map function is best suited for a
A� ← A� ∪ {a}

A ′ ← Poll(A∗) ◃ Poll next attribute

if Hext = ∅ then

for a in A� do ◃ A� = A∗

H ← Extend(H ,a,�)

Hext ← Finalize(H) ◃ Resolve �s
returnHext

Given a search stateH , its function assignments can be used

as criteria for standard blocking [10] to group source and target

records together.

Definition 4.3. (Blocking Index)The blocking index of a source

or target record r under a search stateH is determined by the

projection ξH to those attributes whose functions are already

determined. In the case of source records, the attribute functions

are applied during projection:

ξH := r 7→

{
Π{hi (ai) | hi<{∗,�}} (r) if r ∈ S

Π{ai | hi<{∗,�}} (r) if r ∈ T .

ΞH denotes the set of all blocking indices:

ΞH := {ξH(s) | s ∈ S} ∪ {ξH(t) | t ∈ T }.

To address source records, target records and the block belonging

to an index κ, we define:

ϕH
S

:= κ 7→ {s ∈ S | ξH(s) = κ}

ϕH
T

:= κ 7→ {t ∈ T | ξH(t) = κ}

ϕH := κ 7→
(
ϕH
S
(κ),ϕH

T
(κ)

)
.

Definition 4.4. (Blocking Result) The blocking result under

search stateH is the set of all blocks ΦH := {ϕH(κ) | κ ∈ ΞH}.

Figure 3 visualizes parts of an example blocking result.

ΦH1

...

...

κi = (‘C′, ‘k $
′, ‘SAP′)

(S08, 0007, 20140503,C, 6540,USD, SAP)

(S09, 0008, 20131021,C, 9800,USD, SAP)

(S10, 0009, 20121125,C, 0,USD, SAP)

(T08, 0007, 20131021,C, 9.8,k $, SAP)

(T10, 0009, 20140503,C, 6.54,k $, SAP)

ϕH1

S
ϕH1

T
ϕH1

Figure 3: A block with index κi within blocking result ΦH1

of search stateH1 := (∗, ∗, ∗, id, ∗, x → ‘k $’, id) on I1.

4.2 Initialization Strategy

A natural choice for the set of start states H0
of the search is

H ∅ = {(∗, ..., ∗)} in which all assignments are empty. While

it begins the search without any wrong assumptions and can

in theory lead to any explanation, it comes with a drawback.

Without any assumption on how to link the records, producing

input-output examples to learn the first function is very difficult.

A second natural way of beginning the search comes to mind

which dampens this issue. Given the assumption that there is at

least one attribute which has not been changed, the search can

be started from the set

H id
:= {(id, ..., ∗), (∗, id, ∗, ..., ∗), ..., (∗, ..., id)}.

We prefer it toH ∅ as this assumption should be valid for nearly

all practical use cases.

Furthermore, we find overlap scores another reasonable choice

to determine a start state. It can drastically improve the runtime

by beginning the search from a state in which most of the at-

tributes have already been assigned. The idea is to independently

assume for each attribute that it has not been changed and use it

to link source and target records that have the same value on this

attribute. Giving a score of 1 per attribute on which two records

are identical, the score of each pair denotes their similarity in

terms of an attribute overlap. Assuming that k unchanged at-

tributes exist, the score of correctly aligned record pairs will be at

least k and it is very likely that among the pairs with the highest

overlap score, their large overlap will stem mainly from these

attributes. We take advantage of this by using the target record

with the highest overlap for each source record to build the most

likely a-priory alignment over all source records. Sorting the at-

tributes by how often their values overlap on these pairs, we use

the k ′ most frequently overlapping ones to build a set Aid
. Our

choice of k ′ is determined by the most frequent overlap score

among these pairs. This leads to the set of start states

Hs
:= {(h1, . . . , hd)} with hi =

{
id if ai ∈ A

id

∗ otherwise.

To compute record overlaps without a quadratic comparison of

all records, we calculate it only for record pairs that share at

least one value. Very frequent attribute values that are shared by

nearly every record generate an enormous amount of alignment

pairs. Therefore, we ignore value overlaps in which the number

of resulting pairs would be above a configurable threshold. This

limits the a-priori matching to pairs that share at least one value

that is not too frequent.

138

Figure 4: Search Tree on I1 with α = 0.5, β = 2, ϱ = 3.

4.3 Extending Search States

Affidavit discovers potential attribute functions from the block-

ing result ΦH of a search state H as described in Section 4.4.

The resulting functions are used to extend H by assigning an

induced function to the corresponding attribute.

To extend a stateH , we first decide on a set of attributes A ′

for which functions are induced. The decision is based on an

estimation of the indeterminacy of the undecided attributes ofH .

We estimate it for an attribute by computing itsmaximumnumber

of distinct source values over all blocks that have both target

and source records. This corresponds to an upper bound for the

number of source values that need to be considered as the origin

of a target value.A ′ consists of the β most determined attributes

from this estimation. In the next step, we create extensions ofH

with the β most promising function candidates of each attribute

inA ′. The branching factor β is configurable to limit the number

of extensions that are produced.

