
In-DBMS Sampling-based Sub-trajectory Clustering

Nikos Pelekis
Dept. of Statistics and Ins.

Science
University of Piraeus

Piraeus, Greece
npelekis@unipi.gr

Panagiotis Tampakis
Dept. of Informatics
University of Piraeus

Piraeus, Greece
ptampak@unipi.gr

Marios Vodas
Dept. of Informatics
University of Piraeus

Piraeus, Greece
mvodas@unipi.gr

Costas Panagiotakis
Dept. of Business Administration

TEI of Crete
Agios Nikolaos, Crete, Greece
cpanag@staff.teicrete.gr

Yannis Theodoridis
Dept. of Informatics
University of Piraeus

Piraeus, Greece
ytheod@unipi.gr

ABSTRACT
In this paper, we propose an efficient in-DBMS solution for the
problem of sub-trajectory clustering and outlier detection in
large moving object datasets. The method relies on a two-phase
process: a voting-and-segmentation phase that segments
trajectories according to a local density criterion and trajectory
similarity criteria, followed by a sampling-and-clustering phase
that selects the most representative sub-trajectories to be used as
seeds for the clustering process. Our proposal, called S2T-
Clustering (for Sampling-based Sub-Trajectory Clustering) is
novel since it is the first, to our knowledge, that addresses the
pure spatiotemporal sub-trajectory clustering and outlier
detection problem in a real-world setting (by ‘pure’ we mean
that the entire spatiotemporal information of trajectories is
taken into consideration). Moreover, our proposal can be
efficiently registered as a database query operator in the context
of extensible DBMS (namely, PostgreSQL in our current
implementation). The effectiveness and the efficiency of the
proposed algorithm are experimentally validated over synthetic
and real-world trajectory datasets, demonstrating that S2T-
Clustering outperforms an off-the-shelf in-DBMS solution
using PostGIS by several orders of magnitude.

CCS Concepts
• Information systems ➝ Information systems applications ➝
Data mining ➝ Clustering • Information systems ➝ Information
systems applications ➝ Spatio-temporal systems

Keywords
Mobility data mining; Sub-trajectory clustering; Trajectory
segmentation; Trajectory sampling; MOD engines

1. INTRODUCTION
Knowledge discovery in mobility data [11][29][46][42] exposes
patterns of moving objects exploitable in several fields. For
instance, in both mature (transportation, climatology, zoology,
etc.) and emerging domains (e.g. mobile social networks),
scientists work with mobility-aware (mostly GPS-based) data,
resulting in trajectories of moving objects stored in Moving
Object Databases (MOD). Although during the recent years,
there have been made significant achievements in the field
[11][29][46][42], ongoing research calls for new methods aiming
at deeper comprehension and analysis of mobility. For instance –
and acting as motivation of this work – enhancing MOD
engines, such as Secondo [1] and Hermes [31], with data mining
operators is challenging [11][29] and is subject to the indexing
extensibility interface of the corresponding ORDBMS on which
they are implemented (see GiST [14][20], for example).

In the literature of trajectory-based mobility data mining, one
can identify several types of mining models used to describe
various collective behavioral patterns. As such, there exist works
that identify various types of clusters of moving objects
[10][26][21][32] and variations [4][17][22][44]. Related line of
research is the one that builds representatives out of a trajectory
dataset, either by generating artificial data [21][32] or by
sampling the dataset itself [33][28].

Focusing on trajectory clustering, the majority of related work
proposes a variety of distance functions, utilized by well-known
clustering algorithms to identify collective behavior among
whole trajectories [26][32][30]. Α parallel line of research tries
to discover local patterns in MOD, i.e. patterns that are alive
only for a portion of moving objects’ lifespan: some of those
techniques simplify the given trajectories, however focusing on
the spatial and ignoring the temporal dimension, such as
TRACLUS [21], which is considered as the current state-of-the-
art sub-trajectory clustering technique.

Figure 1 illustrates a working example that motivates our
research: a dataset consisting of four trajectories, T1, …, T4. (In
this figure, the time dimension is ignored for visualization
reasons.) Among the sub-trajectories that compose the dataset,
our goal is to identify two clusters (in red and blue, respectively)
and five outliers (in black). In particular, the first (red) cluster
consists of the tails of trajectories T1, T2 and T3, the second
(blue) cluster consists of the main bodies of trajectories of
trajectories T1, T2, T3 and T4, while the rest portions of the
trajectories (namely, the tail of T4 and all four heads) are
recognized as outliers.

© 2017, Copyright is with the authors. Published in Proc. 20th
International Conference on Extending Database Technology (EDBT),
March 21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on
OpenProceedings.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0

Industrial and Applications Paper

Series ISSN: 2367-2005 632 10.5441/002/edbt.2017.84

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.84

(a)

(b)

Figure 1. (a) a MOD of 4 trajectories; (b) the MOD split in 2
clusters (in red and blue) and 5 outliers (in black).

Such clustering sounds impossible to be achieved by
TRACLUS. This is due to the inherent design of that algorithm
that, as delineated by the authors, discovers linear patterns only
and fails to identify complex (e.g. snake-like) patterns like the
ones that appear in Figure 1. In other words, when applied to this
dataset, TRACLUS would eventually discover five to six linear
clusters (one new cluster each time the snake-like motion
changes direction). On the contrary, we wish to be able to follow
these direction changes without assuming underlying constraints
on the complexity of the shape of sub-trajectories found nor
posing geometrical and temporal constraints, in terms of
algorithm parameters, as those required by related work, e.g.
[4][17]. For those having experimented with those techniques,
parameters like disc radius, minimum duration and cardinality of
patterns, are hard to be set in advance. For instance, a small
detour of an object belonging to one of the clusters, would
probably result in either the lack of those patterns or the
formation of smaller ones.

Inspired by the above, in this paper we study an important
problem in the mobility data management and exploration
domain [29], that of sub-trajectory clustering and outlier
detection. Informally, we aim at a methodology that builds
clusters around (and detects outliers far away from)
appropriately selected sub-trajectories that preserve the
properties and the mobility patterns hidden in a MOD, as much
as possible. Towards this goal, we introduce a novel clustering
methodology exploiting on the voting, segmentation and
sampling concepts proposed in [28]. More specifically, we
devise an efficient voting process that allows us to describe the
‘representativeness’ of a trajectory in a MOD as a smooth
continuous descriptor [28]. Using these descriptors (their
‘representativeness’), we result in the automatic segmentation of
trajectories into ‘homogenous’ sub-trajectories. Next, a
deterministic sampling procedure selects only those sub-
trajectories that optimally describe the entire MOD. Finally, we
devise a method for sub-trajectory clustering driven by the
aforementioned representative sample of sub-trajectories.

The design of such a clustering methodology is subject to two
indispensible requirements that challenged our research: we seek
for (a) an efficient and scalable solution that (b) should be able
to operate on a real-world DBMS rather than being an ad hoc
implementation using a sophisticated access method. This is in

order for the proposal to be practical and useful in real-world
application scenarios, where concurrency and recovery issues are
taken into consideration. Both requirements call for a MOD
engine; therefore, our proposal is implemented as a query
operator in Hermes [16], implemented on top of PostgreSQL. To
our knowledge, it is the first time in the literature that GiST is
used to index trajectory-based mobility data for the above
purposes. Therefore, we argue that this is an important step
towards bridging the gap between MOD management and
mobility data mining, as state-of-art approaches [25][40][12]
could make use of the efficiency and the advantage of our
proposal to execute in-DBMS clustering via simple SQL.

Our contribution is summarized below:

• we formulate the problem of sub-trajectory clustering (and
outlier detection) in a MOD as an optimization problem;

• we propose an efficient solution, the so-called S2T-
Clustering algorithm, driven by a deterministic sampling
methodology, with the number of clusters being
automatically detected by the algorithm;

• in order to speed up clustering tasks in MOD systems, we
implement S2T-Clustering as a query operator over an
expensible DBMS, namely PostgreSQL, based on access
methods that exploit on the GiST indexing extensibility
interface. (For validation purposes, we also implement S2T-
Clustering using PostGIS, an off-the-shelf in-DBMS
alternative solution.)

The rest of the paper is organized as follows: Section 2 presents
related work and Section 3 formulates the problem of sub-
trajectory clustering (and outlier detection). Sections 4 and 5
present our proposal and its in-DBMS realization, respectively.
Experimental results that evaluate S2T-Clustering using synthetic
and real trajectory datasets from urban and vessel traffic
domains are provided in Section 6. Section 7 concludes the
paper.

2. RELATED WORK
During the past decade, the field of MOD has emerged as a
strong candidate for the efficient management of trajectory data
exploiting on the robust architecture of extensible DBMS;
Secondo [1] and Hermes [31] are typical examples of this
paradigm. Nevertheless, extending a DBMS does not reduce the
complexity of understanding their concurrency and recovery
protocols, and as such, does not reduce the implementation effort
of an external access method when compared to a built-in one,
assuming that identical levels of concurrency, robustness and
integration are desired [20]. Actually, complexity is the main
reason that almost none of the numerous access methods for
mobility data that have been proposed in the literature,
[34][36][13] to name but a few representatives, have been
integrated in a real Object-Relational DBMS. Even GiST [14]
that has been proposed to serve access method extensibility has
not been used so far in the context of mobility data. Mainly due
to the above reasons, although a lot of research has been carried
out in the field of MOD regarding efficient indexing and query
processing, almost no related work exists in the field of mobility
data mining in-DBMS [29].

Focusing on plain (i.e. outside DBMS) implementations, the
common building block of trajectory clustering approaches is the
use of different similarity functions as the means to group
trajectories into clusters. Such a similarity function is proposed
in [8] for the efficient processing of most-similar trajectory
(MST) queries. T-OPTICS [26] incorporates a similar distance
function into the well-known OPTICS [3]. In [5], probabilistic
techniques based on EM algorithm are proposed for clustering
(short) trajectories using regression mixture models. In [32], the

T2

T3 T4

T1

T2

T3 T4

T1

633

authors propose CenTR-I-FCM, a variant of Fuzzy C-means
(FCM) for MOD, while in [39] introduce the concept of
uncertain group pattern. Both approaches propose specialized
similarity functions having as goal to tackle the inherent
uncertainty of trajectory data. In [8], the authors introduced the
vector field k-means trajectory clustering technique whose
central idea is to use vector fields to induce a notion of similarity
between trajectories, letting the vector fields themselves define
and represent each cluster. In [41], a multi-kernel-based
estimation process leverages both multiple structural information
within a trajectory and the local motion patterns across multiple
trajectories in order to face challenges in case of large variations
within a cluster and ambiguities across clusters. In [15], the
Clustering and Aggregating Clues of Trajectories (CACT)
pattern mining framework has been proposed for discovering
trajectory routes that represent the frequent movement behaviors
of a user. The approach exploits on a similarity measure for
trajectories with silent durations (i.e., the time durations when no
data points are available to describe the movements of users),
which is used in a clue-aware clustering algorithm, where clues
are some spatially and temporally close data points that capture
certain common partial movement behaviors of the user.

TRACLUS [21] is a partition-and-group framework for
clustering 2D trajectories (i.e. it ignores the time dimension),
enabling the grouping of similar sub-trajectories, according to a
trajectory partitioning step that uses the minimum description
length principle. In its core, it uses a variant of DBSCAN [7],
operating on the partitioned directed line segments. This work
was the first to tackle the problem of identifying sub-patterns in
trajectory data; however, it presents certain limitations (as
discussed earlier) under the prism of the specifications we posed.
In [24] the authors introduce an incremental trajectory clustering
that exploits on TRACLUS.

Another line of research includes works that aim to discover
several types of collective behavior among moving objects,
forming a group of objects that moves together for a certain time
period, such as moving clusters [18], flocks [4], convoys [17],
swarms [23], traveling companion [36][37], gathering [44][45],
and platoon [22] patterns. Although these approaches provide
lucid definitions of the mined patterns, their main limitation is
that they search for special collective behaviors, defined by
respective parameters.

Our approach also finds commonalities to well-known
approaches of clustering algorithms of point (vector) data
[43][35], which sample the dataset at a pre-processing step and
then perform the core clustering process aiming at high
efficiency. However, these vector-based algorithms are not
applicable to MOD due to the complex structure and properties
of mobility data. Moreover, there is an essential difference
between those techniques and our approach: while those mainly
rely on random sampling, in our approach the clustering is
driven by a sample resulted by an optimization formula, thus
leading to a deterministic solution of the sub-trajectory
clustering problem.

As already discussed, plain (sub-)trajectory clustering
implementations leave concurrency and recovery outside the
scene of requirements, as such setting limitations to their usage
in real-world applications. In contrast, in this work we provide
efficient in-DBMS solutions ready to be used by domain experts
maintaining their volumes of data in state-of-the-art DBMS.

3. PROBLEM FORMULATION
Let D = {T1, T2,…, TN} be a dataset consisting of N trajectories
of moving objects (we assume that the objects move in the xy-
plane). Let pk,i = (xk,i, yk,i, tk,i) be the i-th sampled point, i ∈ {1, 2,

…, Lk} of trajectory Tk, k ∈{1, 2, …, N}, where Lk denotes the
length of Tk (i.e. the number of points it consists of), the pair
(xk,i, yk,i) and tk,i denote the 2D location and the time coordinate
of point pk,i, respectively. We consider linear interpolation
between two successive sampled points, pk,i and pk,i+1, so that
each trajectory turns out to be a sequence of 3D line segments,
ek,i = (pk,i, pk,i+1), of cardinality Lk – 1, where each segment
represents the continuous movement of the object during
sampled points. Table 1 summarizes the definitions of the
symbols used in this paper.

Table 1. Table of Symbols
Symbol Definition

D A dataset, D = {T1, … , TN}, of N trajectories
Tk k-th trajectory of D
pk,i i-th point of trajectory Tk, pk,i = (xk,i, yk,i, tk,i)
Lk Number of points forming trajectory Tk
ek,i i-th (3D) line segment of Tk, ek,i = (pk,i, pk,i+1)
LPk Number of sub-trajectories partitioning Tk
Pk Set of the sub-trajectories partitioning Tk
Pk,i i−th sub-trajectory of trajectory Tk
P Set of sub-trajectories in dataset D, P = ∪Pk
Vk Voting descriptor of trajectory Tk
V Set of voting descriptors in dataset D, V = ∪Vk

VPk,i Voting descriptor of sub-trajectory Pk,i
Nlk,i Normalized lifespan descriptor of sub-trajectory Pk,i w.r.t.

lifespan of Tk
C Clustering of sub-trajectories in M clusters, C = {C1, …,

CM}, Ci ⊂ P, Ci ∩ Cj = ∅, i ≠ j
S Sampling set of representatives, S = {R1,..., RM}, S ⊂ P,

with sub-trajectory Rj representing cluster Cj
M Cardinality of C (and S)

SR(S) Representativeness function of S
V(Pk,i, Rj) Voting descriptor of Pk,i ∈ P−S w.r.t. sub-trajectory Rj ∈

S
Out Set of outlier sub-trajectories, Out = P−C

Informally, the objective of sub-trajectory clustering is to
partition trajectories into sub-trajectories and then form groups
of similar ones, while at the same time, separating those that
cannot fit in a group (called outliers). However, searching for
entire trajectory similarity may be misleading since real-world
trajectories may be long and consisting of heterogeneous
portions of movement [6]. On the other hand, clustering at the
sub-trajectory level sounds much more effective.
Rephrasing the previous discussion, if we consider trajectory Tk
as a sequence of successive sub-trajectories Pk,i of arbitrary
length (Pk,i is the i-th sub-trajectory of trajectory Tk), the
objective of sub-trajectory clustering (and outlier detection) is to
partition sub-trajectories into groups of similar ones and isolate
the ones (called outliers) that are very dissimilar from the others.
To achieve this, assuming a cluster is represented by its
representative (or centroid) sub-trajectory, we define clustering
as an optimization problem where the optimization criterion is to
maximize the following expression:

𝑆𝑅𝐷 = 𝑉 𝑃!,! ,𝑅!
!!,!∈! !!!!∈!

 (1)

The formula to be maximized, namely Sum of
Representativeness of Dataset (SRD), uses set S = {R1, ..., RM}
of the representative sub-trajectories and the corresponding
clusters C(Rj) built around them, and is calculated upon
𝑉 𝑃!,! ,𝑅! , i.e. the mean similarity (or average number of votes,
according to our terminology) of sub-trajectory Pk,i with respect
to Rj.