For each a ∈ A ′, we compare its resulting extensions toHд
which is an extension ofH on a with a map function constructed

from a random alignment of all records that respects ΦH . We

build it by mapping each source value to the target value with

the highest co-occurrence in the random record alignment. If

Hд has the lowest costs, we store a in the set A� and reject the

attribute’s extensions, otherwise we keep all extensions with

costs lower than those ofHд . If the function of a in the optimal

solution is a value mapping, there typically is no other function

type that can be instantiated to a good function candidate for

that attribute. This is why, once their indeterminacy is low, this

check allows the detection of attributes for which map functions

are likely needed.

If we did not keep any extension from the β most determined

attributes, we try the next most determined one until we have

found at least one extension or we have come to the conclusion

that all undecided attributes should receive a map function. In

the latter case, we mark all attributes fromA� with � and finalize

the state by replacing one � after another. The replacement is a

greedy value mapping from the random alignment, just likeHд .

We re-sample a new random alignment after each � is replaced

in order to have the next map respect the previous assignment.

Figure 4 demonstrates how Affidavit finds the optimal so-

lution on I1 starting from H0 = H id
. The number in square

brackets indicates the order in which the states are expanded.A ′

is implicitly given by the origin of the arrows. Greyed out arrows

lead to extensions that are not added to the queue because no

induced function was better than a greedy map (�), the queue was

full with better states (�, see Section 4.6) or because of duplicate

detection.

4.4 Inducing Functions

4.4.1 Supported Meta Functions. Our framework supports

any meta function whose parameters are learnable from one

input-output example. An example for such a meta function is

the conversion of a date attribute. An input-output example such

as ‘Sep 31 2019’ 7→ ‘20190931’ contains enough information to

learn to split the source value by white spaces to extract month,

day and year (in that order) and express the date in ‘yyyymmdd’

format. Note that there can still be input-output examples of that

function such as ‘Oct 10 2019’ 7→ ‘20191010’ for which the func-

tion instantiation is not unambiguous. It would not be clear from

this example if the target format is ‘yyyymmdd’ or ‘yyyyddmm’.

However, one could simply generate both candidate functions or

learn the function from a different input-output example. On the

other hand, any linear function of the form x 7→mx + c needs at
least two input-output examples to learn its parametersm and c .
After one example, the number of possible meta function instan-

tiations is still infinitely large. There is no single example that

would be enough to induce the function and it is impossible too,

to generate all possible candidate functions from one example.

To transform values of an attribute that was the target of a

function type that is not supported, Affidavit tries to learn the

full value mapping. This way it can still produce explanations

with a correct record alignment, even if a more concise function

can not be learned. As a mapping with more than one entry

needs an input-output example for every value it transforms,

value mappings are not learned during the search like other

functions. Instead, they are learned at the very end when the

record alignment is maximally defined by regular functions.

4.4.2 Inducing Function Candidates. To induce functions for

an attribute, Affidavit uses noisy input-output examples that

it samples from blocks that have both source and target records

inside them. It does this by randomly selecting up to k distinct

target records from these blocks and trying for each one to pro-

duce its attribute value from the value of any source record in

the same block. We do so by instantiating functions from the

meta functions. For example, if target record T08 from Figure 3

was sampled to learn functions for Val , the following functions
could be induced: x 7→ x − 6530.2 (from ‘6540’), x 7→ x

1000
(from

‘9800’), x 7→ x + 9.8 (from ‘0’), x 7→ ‘9.8’ (from any source value).

The set of induced functions over the sampled target records

is filtered to include only functions that have been generated

a statistically significant amount of time. The idea behind this,

is that the function of the optimal solution would be generated

each time we sample a target record from the core image of the

optimal solution. However, it is only generated from examples in

which the effect of the optimal function is actually visible. How

often it gets generated, depends on the fraction θ of records with

this property in relation to the number of target records. For

example, the optimal function might be the one that removes

139

trailing zeroes if there are any but it would not be generated from

correct examples without trailing zeroes in the source value.

We regard the sampling of a target record as Bernoulli experi-

ment with success chance θ . Assuming |T | >> k , we treat each
experiment as independent, such that the number of records X
from which the best function would be generated is a random

variable that follows a Binomial distribution with success chance

θ and sample size k . We set k to the smallest integer for which

p(X ≥ 5) ≥ ρ. Both the estimated fraction θ and the confidence

level ρ are configurable parameters. Choosing a larger θ speeds

up the algorithm but risks that functions of the optimal solution

will not be sampled if θ underestimates the amount of noise in

the target records or the rarity of the function’s effect. A function

that was generated n times, is filtered if p(X = n) < ρ. If θ is

set lower than the actual fraction, the function of the optimal

solution will be found with a probability of a least ρ.

4.4.3 Ranking Function Candidates. In the next step, we de-

termine the best β candidate functions for each attribute. This

time, the fact that some functions are not induced from all value

pairs which they cover, prevents us from simply ranking the can-

didates by how often they were generated. While the function

from the optimal solution is very likely to be contained in the

candidate set after filtering, it is not necessarily the one that was

generated most often.