Given the above formulation, the problem in hand is formalized
as follows:

634

Problem 1 (Sub-Trajectory clustering in a MOD): Assuming a
dataset D = {T1, T2,…, TN} consisting of N trajectories, where
each of them is considered as a sequence Pk of successive sub-
trajectories of arbitrary length, the problem of sub-trajectory
clustering is defined as the task of partitioning the set P = ∪Pk
of sub-trajectories into (i) a clustering C = {C1, …, CM} of M
clusters, Ci ⊂ P, Ci ∩ Cj = ∅, i ≠ j (i.e. hard clustering), where
each cluster is represented by its representative sub-trajectory Rj
∈ P, j = 1, …, M, and (ii) a set Out of outliers, by maximizing
Eq. (1). ∎

It is important to note that maximizing Eq. (1) is not trivial at all
since one has to define, among others, (i) the criterion according
to which a trajectory is segmented into sub-trajectories, (ii) the
technique for selecting the set of the most representative sub-
trajectories, (iii) whose cardinality M is unknown, to name but a
few challenging sub-problems.

4. THE S2T-CLUSTERING ALGORITHM
In this section, we propose a solution for Problem 1 defined
above, which is called S2T-Clustering (for Sampling-based Sub-
Trajectory Clustering). Our proposal (listed in Algorithm 1)
consists of two phases: first, we apply the so-called
Neighborhood-aware Trajectory Segmentation (aka NaTS)
method that is able to detect homogenized sub-trajectories
applying trajectory voting and segmentation; then, we apply the
so-called Sampling, Clustering, and Outlier detection (aka
SaCO) method that selects the most representative among the
sub-trajectories detected in the previous phase in order for them
to serve as the seeds of the clusters to be produced.

Algorithm 1. S2T-Clustering
Input: trajectory dataset D = {T1 , T2, … , TN }, voting influence
σ, threshold ε
Output: sampling set S, clustering C, set of outliers Out.
 // Initialization phase
1. Reset set V of voting descriptors in D
 // NaTS phase (Neighborhood-aware Trajectory

Segmentation)
2. for each trajectory Tk ∈ D do
3. Update set V of voting descriptors in D w.r.t. Tk and σ

4. Partition Tk in set Pk of sub-trajectories w.r.t. Vk
 // SaCO phase (Sampling, Clustering, and Outlier

detection)
5. Find sampling set S consisting of the M most

representative sub-trajectories
6. Using set S and threshold ε, partition P = ∪Pk in a set C of

M clusters and a set Out of outliers
7. return (S, C, Out)

It is important to note that the number M of representatives
(hence, the number of clusters) is not user-defined; rather, it is
the algorithm that estimates it (in Line 6). As for parameters σ
and ε that appear in Algorithm 1 (Line 3 and Line 7,
respectively), σ controls how fast the voting influence decreases
with distance, whereas ε acts as a lower bound threshold of
similarity between representative and non-representative sub-
trajectories, thus deciding whether a (non-representative) sub-
trajectory will be flagged as outlier or not. These parameters will
be explained in detail in the subsections that follow.

4.1 NaTS: Neighborhood-aware Trajectory
Segmentation
We extend the concept of density-biased sampling (DBS), which
was originally proposed for point datasets [18], to be applied to
trajectory segments. According to DBS, the local density for
each point of a set is approximated by the number of points in a
surrounding region, divided by the volume of the region. In our
case, adopting a voting process of trajectories in MOD as

defined in [28], we define the representativeness of a 3D
trajectory segment ek,i of a given trajectory Tk to be the number
of ‘votes’ this segment collects from other trajectories w.r.t. their
mutual distance. The overall voting collected by a segment (a
value ranging from 0 to N) has the physical meaning of the
number of other trajectories that co-exist with the trajectory that
segment belongs to, both spatially and temporally. Intuitively,
the voting results can be post-processed in order for us to be able
to identify homogeneous (w.r.t. representativeness) sub-
trajectories.

Formally, let Vk be the voting trajectory descriptor along the line
segments of Tk, consisting of a series of Lk–1 components. Each
component Vk,i of this vector corresponds to the number of votes
(“representativeness” value) that segment ek,i, i ∈ {1, …, Lk–1},
collected by the segments of the other trajectories. This
representativeness value is based on a distance function d(ek,i, ej)
between two line segments ek,i and ej, k ≠ j. This distance
function is defined as the definite integral of the time-varying
distance Dj(t) between the two segments during their common
lifespan [tj,start, tj,end), following the approach proposed in [8]:

𝑑 𝑒!,! , 𝑒! = 𝐷! 𝑡

!!,!"#

!!,!"#$"

𝑑𝑡 (2)

As Dj follows a trinomial, this integral is efficiently
approximated by the Trapezoid Rule:

𝐷! 𝑡!,!"#$" + 𝐷! 𝑡!,!"# ∙ 𝑡!,!"#$" − 𝑡!,!"# 2

and can be computed in O(1), as it has been already proved in
[8].

Given the above distance function, the representativeness value
is provided by the following voting function.

𝑉 𝑒!,! , 𝑒! = 𝑒!
!! !!,!,!!

!∙!! (3)

As already mentioned, parameter σ > 0 controls the “voting
influence”, i.e. how fast 𝑉 𝑒!,! , 𝑒! decreases with distance. It
also holds that 𝑉 𝑒!,! , 𝑒! is bounded in [0, 1]: it gets value 1
when the distance of the two segments is zero (i.e. the segments
are identical) while very high distance results in voting value
close to zero.

After the voting process takes place, the trajectory segmentation
process gets into action. The goal of this step is to partition each
trajectory into homogenous representativeness sub-trajectories,
irrespectively of their shape complexity (recall the discussion
about the snake-like trajectories in Figure 1). In order to perform
neighbourhood-aware trajectory segmentation, we adopt the
Trajectory Segmentation Algorithm (TSA), proposed in [28]. In
other words, the result of the voting process is given as input to
TSA, which provides as output the sub-trajectories along with
their voting descriptors. More technically, let Pk,i, i ∈ {1, …,
LPk}, be the i-th sub-trajectory of Tk, where LPk denotes the
number of partitions of Tk. Then, VPk,i is the voting descriptor
formed by the representativeness values of the segments that
belong to Pk,i. In other words, VPk,i shows how many trajectories
find themselves to be similar to Pk,i. The interested reader is
referred to [28] for the technical details of TSA.

Back to the example of Figure 1, the NaTS phase results in
segmenting trajectory T1 into three sub-trajectories (coloured
red, blue, and black, respectively, in Figure 1(b)); similar for the
other trajectories of the dataset. Thus, the overall result of this
phase consists of 12 sub-trajectories along with their voting
descriptors.

635

4.2 SaCO: Sampling, Clustering, and
Outlier detection
As already mentioned, trajectory segmentation aims to provide
homogeneous sub-trajectories according to their
representativeness, i.e. with respect to their local similarity with
other trajectories. On the other hand, the goal of sub-trajectory
clustering is to partition the dataset into groups (clusters) of
similar sub-trajectories. Therefore, in our proposal, we first
select the appropriate sampling set S and then tackle the problem
of clustering according to the following idea (quite popular, also
in traditional data clustering): each sub-trajectory in the
sampling set is considered to be a representative around which a
cluster will be formed. So, our goal is that the sampling set
should contain highly voted trajectories of the MOD which, at
the same time, would cover the 3D space occupied by the entire
dataset as much as possible in order for Eq. (1) to be maximized.

In order to achieve this goal, we propose the sampling to be done
by maximizing a formula (see Eq. (4)) that would take into
account the votes VPk,i collected by each sub-trajectory.
Formally, let S denote the sampling set, so that Sk,i is one, if sub-
trajectory Pk,i belongs to the sampling set, and zero otherwise.
According to the previous discussion, the number of sub-
trajectories that are represented in the sampling set S, should be
maximized. This is formalized in Eqs. (4)-(6).

𝑆𝑅(𝑆) = 𝑆!,! ∙ 𝑆𝑅!"#$(𝑘, 𝑖)
!"!

!!!

!

!!!
 (4)

where

𝑆𝑅!"#$(𝑘, 𝑖) = 𝑉𝑃!,!,!! ∙ 𝑁𝑙!,!,!

|!!,!|

!!!

∙ (1 − 𝑉𝑃!,!,!!) (5)

𝑁𝑙!,!,! = 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑒!,!,! 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑇! (6)

More precisely, SRgain(k,i) expresses the gain in SR(S) if we add
Pk,i in S, |Pk,i| denotes the number of line segments of Pk,i, 𝑉𝑃!,!,!!
and 𝑉𝑃!,!,!! denote the votes in P and the votes in S, respectively,
of the j-th line segment of Pk,i and are calculated according to
Eq. (3). As for Nlk,i, it denotes the normalized lifespan descriptor
of sub-trajectory Pk,i w.r.t. lifespan of Tk, namely Nlk,i,j is the
fraction of the duration of the j-th line segment of Pk,i with
respect to whole lifespan of Tk.

For this purpose, we follow the ideas included in the Sub-
trajectory Sampling Algorithm (SSA), proposed in [28].
However, SSA is not appropriate for an efficient in-DBMS
solution, which is one of our main objectives. Thus, we keep the
main characteristics of the algorithm and adapt it in order to
meet our specifications (described in detail in Section 5.2). In
principle, the input of sampling algorithm is the set P of all sub-
trajectories Pk, the set voting VPk,i and the normalized lifespan
Nlk,i vectors of these sub-trajectories, all provided by the NaTS
phase. The output of the sampling step is the sub-trajectory
sampling set S consisting of M samples. Back to the example of
Figure 1, this step results in selecting two sub-trajectories
(samples), one out of the three red and one out of the four blue
sub-trajectories.

As already mentioned, the population M of the samples is not
user-defined; in contrary, it is dynamically estimated by SSA
algorithm. As such, it provides a deterministic solution, in
contrast to other probabilistic [18][27] or user-supervised,
explorative sampling techniques [2].

What follows is the clustering step, which takes into account the
sampling set S and the vector of votes (i.e. representativeness)
V(Pk,i, Rj) between, on the one hand, the non-representative Pk,i
∈ P−S and, on the other hand, the representative sub-trajectories

Rj ∈ S. Technically, V(Pk,i, Rj) consists of |Pk,i| elements, where
each element represents the voting that takes place between the
segments of Pk,i and Rj. As illustrated in Eq. (1), we use the
mean value 𝑉 𝑃!,! ,𝑅! of the vector values V(Pk,i, Rj). Each of
those values is computed by measuring the distance of the
corresponding segment of Pk,i from its nearest to Rj and then by
applying the voting function of Eq. (3). Thus, it holds that
0 ≤ 𝑉 𝑃!,! ,𝑅! ≤ 1.

Concluding the discussion about Algorithm 1, in order to find
the clusters that maximize Eq. (1), the sub-trajectories that are
assigned to cluster C(Rj) represented by sub-trajectory Rj ∈ S,
are the ones that fulfil the following property:

 𝐶 𝑅! = 𝑃!,! ∈ 𝑃 − 𝑆: 𝑉 𝑃!,! ,𝑅! ≥ 𝑉 𝑃!,! ,𝑅! ∀𝑅! ∈

𝑆 ∧ 𝑉 𝑃!,! ,𝑅! ≥ 𝜀
(7)

and
𝐶 = ∪ 𝐶 𝑅! (8)

On the other hand, the sub-trajectories that are considered
outliers (thus forming the outliers set Out) are those failing to be
assigned to a cluster, formally:

𝑂𝑢𝑡 = 𝑃 − 𝐶 (9)
As already discussed, parameter ε controls how far from a
representative a non-representative should be positioned in order
for the latter to be flagged as outlier. Back to the example of
Figure 1, the clustering process presented above results in two
clusters, formed around the red and the blue, respectively,
representative sub-trajectory found in the sampling step. As a
side effect, the black sub-trajectories are left out of the two
clusters, thus they are flagged as outliers.

5. S2T-CLUSTERING IN-DBMS
In this section, we present our methodology for the efficient in-
DBMS development of S2T-Clustering algorithm proposed in
Section 4.

5.1 NaTS in-DBMS
NaTS phase of S2T-Clustering algorithm (Lines 2–4 in
Algorithm 1) consists of two steps: (a) voting among trajectory
segments and (b) trajectory segmentation based on the resulted
voting descriptors. An efficient in-DBMS solution should focus
on the voting step (Lines 2–3), since TSA [28] that implements
the segmentation step (Line 4) poses no special challenges; it is
an efficient in-memory algorithm applied only on the voting
descriptor of a single trajectory.

Back to the voting step, to meet its requirement we need an
algorithm that takes as input a dataset D = {T1, T2, …, TN} of
trajectories, a trajectory Tk ∈ D and σ > 0 parameter, and
provides as output a voting descriptor (vector) Vk consisting of
Lk–1 components, each corresponding to segment ek,i, i ∈ {1, ...,
Lk–1}, of trajectory Tk. For efficiency purposes, [28]
implemented the demanding voting process by using an
incremental nearest neighbour (INN) algorithm. However, given
the specifications posed in the introduction of this paper, INN is
not a choice due to the fact that the access methods supported by
real ORDBMS (e.g. the GiST interface in PostgreSQL) do not
support the incremental paradigm. This implies that, in our case,
we are directed to queries natively supported by ORDBMS, such
as typical range and NN queries.

Let us now discuss the design and implementation options we
have in-DBMS. Dataset D corresponds to a relation with tuples
in the form <t_id, s_id, ek,i>, where t_id (s_id) is the trajectory
(segment, respectively) identifier and ek,i corresponds to the 3D
segment, upon which a 3D-R-tree index is built. Nevertheless,

636

this setting is straight-forwardly realized in the well-known
PostGIS spatial extension of PostgreSQL using 3D GiST. (Note,
however, that PostGIS handles time- dimension as simply as a
(third) z- spatial dimension, next to x- and y- dimensions.) An
important issue has also to do with the realization of Eq. (3) that
provides the voting between two segments: theoretically, a
segment may vote (though close to zero) even if it is found very
far from the target segment. However, this is not realistic in
DBMS implementations. As such, we introduce s_buffer, a
spatial threshold for distance between two segments, above
which there is no need to calculate this distance. In the case
where the application user has limited knowledge about space-
time properties of the dataset, this parameter can be tuned to be
the maximum value resulting in a very low (close to zero) voting
as computed by Eq. (3). This is achieved as follows: by
reversing Eq. (3), we obtain Eq. (10) that defines an upper bound
for s_buffer.

𝑑 ≤ −2𝜎! ∙ ln (𝜀) (10)

Thus, d values higher than the upper bound set in Eq. (10) are
not expected to contribute to the quality of the clustering.

Given the above setting, voting can be implemented using at
least two alternatives, called Baseline-I and Baseline-II,
respectively. Baseline-I solution performs 𝐿! − 1! range
queries in the 3D-R-tree, where each query window corresponds
to the MBB of a segment, enlarged by s_buffer; hence, the total
number of range queries equals to the total number of segments
in D, a fact that turns this solution to be expensive in disk
accesses. On the other hand, Baseline-II solution performs N
range queries in the 3D-R-tree, where each query window
corresponds to the MBB of a trajectory, again enlarged by
s_buffer; hence, the total number of range queries equals to the
number of trajectories in D. Obviously, the second solution is
much cheaper in disk accesses regarding the index but,
unfortunately, imposes a heavy refinement step because of the
volume of the trajectory MBB. Anyway, both approaches need a
refinement step to calculate voting descriptor Vk,i, which
involves distance calculations.

In the following paragraphs, we present an alternative (third)
approach for addressing the voting step, which is the most
demanding step in S2T-Clustering algorithm and, as such, it
needs special care. In particular, we follow a filter-and-
refinement approach that utilizes a range-like query, called
Trajectory Buffer Query (TBQ). TBQ takes as input a trajectory,
enlarges it by s_buffer, and returns the segments that overlap
with the sequence of the enlarged MBBs of the trajectory’s
segments. The TBQ rationale is to efficiently retrieve those
segments in D that are “around” a given trajectory, where
“around” is defined by s_buffer. Figure 2 illustrates the
Trajectory Buffer TBk of a trajectory Tk.