A complete evaluation would consist in traversing all blocks

and applying every function candidate to the block’s source

record values in order to compare the resulting histogram with

the block’s target values. As this can be very expensive, we use

sampling to estimate the fraction of records that each function

would align. This time, we sample k ′ distinct source records and
to penalize functions that map too many source values to the

same target value, we evaluate on the level of blocks that contain

them instead of the individual records. In each block of a sampled

source record, we apply all function candidates to every source

record value of the block to create a value histogram each in

which every resulting value has a frequency equal to the sum of

the frequencies of all source values from which it was created.

For example, x 7→ x
1000

on block κi from Figure 3 results in the

histogram {1 × ‘6.54’, 1 × ‘9.8’, 1 × ‘0’}, while x 7→ ‘9.8’ produces

{3 × ‘9.8’}. For each function candidate of an attribute, we com-

pute the overlap of the resulting histogram and the target value

histogram of the block ({1 × ‘9.8’, 1 × ‘6.54’} for κi) by summing

up the minimum of the frequency of each value present in both

histograms. On block κi , x 7→
x

1000
would have an overlap of 2,

whereas x 7→ ‘9.8’ has an overlap of 1. We rank the candidate

functions in descending order by the size of their total overlap

minus their description length to determine the best β candidates.

We choose the smallest integer k ′ for which it holds that if we

use p = θ in Cochran’s formula [6] for determining sample sizes:

k ′ ≥
z2 · p · (1 − p)

e2
.

For this, we choose z = 1.96 and e = 0.05 which yields a confi-

dence of 95% that the overlap on the sampled blocks is within

±5% of the overlap over all blocks. If ΦH is already very fine-

grained with many blocks, this results in a huge speed-up over

an evaluation over all blocks. If ΦH is still very vague with few

blocks, we usually evaluate on many more source records than

we sample because we fully evaluate the blocks in which they

are contained. This makes the sampling actually less risky than

the guarantees of the formula imply.

4.5 Evaluating Search States

The cost function from Definition 3.10 is defined for explanations

which can only be constructed from end states. However, during

the search, it is necessary to assess the quality of partial search

states. In this section, we describe how we extend this definition

to partial search states (and end states) in a coherent way to

arrive at the cost function used by Affidavit.

The cost component L(F E) that measures the description

length of an explanation’s attribute functions has an obvious

counterpart for search states:

cf (H) :=
∑

hi ,hi<{∗,�}

ψ (hi).

The value of L(T E+) however, depends on |T E+ | which is not

yet determined by a partial search state H . A lower bound is

given by the record set for which it is already clear from the

partial function assignments ofH that no source record will be

aligned with it in any end state to which this search state can lead.

Any record in a block without source records is such a record.

On the other hand, the blocks that do have source records

can still be used to improve this lower bound. Because a valid

explanation’s attribute function tuple is a bijection, the number

of those records can be estimated from the blocking result ofH

from the blocks which have more target than source records:

ct (H) :=
∑

κ ∈ΞH | |ϕH
T
(κ) | > |ϕH

S
(κ) |

|ϕH
T
(κ)| − |ϕH

S
(κ)|.

Moreover, there is an alternative way of computing |T E+ | that

can be useful to estimate costs during search.

Corollary 4.5. Let ∆ = |S| − |T |. The validity properties can

be leveraged to compute |T E+ | in terms of |SE− | and ∆.

Proof. |T E+ |
(Def . 3.5)
= |T | − |T E | = (|T | + ∆) − ∆ − |T E |

= |S| − ∆ − |T E |
(Def . 3.5)
= |S| − ∆ − |SE |

= (|S| − |SE |) − ∆
(Def . 3.3)
= |SE− | − ∆ �

Just like |T E+ |, |SE− | cannot be completely calculated for a

partial search state H . However, as before we can compute a

lower bound by using the blocking result ofH :

cs (H) :=
∑

κ ∈ΞH | |ϕH
S
(κ) | > |ϕH

T
(κ) |

|ϕH
S
(κ)| − |ϕH

T
(κ)|

Definition 4.6. Costs of Search States The cost of a search

stateH is defined by

c(H) := 2α · cf (H) + 2(α − 1) ·max(ct (H), cs (H) − ∆).

It depends on both the problem instance and the search state

which lower bound underestimates less.

4.6 Queue

The best-first search tends to spend most of its time visiting

search states with few assignments which is most pronounced

when starting the search fromH∅ orHid . This stems from the

fact that costs monotonically increase when a function is added

to an undecided attribute. What makes this behavior problematic,

is the fact that there are exponentially many search states from

which one can reach an end state. For instance, there are 2
|A |

states in the search lattice on a path fromH∅ = (∗, . . . , ∗) to the

end state Hid = (id, . . . , id). Even with duplicate elimination,

140

unlessHid aligns all records, a complete search would possibly

try exponentially many subsets of id assignments to check if

the remaining attributes can have other functions assigned that

result in a better explanation. This behavior cripples performance

as the number of attributes grows.

Fortunately, apart from (direct as well as indirect) parents

of the optimal solution, it is in practice very unlikely to find

many different search states that are at least as good as the

optimal solution and will therefore be extracted before it. The

likelihood of finding a search state with this property strongly

decreases with the number of assignments of a state. For in-

stance, setting ID1 to id in I1 is an assignment that makes the

state (∗, ∗, id, ∗, ∗, ∗, ∗) look promising at first and even still after

extending it to (∗, ∗, id, ∗, ∗, x 7→ ‘k $’, ∗). These states align a

lot of records with relatively cheap functions. This is why they

are extracted first in Figure 4. However, the costs of states that

result in an incorrect record alignment eventually increases fast

when assigning functions to the remaining attributes. In this

case, costly value mappings are neededÃű on attributes that

could be transformed with a simple operation under the correct

alignment. In addition, if the same source value is aligned with

multiple different target values (which is more likely under a

wrong alignment), the number of aligned records will drop even

when using value mappings. For an increasing number of assign-

ments, this makes it more and more unlikely to find states with

ID1 set to id that have lower costs than the optimal solution.

Therefore, we decide to use a modified priority queue that is

bounded to holdmax(1, ϱ − i + 1) search states at the same time

on the i-th level of the lattice, i.e. the level on which states have i
attributes assigned. If a level is full, it only accepts a new state if it

is not worse than all states on the same level. If an inserted state

is accepted, it drops the worst state on the same level to make

space. Polling the queue still returns the state with the lowest

costs independent of the level. In case of equal costs, it returns

states with a higher number of assignments first. Heuristically, it

is quite unlikely in practice to skip the optimal solution due to this

limitation. The most important decisions of the search happen

at the early levels. While the cost of search states with only one

or a few assignments might still be underestimated, a handful of

assignments is in practical problem instances usually enough to

identify the best foundation for inducing the remaining attribute

functions.

5 EVALUATION

To evaluate Affidavit, we have implemented the meta func-

tions described in Table 1 which include basic string and number

transformations. The experiments are meant to demonstrate the

core functionality and scalability of the framework. In practice,

one might encounter problem instances with functions not sup-

ported by our prototype. However, we decided to evaluate on

self-created problem instances based on these meta functions

because this gives us certainty about the correct transformations

and alignment as well as control over the degree of change and

noise. This way, we can judge the given explanations in-depth.

Furthermore, we can evaluate on the same table multiple times

with different transformations, giving a more trust-worthy result.

We describe our synthetic transformation of real-world datasets

in Section 5.1 and the evaluation protocol in Section 5.2. In Sec-

tion 5.3, we report about the quality of the produced explanations.

Finally, we evaluate in Section 5.4 how our algorithm scales with

the number of records and attributes of a problem instance.

Name Operation Parameters

Identity x 7→ x −

Uppercasing x 7→ Uppercase(x) −

Constant Value x 7→ c c

Addition (Numeric) x 7→ x + y y

Division (Numeric) x 7→ x/y y

Front Masking .{|m |} ◦ x 7→m ◦ x m

Front Char Trimming [c]∗ ◦ x 7→ x c

Prefixing x 7→ y ◦ x y

Prefix Replacement y ◦ x 7→ z ◦ x y, z

Value Mappings x 7→


y1 if x = x1

. . .

yn if x = xn

x1, . . . , xn,

y1, . . . ,yn

Table 1: Meta functions implemented in Affidavit. The

inverse variants of these functions are also supported, e.g.

suffixing in addition to prefixing. String concatenation is

denoted by ◦.

5.1 Datasets

We perform our experiments on the datasets
2
described in more

detail in [22] which have already been used to evaluate algorithms

for detecting functional dependencies. They cover a wide range

of topics (e.g., flight routes, chess game logs, web log data, etc.)

and feature different structural properties, both in terms of the

number of attributes (5 to 223) and records (100 to 250000).

For each dataset used in [22], we create ten problem instances

in three settings of varying difficulty. Each problem instance is

the result of choosing some records of the table as core, transform-

ing it with randomly sampled functions and using the remaining

records as noise for the source and target snapshots. A setting

consists of two parameters τ and η. The transformation percent-

age τ denotes the likelihood to sample a function different from

id for an attribute. This means, it can happen that every attribute

gets transformed. In this case, we reject the sampling and gen-

erate another one. To sample a function for an attribute that is

to be transformed, we randomly instantiate a function from the

meta functions described in Table 1. We make sure to generate

functions that fit the domain of the attribute, e.g. we do not use

uppercasing on numerical attributes. In the case of value map-

pings, we instantiate it as a random permutation of the source

values. These are potentially the hardest transformations to learn

due to the high number of parameters and can easily lead to a

wrong alignment when confused with id . The noise percentage η
refers to the fraction of source and target records that are outside

the core of the generated problem instance.

To create two table snaphots from a dataset, we first determine

the source and target noise by randomly selecting two record sub-

sets. We choose the size of the noise sets such that these records

make up a fraction η each of the resulting snapshots. The num-

ber of records in the resulting snapshots decreases to a fraction

1

η+1 of the dataset as the noise records are distributed over both

snapshots. The rest of the dataset records resembles the core of

our reference explanation. We create the core image by applying

the sampled transformations to the corresponding attributes of

these core records. We also apply the sampled transformations

2
https://hpi.de/naumann/projects/repeatability/data-profiling/fds.html

141

to the target noise as its data format should be similar to the core

image records. Finally, we add the the source and target noise to

the core and core image, respectively.