Figure 2. The Trajectory Buffer TBk (i.e. the sequence

of the blue MBBs) of a trajectory Tk.
It is obvious that our proposal follows a trajectory-based
approach (i.e. similar to the Baseline-II technique), but for each
trajectory it minimizes the filtering step by diminishing the dead
space of the query, and thus minimizes the expensive refinement
step. In turn, this implies changing the default search strategy of
the 3D-R-tree over GiST that will reduce the time needed to
compare a node entry with the trajectory buffer that is passed as
predicate to the index. This is achieved by the Consistent method

of the GiST extensibility interface [14], which contains the
comparison logic between an index node entry of GiST and the
trajectory buffer. Algorithm 2 outlines TBQ whereas Algorithm
3 presents the adapted Consistent method of the GiST interface.

Algorithm 2. Trajectory Buffer Query (TBQ)
Input: pg3D-R-tree root, trajectory Tk, parameter s_buffer
Output: set of segments that overlap with TBk
1. TBk ← TrajectoryBuffer(Tk, s_buffer)
2. root.depth-first-search(Consistent, TBk)

Algorithm 3. Consistent
Input: Trajectory Buffer TBk, current index entry E
Output: Boolean
1. if E is in a leaf node then
2. if MBB(E.segment) overlaps MBB(TBk) then
3. for each MBBi ∈ TBk do
4. if E.segment overlaps MBBi then
5. return true
6. else // E is in a non-leaf node
7. if E.box overlaps MBB(TBk) then
8. for each MBBi ∈ TBk do
9. if E.box overlaps MBBi then
10. return true
11. return false

Recall that Consistent decides whether the depth-first search
should visit a child of the current entry or not (if the entry
belongs to a non-leaf node) or, in case the entry belongs to a leaf
node, checks whether to return the segment pointed by the leaf
entry. After this remark, the depth-first search driven by
Consistent in Algorithm 3 is easy to be followed: Consistent
returns true if the MBB of the entry overlaps with one of the
MBBs forming the trajectory buffer TBk (Lines 5 and 10, for leaf
and non-leaf nodes, respectively). Before this check takes place,
a brute filtering is applied by checking whether the MBB of the
entry overlaps the entire MBB of TBk (Lines 2 and 7,
respectively).

5.2 SaCO in-DBMS
In this section, we discuss the in-DBMS development of SaCO,
i.e. the second phase of S2T-Clustering. SaCO phase (Lines 5–6
in Algorithm 1) also consists of two steps: (a) sampling of the
most representative sub-trajectories (Line 5) and (b) clustering
around samples and outlier detection (Line 6).

Regarding the sampling step, we adopt the SSA algorithm [28]
as a starting point and we improve it with two crucial
modifications, focusing on the efficiency and the quality,
respectively, of the samples selected. The first improvement is
that the voting method that is inherent in the sampling process
follows the much more efficient approach presented earlier
rather than the one presented in [28]. The second modification is
about the selection of an even better set of representatives; as
proposed in [28], SSA selects representatives as long as (a) the
top-k number of representatives is less than a user-defined
threshold (i.e. parameter M that acts as an upper bound for the
selected representatives) and (b) the optimization criterion is
satisfied (see Eq. (4) and (5)). In fact, SSA selects the highly
voted sub-trajectories, while at the same time it tries to penalize
sub-trajectories that are very close to already selected
representatives. Sometimes this automatic penalization fails,
resulting to very similar representatives. In contrast, in our case,
as the representatives are employed as cluster pivots, when a
new representative is selected, it is further examined whether it
is similar with one of the already selected representatives. In
such a case, it is not selected and the algorithm evaluates the
next candidate sub-trajectory. The similarity criterion is the same
with the one adopted for the clustering, i.e. Eq. (7).

637

What follows is the final step, that of clustering and outlier
detection. For this purpose, we follow an index-based, greedy
approach that takes advantage of the TBQ query, which is
applied on the results of the SSA algorithm, so as to form
clusters around the sampled sub-trajectories. To this end, we
propose the so-called Sub-trajectory Clustering Algorithm
(SCA). SCA, listed in Algorithm 4, receives as input set P of
sub-trajectories, set S of representatives, as it was produced by
the (modified) SSA, and threshold parameter ε. The output of the
method is the final result of S2T-Clustering, i.e. sets C and Out,
with the clusters and outliers, respectively.

Algorithm 4. SCA
Input: set P of sub-trajectories, set S of representatives, parameter
ε
Output: set C of clusters, set Out of outliers
1. Out = P − S
2. for each Rj ∈ S do
3. Cj ← {Rj}
4. for each Rj ∈ S do
5. TBQj ← TBQ(Out, Rj, s_buffer)
6. for each ej,f ∈ Rj do
7. TBQj,f ← overlaps(TBQj, extend(ej,f, s_buffer))
8. for each Pk,i in {TBQj,f}, f ∈ [1, |Rj|] do
9. v ← 𝑉 𝑃!,! ,𝑅!
10. if v > ε and v > old_vk,i then
11. Cj ← Cj ∪ {Pk,i}
12. flag Pk,i as clustered in Out
13. old_vk,i ← v
14. for each Pk,i in Out do
15. if Pk,i is flagged as clustered then
16. Out ← Out − {Pk,i};
17. return (C, Out)

Initially, the sub-trajectories are organized in two sets
(implemented as relations in DBMS), one containing the
sampling set sorted by the order of their selection and the other
containing the remaining data, while each cluster is initialized by
a representative sub-trajectory from the sampling set. As such,
each representative sub-trajectory constitutes the first member
(seed) of the corresponding cluster (Lines 1-3). Then, we apply a
two-step filtering procedure so as to increase the efficiency of
the algorithm. At the first step, for each cluster seed Rj, we apply
a TBQ query, which returns the segments that are “close” to the
cluster seed (Line 5). Subsequently, for each segment ej,f
belonging to the specific representative Rj, we apply a
spatiotemporal range query with the same spatial component as
that of the TBQ query (Line 7). This spatiotemporal range query
is performed in order to identify the segments that are “close
enough” to ej,f and, hence, qualify to proceed to the voting
procedure w.r.t. Rj. Subsequently, for each non-clustered Pk,i, we
calculate the average voting that Rj receives (Line 9). By taking
into account parameter ε discussed earlier, we assign it to cluster
Cj mastered by Rj (Line 11) and mark it as clustered (Line 12).
Through this process, in the case where Pk,i belongs to the result
of more than one TBQ searches, it is assigned to the
representative that has achieved the highest voting.

6. EXPERIMENTAL STUDY
In this section, we present the results of our experimental study.
All experiments were conducted on an Intel Xeon X5675
Processor 3.06GHz with 48GB memory, running on Debian
Release 7.0 (wheezy) 64-bit. The proposed algorithms were
implemented on top of a PostgreSQL 9.4 server with the default
configuration for its memory parameters. We should clarify that
in our implementation, which exploits on the extensibility
interface given by PostgreSQL, we have defined and
implemented from scratch datatypes and operands conforming to
the whole discussion so far, resulting in the so-called

Hermes@PostgreSQL [16], which is completely independent
from PostGIS. This implies that the 3D-R-tree has also been
implemented from scratch (on top of GiST); we call it pg3D-R-
tree (see the input of TBQ in Algorithm 2).

A notable difference of our pg3D-R-tree from the PostGIS
implementation of the 3D-R-tree is that, in our case, the entries
of the leaf nodes are 3D segments rather than 3D boxes. This is
an implicit assumption in the Consistent algorithm (see e.g. Line
2 in Algorithm 3), which allows us to avoid additional I/O
operations. The outline of our experimental study is as follows:
First, we study the robustness of S2T-Clustering by using a
synthetic dataset (where we know the ground truth) in order to
(a) evaluate the sensitivity of our proposal w.r.t. various
parameters and (b) validate whether our approach succeeds to
discover the underlying clusters (and outliers). Then, a set of
experiments is performed in order to evaluate the efficiency and
scalability of S2T-Clustering. These experiments are performed
using three different approaches: the two baseline solutions and
our solution based on TBQ, as they were presented in Section 5.

6.1 Datasets
The three datasets we used in our experimental study, one
synthetic (SMOD) and two real datasets (IMIS, GeoLife), are
presented in the following paragraphs.