In addition to the random attribute transformations, we aug-

ment each dataset with a new attribute that contains a set of

running integers to simulate a simple primary key. We use the

same integers in both snapshots in two different permutations.

The resulting attribute results in a wrong record alignment if it

is used for blocking and is supposed to challenge Affidavit’s

ability to deal with transformed primary key attributes. If the

dataset already has attributes in which the fraction of distinct

attribute values is larger than 0.7, we remove these attributes for

our experiments as it might make the alignment too easy when

that attribute is not transformed. In Table 2, |A| denotes the

resulting number of attributes after these modifications. Dataset

attributes that are completely empty prior to the transformations

are ignored as well and do not count towards this number.

5.2 Evaluation Protocol

On each problem instance, we evaluate Affidavit with two

different configurations on a unix system with 24 cores at 2.6

GHz and 200GB memory. The first configuration usesH0 = Hs

(start states) determined with a maximum block size of 100000

for the overlap matching, β = 1 (branching factor) and ϱ = 1

(queue width). The second configuration usesH0 = H id
, β = 2

and ϱ = 5. Both configurations were run with α = 0.5, θ = 0.1

(core size estimation) and ρ = 0.95 (confidence).

We have chosen two configurations of Affidavit that resem-

ble different approaches of tackling the problem. Using overlap

sampling to begin the search from a promising start state follows

the spirit of unsupervised record linking and assumes that simi-

larities in the data can be leveraged a-priori to align the records

with sufficient accuracy for the induction of transformation func-

tions. The intention of this approach is a reduction of runtime

compared to a more exhaustive search. As such, we chose to push

further into that direction by limiting both branching factor and

queue width to see how well one can induce the remaining func-

tions when starting from an a-priori alignment. The resulting

configuration corresponds to a greedy search that induces one

attribute after another without backtracking. We compare this

configuration with a search that begins with the set of start states

H id
in which each state corresponds to the assumption that one

particular attribute was not changed. We use parameters that

allow the search to traverse a larger part of the search lattice

as this setting is supposed to be more robust in exchange for

runtime.

Table 2 describes the macro average over the ten problem

instances per dataset per setting with four numbers comprised

of runtime t , relative core size ∆core , relative costs ∆costs and
accuracy acc . The latter three numbers are computed by compar-

ing the resulting explanation Er es to the reference explanation

Er ef that correctly describes the attribute functions and sepa-

ration of core and noise records that were used to create the

problem instance. For example, ∆core = 0.8 means that Er es
aligned 20% less records than Er ef and ∆costs = 0.99 says that

the cost c(Er es) was 1% lower (better) than c(Er ef). Accuracy is

calculated by applying the learned functions F Er es to each core

record r ∈ SEr ef and comparing it with the correct transforma-

tion F Er ef (r). For computing accuracy, we ignore the artificial

primary key attribute that we added andmeasure it as the fraction

of cells in SEr ef that are correctly translated this way.

5.3 Result Quality

The results presented in Table 2 show thatH id
performs very

well in the setting (η = 0.3, τ = 0.3) as it learned to correctly

translate the core in every run, with minor deviations only in the

balance and nursery datasets. This is a hint that Affidavit can

be used with this setting out-of-the-box to produce high quality

explanations for problem instances with a reasonable amount of

noise and transformations. However, we see a definite decline in

accuracy on some datasets in the setting (η = 0.7, τ = 0.7). We at-

tribute it mainly to the high noise, as we can see on balance, chess

and nursery that Affidavit was able to produce explanations

cheaper than the reference, aligning a larger number of records

by including noise in the core. This shows that our search is

effective at minimizing costs but that our cost definition does not

reliably lead to the correct explanation when the majority of the

records are noise. Consequently, this effect is more pronounced in

tables with few attributes. Nevertheless, we see on some datasets

that Affidavit can still correctly learn transformations when

the majority of attributes has been changed. This holds especially

for tables with a large number of attributes which supports our

claim that at least a handful of unchanged attributes is needed to

correctly bootstrap the alignment in the beginning of the search

− but not necessarily more.

As expected, we find most of the runtimes ofHs
to be signif-

icantly lower. The performance in terms of accuracy is mostly

comparable to that ofH id
which shows that our use of overlap

sampling is a promising way to start the search. However, we can

see obvious gaps in performance on datasets such as chess, letter

or nursery. We manually investigated this and found out that

Hs
begins the search assuming that the artificial primary key

attribute was unchanged. As highlighted by ∆core = 0, this leads

to a trivial explanation because Affidavit was not able to find

functions for the remaining attributes to support anything but

an empty core. The reason for this behavior is the fact that these

tables contain only attributes with very few distinct values in re-

lation to the number of records. As such, the maximum block size

is exceeded when producing records pairs based on overlapping

attribute values. The exception is the maximally distinct attribute

of running integers which leads to a wrong a-priori alignment.

Increasing the maximum block size to the point where a correct

start state is found, we found the initial matching already took

longer than the total runtime of the more exhaustive configura-

tion. This shows that there are problem instances for which the

search fromH id
is preferable because it is independent of record

similarity and can correct wrong decisions by backtracking.

5.4 Scalability

Affidavit was designed with the goal of scaling to large problem

instances. In the context of database tables, this means that the

runtime should increase at most linearly with both a growing

number of records and attributes.

5.4.1 Row Scalability. We begin by experimentally measur-

ing the scalabilty of Affidavit to tables with a large number of

records. For this, we run the H id
configuration on scaled ver-

sions of a (η = 0.3, τ = 0.3) problem instance of flight-500k which

comes from the same source as flight-1k but by default has 500000

records and 20 attributes. To scale the problem instance to x% of

the original size, we use x% of the core records as well as x% of

the source and target noise. We then create the corresponding

core image from the scaled core. The sampled transformations

142

η = 0.3, τ = 0.3 η = 0.5, τ = 0.5 η = 0.7, τ = 0.7

Dataset |A| Records H0 t ∆core ∆costs acc t ∆core ∆costs acc t ∆core ∆costs acc

iris 6 150

Hs
0.12s 1.01 1 1 0.09s 0.99 1.01 0.99 0.10s 1.04 0.99 0.99

H id
0.69s 1.01 1 1 0.51s 1.02 0.99 1 0.38s 1.05 0.99 0.99

balance 6 625

Hs
0.23s 1.01 0.99 0.99 0.21s 0.96 1.02 0.92 0.19s 1.42 0.9 0.84

H id
0.82s 1.01 0.99 0.99 0.63s 0.93 1.03 0.9 0.79s 1.44 0.89 0.86

chess 8 28056

Hs
2.83s 0 2.11 0.43 2.16s 0.24 1.46 0.56 2.00s 0.45 1.16 0.6

H id
7.70s 1.03 0.96 1 6.37s 1.05 0.97 0.98 12.97s 1.24 0.93 0.86

abalone 9 4177

Hs
1.49s 0.98 1.02 1 1.01s 0.98 1.01 1 0.88s 0.82 1.04 0.89

H id
8.70s 1 1 1 3.44s 1 1 1 3.61s 0.97 1.01 1

nursery 10 12960

Hs
1.58s 0 2.27 0.51 1.36s 0.16 1.56 0.56 1.41s 0 1.32 0.48

H id
4.24s 1 1.01 0.98 5.26s 0.96 1.03 0.85 4.63s 1.55 0.83 0.87

bridges 10 108

Hs
0.05s 0.99 1.02 1 0.08s 0.96 1.04 0.99 0.08s 1.05 1.11 0.9

H id
0.43s 1 1 1 0.50s 1 1.01 0.99 0.69s 1.15 1.04 0.96

echo 10 132

Hs
0.07s 0.99 1.02 1 0.13s 0.93 1.06 0.98 0.11s 0.89 1.13 0.93

H id
0.79s 0.99 1.02 1 0.89s 0.93 1.04 0.99 0.95s 0.87 1.11 0.94

breast 11 699

Hs
0.39s 1.07 0.91 1 0.42s 1.21 0.85 0.99 0.42s 1.49 0.83 0.98

H id
1.02s 1.1 0.86 1 1.08s 1.26 0.81 1 1.37s 1.6 0.8 0.99

adult 15 48842

Hs
6.42s 0.96 1.06 1 5.57s 0.97 1.05 0.99 4.17s 0.99 1.03 0.97

H id
14.33s 1 1.01 1 19.91s 0.93 1.1 0.99 17.38s 1.1 0.99 0.98

ncvoter-1k 16 1000

Hs
0.58s 0.95 1.08 1 0.57s 0.99 1.01 1 0.85s 0.88 1.06 0.97

H id
1.81s 0.99 1.02 1 2.33s 0.98 1.01 1 3.50s 0.87 1.07 0.96

letter 18 20000

Hs
4.41s 0 2.65 0.86 5.04s 0.31 1.55 0.82 5.59s 0.68 1.12 0.79

H id
12.73s 1.02 0.97 1 10.78s 1.04 0.97 1 9.40s 1.14 0.95 1

hepatitis 19 155

Hs
0.11s 0.95 1.09 1 0.14s 0.97 1.02 1 0.19s 0.83 1.09 0.98

H id
0.79s 0.94 1.1 1 0.71s 0.96 1.03 1 0.76s 0.82 1.09 0.97

horse 28 368

Hs
0.23s 0.99 1.01 1 0.38s 0.89 1.09 0.99 0.56s 0.99 1.01 1

H id
1.19s 0.97 1.06 1 1.36s 0.94 1.05 0.99 1.82s 0.82 1.07 0.98

fd-red-30 31 250000

Hs
261.18s 1.03 1.06 1 190.49s 0.96 1.04 1 132.03s 0.98 1.01 1

H id
281.46s 1 1 1 342.02s 1 1 1 242.51s 1 1 1

plista 43 1000

Hs
1.70s 0.9 1.2 1 2.35s 0.89 1.1 0.99 2.52s 1.06 0.98 1

H id
4.34s 0.98 1.05 1 6.74s 1.01 0.99 1 8.28s 0.93 1.03 0.99

flight-1k 75 1000

Hs
2.67s 0.81 1.41 0.99 3.85s 0.68 1.3 0.98 4.82s 0.69 1.13 0.98

H id
14.98s 1 1.01 1 26.58s 0.95 1.05 1 35.89s 0.9 1.05 0.99

uniprot 182 1000

Hs
2.95s 0.45 2.23 0.99 2.80s 0.33 1.65 0.99 3.96s 0.77 1.1 1

H id
49.52s 1 1.01 1 40.55s 1 1.01 1 33.70s 0.85 1.08 1

Table 2: Experimental results of two Affidavit configurationsHs
andH id

on problem instances of varying difficulty.