SMOD - Synthetic MOD (SMOD)1 consists of 400 trajectories
and is used for the ground truth verification (see the discussion
about ground truth below). The creation scenario of the synthetic
dataset is the following: the objects move upon a simple graph
that consists of the following destination nodes (points) with
coordinates: A(0,0), B(1,0), C(4,0) and D(2,1). Half of the
objects move with normal speed (2 units per second) and another
half move with high speed (5 units per second). Figure 3
illustrates the 2D map of the SMOD consisting of three one-
directional (A → B, B → D, D → C) and one bi-directional road
(B ⇆ C). All objects move under the following scenario, for a
lifetime of 100 seconds:

• (normal movement – 99% of the trajectories) All objects start
from point A towards point B; the high-speed objects start at t
= 0 sec and the normal-speed objects start at t = 20 sec. When
an object arrives at B, it ends its trajectory with a probability
of 15%; otherwise, it continues with the same speed to the next
point. If there exist more than one option for the next point, it
decides randomly about the next destination.

• (abnormal movement – 1% of the trajectories) A few outlier
objects follow a random movement in space (other than these
roads) with a speed that is updated randomly.

Figure 3. The 2-D map of SMOD.

The ground truth of the clusters that are hidden in SMOD can be
inferred by the description of the dataset itself. In particular,
eight clusters of sub-trajectories (as well as a set of outliers) are
identified. Table 2 lists the eight clusters along with their spatial
(2nd column) and temporal projection (3rd column).

1 Publicly available at chorochronos.datastories.org repository under the

name ‘smod’.

638

Table 2. The ground truth hidden in SMOD
Cluster Path Time periods (clusters)
#1, #2 A→B [0, 0.2], [0.2, 0.7]
#3, #4 B→C [0.2, 0.8], [0.7, 1.2]
#5, #6 B→D [0.2, 0.52], [0.7, 1.2]

#7 C→B [0.8, 1]
#8 D→C [0.52, 1]

As for real datasets, GeoLife [47] consists of the trajectories of
178 users in a period of more than four years; this dataset
represents a wide range of movements, including not only urban
transportation (e.g. from home to work and back) but also
different kinds of activities, such as sports activities, shopping,
etc. Finally, IMIS2 is a real AIS dataset consisting of the
trajectories of 637 ships moving in the Greek seas for one week.
Table 3 presents the statistics of the three datasets.

6.2 Quality of Clustering Analysis
In this section, we perform a sensitivity analysis in order to
explore the effect on the quality of clustering when setting
different values on certain parameters. The quality of the
clustering is calculated through two different measures:
QMeasure [21] and SRD (see Eq. (1)). We should mention that
the lower the QMeasure the higher the quality; on the other
hand, the higher the SRD the higher the quality. Regarding
parameter settings, as our approach shares similar concepts with
the sampling methodology of [28], we followed the best
practices presented in that work. More specifically, parameter σ
was set to 0.1% of the dataset diameter while ε was set to 10-3.
Regarding s_buffer, it was automatically set according to Eq.
(10) as default value and we experimented with values around
the default.

Table 3. Dataset Statistics
Statistic SMOD GeoLife IMIS

Trajectories 400 18,668 5110

Segments 35,273 24,159,325 443,657

Dataset Duration
(hh:mm:ss) 0:02:00 1932 days 22:59:48 6 days 19:59:53

Avg. Sampling Rate
(hh:mm:ss) 0:00:01 0:00:08 0:18:02

Avg. Segment Length
(m) 8 72 1545

Avg. Segment Speed
(m/s) 7.83 5.01 7.03

Avg. Trajectory Speed
(m/s) 2.86 3.91 4.52

Avg. # Points per
Trajectory 89 1295 88

Avg. Trajectory
Duration (hh:mm:ss) 0:01:28 2:43:15 11:33:45

Avg. Trajectory Length
(m) 691 93,046 134,148

2 Publicly available at chorochronos.datastories.org under the name

‘imis1week’.

(a)

(b)

(c)

Figure 4. The effect on (a) QMeasure, (b) SRD, (c) the
discovered number of clusters, when varying s_buffer

parameter around its default value.

The first set of experiments is about the sensitivity of S2T-
Clustering w.r.t. s_buffer. Figure 4 illustrates the results over the
IMIS dataset. In particular, we used the default value (labelled
100% in the x-axis of the charts) as well as 6 values around it
(labelled 40%, 60%, 80%, 120%, 140%, 160%). As one can
easily observe, the quality of the clustering, measured either by
QMeasure or SRD, remains more or less stable and follows the
trend of the number of clusters identified. Moreover, in both
QMeasure and SRD, the best quality appears when s_buffer is
set to its default value (d).

We repeated the same experiment over GeoLife and resulted in
similar conclusions. Considering the above analysis, the value
for s_buffer used in the remainder of our experimental study is
the default value provided by Eq. (10).

In a second set of experiments, we applied our proposal to the
SMOD dataset, which is ideal for the purposes of testing the
quality of our algorithm. In order to measure the stability of our
method to noise effects, we have added Gaussian white noise of
different Signal to Noise Ratio (SNR) levels, measured in db, to
the spatial coordinates of SMOD. All the subsequent
experiments have been repeated with SNR = 30db and SNR =
50db and the results were the same. Therefore, we present only
the case with the SNR =30db.

0.00E+00%
2.00E+28%
4.00E+28%
6.00E+28%
8.00E+28%
1.00E+29%
1.20E+29%
1.40E+29%
1.60E+29%

40%% 60%% 80%% 100%% 120%% 140%% 160%%

Q
M
ea
su
re
(

%(default(value(

IMIS(

0"
50"
100"
150"
200"
250"
300"
350"
400"
450"

40%" 60%" 80%" 100%" 120%" 140%" 160%"

SR
D
$

%$default$value$

IMIS$

0"
50"
100"
150"
200"
250"
300"
350"
400"
450"

40%" 60%" 80%" 100%" 120%" 140%" 160%"

N
um

be
r'
O
f'C

lu
st
er
s'

%'default'value'

IMIS'

639

(a)

(b)

(c)

Figure 5. Visualization of the clusters’ representatives
provided by: S2T-Clustering in (a) 2D and (b) 3D, (c)

TRACLUS, when applied to a subset of SMOD
consisting of 2 patterns.

First, we applied both S2T-Clustering and TRACLUS [21] over
a subset of SMOD that consists only of the trajectories that move
throughout the whole lifespan of the dataset, thus limiting the
ground truth to two clusters. In Figure 5(a) and Figure 5(c) we
visualize only the representatives of each cluster, while in Figure
5(b) we provide a 3D illustration of the data used in the case of
Figure 5(a). Note that S2T-Clustering discovers the two clusters,
while TRACLUS discovers several linear patterns; see Figure
5(a) vs. Figure 5(c).

Subsequently, we applied both S2T-Clustering and TRACLUS to
the entire SMOD, for which we have knowledge of the ground
truth. In Figure 6(a) and Figure 6(c), we present the results of the
S2T-Clustering and TRACLUS, respectively. Moreover, in order
to better comprehend the temporal dynamics of the dataset we
provide a 3D illustration in Figure 6(b). According to this
experiment, S2T-Clustering effectively discovers all eight
clusters (as well as the noisy sub-trajectories, depicted in black
color in Figure 6(b)), thus S2T-Clustering is not affected by the
trajectories’ shape, yielding an effective and robust approach for
the discovery of linear and non-linear patterns. On the contrary,
TRACLUS fails to identify the hidden ground truth in this
SMOD due to the fact that it ignores the time dimension.
Interestingly, TRACLUS discovers almost the same sets of
representatives when applied to either a subset of or the entire
SMOD; see Figure 5(c) vs. Figure 6(c).

(a)

(b)

(c)

Figure 6. Visualization of the clusters’ representatives
provided by: (a) S2T-Clustering in (a) 2D and (b) 3D,

(c) TRACLUS, when applied to the entire SMOD
consisting of 8 patterns.