stay the same. However, we remove value mapping entries de-

fined over attribute values that do not exist anymore in the scaled

version. Otherwise the costs of the reference explanation would

be unnecessarily high. The resulting run times in Figure 5 con-

firm that Affidavit scales linearly in the number of records.

Moreover, it was able to produce the reference explanation in

every run on these problem instances.

5.4.2 Attribute Scalability. Attribute scalability is difficult to

assess experimentally because removing attributes from a prob-

lem instance can completely alter the difficulty. However, be-

cause of the modified priority queue, we can give a rough the-

oretical upper-bound in ϱ for the worst-case complexity that

suggests linear scalability in the number of attributes. For a fixed

ϱ, Affidavit begins the search with ϱ search states with one

assignment each. Ignoring duplicate elimination, in the absolute

worst-case, each of these search states and its (direct and indirect)

children are visited in depth-first order. Assuming ϱ < |A|, this
results in visiting level ϱ with O(ϱ!) states that are each followed

by |A| − ϱ extensions to produce a full assignment which gives

|A|O(ϱ!) −ϱO(ϱ!) total extensions. In the case ofH0 = H ∅ , this

number is at most one larger, forH0 = Hs
it is smaller.

Technically, there are operations inside each extension that

are not constant in the number of attributes, leading to a polyno-

mial complexity. However, during the extension of a state, the

runtime is dominated by the induction of functions for a fixed

attribute. As the number of attributes for which this is performed

is bounded by β , a linear runtime increase with a growing num-

ber of attributes should be the result in practice. The normalized

runtimes in Figure 6 support this expectation. The resulting data

is very noisy though for a low number of attributes which can be

explained by the fact that individual differences in difficulty of

the datasets have a proportionally bigger impact on the runtime

than the difference in the already low number of attributes.

143

20 40 60 80 100

200

400

600

Scaling Factor [%]

Runtime [s]

Figure 5: Runtimes on a (η = 0.3, τ = 0.3) problem instance

of flight-500k scaled to different numbers of records.

6 CONCLUSIONS AND FUTUREWORK

Motivated from an industrial use case in the domain of data ex-

change, we found a lack of solutions for reverse-engineering up-

dates of relational tables without knowledge of the record align-

ment. In particular, this pertains snapshots of tables with unspec-

ified or modified primary keys. The resulting task requires record

linking and function induction at the same time. To the best of

our knowledge, we presented the first theoretical framework that

explores both problems at once. As there are no straight-forward

criteria that define the best solution, we suggested to measure the

quality of a solution on the basis of minimum description length.

While we could prove that the resulting optimization problem is

NP-hard, we proposed an algorithm based on a best-first search

to solve practical instances of the problem. We implemented

a prototype of our algorithm called Affidavit and evaluated

it on several problem instances of varying difficulty based on

real-world datasets. The results confirmed that Affidavit scales

linearly with the number of records and attributes. Moreover,

we have identified a parameter configuration that can be used

out-of-the-box to reliably produce correct explanations under

practical levels of noise and transformations of the data. As our

algorithm is completely unsupervised, this setting can be used to

compare snapshots of databases with many tables without prior

linking or labeling of the data by hand.

In practical problem instances, themeta functions implemented

so far, would likely not be versatile enough to explain all data

transformations. In its current form, Affidavit is most usable

by administrators with domain knowledge about which meta

functions commonly occur in their domain. They are able to

customize Affidavit by adding further meta functions via imple-

mentation of a small Java interface. In FutureWork, the prototype

could be updated to support a richer set of functions by default.

For instance, we recently added support for date conversions.

Furthermore, it would be interesting to integrate a function cor-

pus like it was done in TDE [15] instead of manually extending

the supported functions.

Future work could also investigate a problem variant without

knowledge of the schema alignment. Consequently, table modi-

fications like attribute renaming, merging or splitting could be

supported. We think the insights and methods of this work would

be valuable for such a task as well.

REFERENCES

[1] ApexSQL. 2019. Data Diff. Retrieved March 25, 2019 from https://www.

apexsql.com/sql-tools-datadiff.aspx

[2] Patricia C. Arocena, Boris Glavic, and Renee J. Miller. 2013. Value Invention

in Data Exchange. In Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data (SIGMOD ’13). ACM, New York, NY, USA,

157–168. https://doi.org/10.1145/2463676.2465311

[3] Manuel Atencia, Jérôme David, and Jérôme Euzenat. 2014. Data interlinking

through robust linkkey extraction.. In ECAI. 15–20.