In order to evaluate the accuracy of our proposal in a quantified
way, we further employed F-Measure in SMOD. In detail, we
built 8 datasets, with the first consisting of the sub-trajectories of
the first cluster only, the second consisting of the sub-trajectories
of the first and the second cluster only, and so on, until the
eighth dataset, which consisted of the sub-trajectories of all eight
clusters; all eight datasets appeared in two variations: including
or not the set of outliers. For each dataset, we applied S2T-
Clustering and calculated F-Measure; Figure 7 illustrates this
quality criterion by increasing the number of clusters. It is
evident that S2T-Clustering turns out to be very robust, achieving
always precision and recall values over 92.3%, while the outliers
are always detected correctly.

Figure 7. Quality of S2T-Clustering w.r.t. number of clusters.

0.20$

0.40$

0.60$

0.80$

1.00$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$

F-
M
ea
su
re
$

#ofClusters$

F-Measure$

SMOD$with$outliers$ SMOD$without$outliers$

640

6.3 Efficiency and Scalability
In order to study the efficiency and scalability of our proposal
we followed two competing approaches: Hermes@PostgreSQL
[16], implemented according to the discussion in Section 5, vs.
PostGIS extension of PostgreSQL that simulated the two
baseline solutions presented in Section 5.1.

We have noticed that the implementation of the 3D-R-tree in
PostGIS suffers from rounding errors because it uses 32-bit
IEEE floating-point numbers to store the coordinates [35]. In our
experiments we observed that the MBB of a trajectory or a
segment was always enlarged due to this rounding, thus making
the overlap query in PostGIS return more segments than our
implementation. Since this made the comparison between the
two systems unfair, we simulated PostGIS inside Hermes, in
other words, also the baseline solutions were simulated inside
Hermes (thus, making all solutions run under the same
framework).

In the charts that follow, we denote the implementation of
Baseline-I and Baseline-II solutions implemented both in
Hermes and in PostGIS as {Hermes | PostGIS}-Baseline-{I | II},
i.e. four different implementations.

In particular, Figure 8 illustrates the execution time of the voting
step for the IMIS dataset when varying the dataset size (i.e. the
number of trajectories). Obviously, the two implementations
present similar performance, with the PostGIS implementation
performing slightly better mainly due to the fact that the size of
index node entries in PostGIS (which uses 32-bit numbers for
storing the temporal dimension) is slightly less than that of
Hermes (which uses 64-bit numbers).

(a)

(b)

Figure 8. Comparing the performance of baseline solutions:
(a) Baseline-I; (b) Baseline-II.

We repeated the same experiment with the GeoLife dataset and
the results lead to similar conclusions, thus they are excluded
due to space limitations.

Based on the above results, in the remainder of the experimental
study, the scalability study is conducted using the Hermes
implementation of the algorithms. As illustrated in Figure 9(b),
all three approaches (Baseline-I, Baseline-II and TBQ, presented
in Section 5.1) perform similarly on the IMIS dataset as far as it
concerns the segmentation, sampling and clustering steps of the
algorithm (please note that y-axis is at log scale). The crucial
difference is at the expensive voting step, where TBQ
significantly outperforms the two baseline solutions by almost
two orders of magnitude; this is illustrated in Figure 9(a)
whereas in Figure 9(c) we present the accumulated processing
time.

Due to the fact that the overall performance is dominated by the
performance of the voting step, we further studied this step over
the GeoLife dataset. As it can be observed in Figure 9(d), the
behavior of the voting step of S2T-Clustering over GeoLife is
slightly different from that over IMIS. TBQ still outperforms
both Baseline-I and Baseline-II solutions by several orders of
magnitude, but in the case of GeoLife, Baseline-II outperforms
Baseline-I. This can be explained by the fact that GeoLife
consists of trajectories with significantly larger number of
segments than IMIS (recall the statistics in Table 3). This fact
leads Baseline-I to perform considerably more lookups in the
index.

7. CONCLUSIONS
In this paper, we discussed the problem of sub-trajectory
clustering and outlier detection in trajectory databases, aiming to
take both space and time information into consideration. In
particular, we proposed S2T-Clustering that is novel not only
because it solves the problem more effectively than the state-of-
the-art (namely, TRACLUS), but also for an additional, quite
important reason: our proposal is designed in-DBMS, i.e., it
performs as a query operator in a real MOD engine over an
extensible DBMS (namely, PostgreSQL in our current
implementation). Having such functionality in their hands, data
scientists are able to perform cluster analysis via simple SQL in
real DBMS, where concurrency and recovery issues are taken
into consideration. Moreover, our algorithm is boosted by an
efficient index-based Trajectory Buffer Query (TBQ) that speeds
up the overall process, resulting in a scalable solution,
outperforming the state-of-the-art in-DBMS solutions supported
by PostGIS by several orders of magnitude.

As a next step, inspired by the research agenda of the big data
era, we plan to investigate real-time and incremental solutions,
exploiting on modern in-memory DBMS architectures.

0"

10"

20"

30"

40"

50"

60"

70"

80"

10%" 20%" 30%" 40%" 50%" 60%" 70%" 80%" 90%" 100%"

Ex
ec
u&

o
n)
Ti
m
e)
(i
n)
se
co
nd

s)
)

)

Percentage)of)Dataset)

IMIS)Vo&ng)

Hermes2Baseline2II" PostGIS2Baseline2II"

641

(a)

(b)

(c)

(d)
Figure 9. Step-by-step execution time of S2T-Clustering: (a)

voting over IMIS; (b) segmentation/sampling/clustering over
IMIS; (c) overall over IMIS; (d) voting over GeoLife.

8. ACKNOWLEDGMENTS
This work was partially supported by project datACRON, which
has received funding from the European Union’s Horizon 2020
research and innovation Programme under grant agreement No
687591.

9. REFERENCES
[1] Almeida, V.T., Güting, R.H., & Behr, T. 2006. Querying

moving objects in secondo. In Proceedings of MDM.
[2] Andrienko, G., Andrienko, N., Rinzivillo, S., Nanni, M.,

and Pedreschi D. 2009. A visual analytics toolkit for
cluster-based classification of mobility data. In
Proceedings of SSTD.

[3] Ankerst, M., Breunig, M. M., Kriegel, H.-P. and Sander, J.
1999. Optics: Ordering points to identify the clustering
structure. In Proceedings of SIGMOD.

[4] Benkert, M., Gudmundsson, J., Hubner, F. and Wolle T.
2006. Reporting flock patterns. In Proceedings of ESA.

[5] Cadez, I. V., Gaffney, S., and Smyth, P. 2000. A general
probabilistic framework for clustering individuals and
objects. In Proceedings of KDD.

[6] Dodge, S., Weibel, R., and Lautenschütz, A.-K. 2008.
Towards a taxonomy of movement patterns. Journal of
Information Visualization. 7(3), 240-252.

[7] Ester, M., Kriegel, H.-P., Sander, J., Xu, X. 1996. A
density-based algorithm for discovering clusters in large
spatial databases with noise. In Proceedings of KDD.

[8] Ferreira, N., Klosowski, J.T., Scheidegger, C.E., Silva,
C.T. 2013. Vector Field k-Means: Clustering Trajectories
by Fitting Multiple Vector Fields. In Proceedings of
EuroVis.

[9] Frentzos, E., Gratsias, K., and Theodoridis, Y. 2007.
Index-based most similar trajectory search. In Proceedings
of ICDE.

[10] Gaffney, S., and Smyth, P. 1999. Trajectory clustering
with mixtures of regression models. In Proceedings of
KDD.

[11] Giannotti, F. and Pedreschi, D. 2008. Mobility, Data
Mining and Privacy, Geographic Knowledge Discovery.
Springer.

[12] Giannotti, F., Nanni, M. Pedreschi, D. Pinelli, F., Renso,
C., Rinzivillo, S. and Trasarti, R. 2011. Unveiling the
complexity of human mobility by querying and mining
massive trajectory data. The VLDB Journal, 20(5): 695-
719.

[13] Hadjieleftheriou, M., Kollios, G., Gunopulos, D. and
Tsotras, V.J., 2006. Indexing Spatio-Temporal Archives,
VLDB J., vol. 15, no. 2, pages 143-164.

[14] Hellerstein, J., Naughton, J. and Pfeffer, A. 1995.
Generalized Search Trees for Database Systems. In
Proceedings of VLDB.

[15] Hung, C.-C., Peng, W.-C., Lee, W.-C. 2015. Clustering
and aggregating clues of trajectories for mining trajectory
patterns and routes. The VLDB Journal, 24(2):169-192.