[4] Mikhail Yuryevich Bilenko. 2006. Learnable similarity functions and their

application to record linkage and clustering. Ph.D. Dissertation.

30 63 109 182

2

4

6

·10−2

Attributes

Runtime [s/record]

Figure 6: Runtimes ofH id
taken from Table 2 for the set-

ting (η = 0.3, τ = 0.3) normalized by the number of records

of each dataset in relation to the number of its attributes.

[5] Peter Christen. 2012. Data matching: concepts and techniques for record linkage,

entity resolution, and duplicate detection. Springer Science & Business Media.

[6] WilliamGemmell Cochran. 1977. Sampling Techniques (Third Edition). (1977).

[7] Australian Software Company. 2019. SQL Delta. Retrieved March 25, 2019

from http://www.sqldelta.com/

[8] Spectral Core. 2019. Replicator. Retrieved March 25, 2019 from https:

//www.spectralcore.com/replicator

[9] devart. 2019. Data Compare. Retrieved March 25, 2019 from http://www.

devart.com/dbforge/sql/datacompare/

[10] Ivan P Fellegi and Alan B Sunter. 1969. A theory for record linkage. J. Amer.

Statist. Assoc. 64, 328 (1969), 1183–1210.

[11] Georg Gottlob and Pierre Senellart. 2010. Schema mapping discovery from

data instances. Journal of the ACM (JACM) 57, 2 (2010), 6.

[12] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using

Input-output Examples. In Proceedings of the 38th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM,

New York, NY, USA, 317–330. https://doi.org/10.1145/1926385.1926423

[13] Sumit Gulwani, William R Harris, and Rishabh Singh. 2012. Spreadsheet data

manipulation using examples. Commun. ACM 55, 8 (2012), 97–105.

[14] Sumit Gulwani, Mikaël Mayer, Filip Niksic, and Ruzica Piskac. 2015. StriSynth:

Synthesis for Live Programming. In Proceedings of the 37th International Con-

ference on Software Engineering - Volume 2 (ICSE ’15). IEEE Press, Piscataway,

NJ, USA, 701–704. http://dl.acm.org/citation.cfm?id=2819009.2819142

[15] Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek Narasayya, and Surajit

Chaudhuri. 2018. Transform-data-by-example (TDE): An Extensible Search

Engine for Data Transformations. Proc. VLDB Endow. 11, 10 (June 2018),

1165–1177. https://doi.org/10.14778/3231751.3231766

[16] Robert Isele and Christian Bizer. 2012. Learning expressive linkage rules

using genetic programming. Proceedings of the VLDB Endowment 5, 11 (2012),

1638–1649.

[17] Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan,

Jeffrey R Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton,

et al. 2016. Magellan: Toward building entity matching management systems.

Proceedings of the VLDB Endowment 9, 12 (2016), 1197–1208.

[18] Oliver Lehmberg, Alexander Brinkmann, and Christian Bizer. 2017. WInte.R -

a web data integration framework. In Proceedings of the ISWC 2017 Posters &

Demonstrations and Industry Tracks co-located with 16th International Semantic

Web Conference (ISWC 2017), Vol. 1963. RWTH.

[19] Mikael Mayer. 2017. String-Solver. Retrieved April 18, 2019 from https:

//github.com/MikaelMayer/StringSolver

[20] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon

Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra.

2018. Deep Learning for Entity Matching: A Design Space Exploration. In

Proceedings of the 2018 International Conference on Management of Data (SIG-

MOD ’18). ACM, New York, NY, USA, 19–34. https://doi.org/10.1145/3183713.

3196926

[21] George Papadakis, Leonidas Tsekouras, Emmanouil Thanos, George Gian-

nakopoulos, Themis Palpanas, and Manolis Koubarakis. 2018. The return of

jedAI: end-to-end entity resolution for structured and semi-structured data.

Proceedings of the VLDB Endowment 11, 12 (2018), 1950–1953.

[22] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer

Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Naumann. 2015. Func-

tional dependency discovery: An experimental evaluation of seven algorithms.

Proceedings of the VLDB Endowment 8, 10 (2015), 1082–1093.

[23] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for

Inductive Program Synthesis. In Proceedings of the 2015 ACM SIGPLAN In-

ternational Conference on Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA 2015). ACM, New York, NY, USA, 107–126. https:

//doi.org/10.1145/2814270.2814310

[24] Redgate. 2019. SQL Data Compare. Retrieved March 25, 2019 from http:

//www.red-gate.com/products/SQL_Data_Compare/index.htm

[25] Jorma Rissanen. 1983. A Universal Prior for Integers and Estimation by

Minimum Description Length. The Annals of Statistics 11, 2 (1983), 416–431.

http://www.jstor.org/stable/2240558

[26] BoWu and Craig A. Knoblock. 2015. An Iterative Approach to Synthesize Data

Transformation Programs. In Proceedings of the 24th International Conference

on Artificial Intelligence (IJCAI’15). AAAI Press, 1726–1732. http://dl.acm.org/

citation.cfm?id=2832415.2832489

144

	Explaining Differences Between Unaligned Table SnapshotsManuel Fink, Christian Meilicke, Heiner Stuckenschmidt