[16] Hermes@PostgreSQL MOD engine. URL:
http://infolab.cs.unipi.gr/hermes/

[17] Jeung, H., Yiu, M. L., Zhou, X., Jensen, C., and Shen, H.
T. 2008. Discovery of convoys in trajectory databases. In
Proceedings of VLDB.

[18] Kalnis, P., Mamoulis, N., Bakiras, S. 2005. On discovering
moving clusters in spatio-temporal data. In Proceedings of
SSTD.

[19] Kollios, G., Gunopulos, D., Koudas, N., and Berchtold, S.
2003. Efficient biased sampling for approximate clustering
and outlier detection in large datasets. IEEE Transactions
on Knowledge and Data Engineering, 15(5):1170-1187.

[20] Kornacker, M. 1999. High-Performance Extensible
Indexing. In Proceedings of VLDB.

[21] Lee, J.-G., Han, J., and Whang, K.-Y. 2007. Trajectory
clustering: a partition-and-group framework. In
Proceedings of SIGMOD.

1"

10"

100"

1000"

10000"

100000"

10%" 20%" 30%" 40%" 50%" 60%" 70%" 80%" 90%" 100%"Ex
ec
u&

on
)T
im

e)
in
)se

co
nd

s))
(lo

g)
sc
al
e)
)

)

Percentage)of)Dataset)

Imis)Vo&ng)

TBQ" Hermes5Baseline5I" Hermes5Baseline5II"

0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

500"

10%" 20%" 30%" 40%" 50%" 60%" 70%" 80%" 90%" 100%"

Ex
ec
u&

on
)T
im

e)
in
)s
ec
on

ds
)

Percentage)of)Dataset)

TBQ"0"Segmenta8on" TBQ"0"Sampling" TBQ"0"Clustering"
Hermes0Baseline0I"0Segmenta8on" Hermes0Baseline0I"0Sampling" Hermes0Baseline0I"0Clustering"
Hermes0Baseline0II"0"Segmenta8on" Hermes0Baseline0II"0"Sampling" Hermes0Baseline0II"0"Clustering"

1.00$

10.00$

100.00$

1000.00$

10000.00$

100000.00$

10%$ 20%$ 30%$ 40%$ 50%$ 60%$ 70%$ 80%$ 90%$ 100%$Ex
ec
u&

on
)T
im

e)
in
)s
ec
on

ds
)

(lo
g)
sc
al
e)
)

)

Percentage)of)Dataset)

Imis)Overall)

TBQ$ Hermes6Baseline6I$ Hermes6Baseline6II$

1"
10"

100"
1000"

10000"
100000"

1000000"
10000000"

10%" 100%"Ex
ec
u&

on
)T
im

e)
in
)se

co
nd

s)
(lo

g)
sc
al
e)
)

)

Percentage)of)Dataset)

GeoLife)Vo&ng)

TBQ" Hermes-Baseline-I" Hermes-Baseline-II"

642

[22] Li, Y., Bailey, J. Kulik, L. 2015. Efficient mining of
platoon patterns in trajectory databases. Data &
Knowledge Engineering, 100(PA):167-187.

[23] Li, Z., Ding, B., Han, J., Kays, R. 2010. Swarm: Mining
relaxed temporal moving object clusters. In Proceedings of
the VLDB Endowment 3(1-2):723–734.

[24] Li, Z., Lee, J.G., Li, X., Han, J. 2010 Incremental
clustering for trajectories, In Proceedings of DASFAA.

[25] Li, Z., Ji, M., Lee, J.-G., Tang, L.-A., Yu, Y., Han, J.,
Kays, R. 2010. MoveMine: mining moving object
databases. In Proceedings of SIGMOD.

[26] Nanni, M., and Pedreschi, D. 2006. Time-focused
clustering of trajectories of moving objects. Journal of
Intelligent Information Systems, 27(3):267-289.

[27] Nanopoulos, A., Theodoridis, Y., and Manolopoulos, Y.
2006. Indexed-based density biased sampling for clustering
applications. Data and Knowledge Engineering, 57(1):37-
63.

[28] Panagiotakis, C., Pelekis, N., Kopanakis, I., Ramasso, E.,
and Theodoridis, Y. 2012. Segmentation and sampling of
moving object trajectories based on representativeness.
IEEE Transactions on Knowledge and Data Engineering,
24(7):1328-1343.

[29] Pelekis, N. and Theodoridis, Y. 2014. Mobility Data
Management and Exploration. Springer.

[30] Pelekis, N., Andrienko, G., Andrienko, N., Kopanakis, I.,
Marketos, G., Theodoridis, Y. 2011. Visually Exploring
Movement Data via Similarity-based Analysis. Journal of
Intelligent Information Systems, 38(2):343-391.

[31] Pelekis, N., Frentzos, E., Giatrakos, N., and Theodoridis,
Y. 2008. HERMES: Aggregative LBS via a trajectory DB
engine. In Proceedings of SIGMOD.

[32] Pelekis, N., Kopanakis, I., Kotsifakos, E., Frentzos, E. and
Theodoridis, Y. 2011. Clustering uncertain trajectories.
Knowledge and Information Systems, 28(1):117-147.

[33] Pelekis, N., Panagiotakis, C., Kopanakis, I., and
Theodoridis, Y. 2010. Unsupervised trajectory sampling.
In Proceedings of ECML-PKDD.

[34] Pfoser, D., Jensen, C.S., and Theodoridis, Y. 2000. Novel
approaches to the indexing of moving object trajectories.
In Proceedings of VLDB.

[35] Ramsey, P. (on behalf of PostGIS), personal
communication.

[36] Tang, L.A., Zheng, Y., Yuan, J., Han, J., Leung, A., Hung,
C. and Peng, W. 2012. Discovery of Traveling
Companions from Streaming Trajectories. In Proceedings
of ICDE.

[37] Tang, L.A., Zheng, Y., Yuan, J., Han, J., Leung, A., Peng,
W. and Porta, T. L. 2012. A Framework of Traveling
Companion Discovery on Trajectory Data Streams. ACM
Transactions on Intelligent Systems and Technology, 5(1).

[38] Theodoridis, Y., Vazirgiannis, M. and Sellis, T. 1996.
Spatio-Temporal Indexing for Large Multimedia
Applications. In Proceedings of ICMS.

[39] Wang, S., Wu, L., Zhou. F. Zheng, C., Wang, H. 2015.
Group Pattern Mining Algorithm of Moving Objects’
Uncertain Trajectories. International Journal of Computers,
Communications & Control, 10(3):428-440.

[40] Wu, F., Lei, T.K.H., Li, Z. Han, J. 2014. MoveMine 2.0:
mining object relationships from movement data. In
Proceedings of VLDB.

[41] Xu, H., Zhou, Y., Lin, W., Zha, H. 2015. Unsupervised
Trajectory Clustering via Adaptive Multi-Kernel-based
Shrinkage. In Proceedings of ICCV.

[42] Yuan, G., Sun, P., Zhao, J., Li, D. Wang, C. 2016. A
review of moving object trajectory clustering algorithms.
Artificial Intelligence Review, 1-22.

[43] Zhang, T., Ramakrishnan, R., and Livny, M. 1996. Birch:
An efficient data clustering method for very large
databases. In Proceedings of SIGMOD.

[44] Zheng, K., Zheng, Y., Yuan, N. J., Shang, S. 2013. On
Discovery of Gathering Patterns from Trajectories. In
Proceedings of ICDE.

[45] Zheng, K., Zheng, Y., Yuan, N. J., Shang, S., Zhou., X.
2014. Online Discovery of Gathering Patterns over
Trajectories. IEEE Transaction on Knowledge and Data
Engineering, 26(8):1974-1988.

[46] Zheng, Y. 2015. Trajectory Data Mining: An Overview.
ACM Transactions on Intelligent Systems and Technology,
6(3).

[47] Zheng, Y., Xie, X., Ma, W.-Y. 2010. GeoLife: A
Collaborative Social Networking Service among User,
location and trajectory. IEEE Data Engineering Bulletin,
33(2):32-40.

643

	In-DBMS Sampling-based Sub-trajectory ClusteringNikos Pelekis, Panagiotis Tampakis, Marios Vodas, Costas Panagiotakis, Yannis Theodoridis

