Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial-like conditions

  • I. Garmendia University of Alicante, Department of Environment and Earth Sciences
  • V. J. Mangas University of Alicante, Department of Environment and Earth Sciences
Keywords: Floriculture, Glomus intraradices, Glomus mosseae, phosphorus, Rosa hybrida

Abstract

The objective of this work was to study the influence of two arbuscular mycorrhizal fungi (AMF) - Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe, and G. intraradices (Schenck & Smith) - on cut flower yield of rose (Rosa hybrida L. cv. Grand Gala) under commercial-like greenhouse conditions. Flower production was positively influenced by G. mosseae inoculation. Both inocula tested caused low levels of mycorrhizal root colonization, with higher percentages in Rosa associated with G. mosseae. Significant improvement of plant biomass or leaf nutritional status was not detected in inoculated plants probably due to the low symbiosis establishment. However, G. mosseae induced an early flowering and slightly increased number of cut flowers relative to non-mycorrhizal controls. It is suggested that an altered carbohydrate metabolism could contribute to this positive effect. Low colonization of rose roots supports the idea that more effort is required to ensure successful application of AMF in ornamental production systems.

Downloads

Download data is not yet available.

References

Aboul-Nasr A, 1996. Effects of vesicular-arbuscular mycorrhiza on Tagetes erecta and Zinnia elegans. Mycorrhiza 6: 61-64. http://dx.doi.org/10.1007/s005720050107

Augé RM, Schekel KA, Wample RL, 1986a. Osmotic adjustment in leaves of VA mycorrhizal and nonmycorrhizal rose plants in response to drought stress. Plant Physiol 82: 765-770. http://dx.doi.org/10.1104/pp.82.3.765 PMid:16665108    PMCid:1056205

Augé RM, Schekel KA, Wample RL, 1986b. Greater leaf conductance of well-watered VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytol 103: 107-116. http://dx.doi.org/10.1111/j.1469-8137.1986.tb00600.x

Augé RM, Schekel KA, Wample RL, 1987. Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. Plant Soil 99: 291-302. http://dx.doi.org/10.1007/BF02370876

Azcón-Aguilar C, Barea JM, 1997. Applying mycorrhiza biotechnology to horticulture: significance and potentials. Sci Hortic 68: 1-24. http://dx.doi.org/10.1016/S0304-4238(96)00954-5

Besmer YL, Koide RT, 1999. Effect of mycorrhizal colonization and phosphorus on ethylene production by snapdragon (Antirrhinum majus L.) flowers. Mycorrhiza 9: 161-166. http://dx.doi.org/10.1007/s005720050301

Caballero M, Mansito P, Zieslin N, Rodrigo J, Melián J, Renz O, 1996. Water use and crop productivity of roses growing on volcanic lapilli (picon) in Canary Islands. Acta Hort 424: 41-44.

Cabrera RI, Evans RY, Paul JL, 1995. Cyclic nitrogen uptake by greenhouse roses. Sci Hortic 63: 57-66. http://dx.doi.org/10.1016/0304-4238(95)00789-V

Douds DD, Pfeffer PE, Shachar-Hill Y, 2000. Carbon partitioning, cost, and metabolism of arbuscular mycorrhizas. In: Arbuscular mycorrhizas: physiology and function (Kapulnik Y, Douds DD, eds). Kluwer Acad Publ, Boston, USA. pp: 107-129.

Duque F, 1971. Determinación conjunta de fósforo, potasio, calcio, hierro, manganeso, cobre y zinc en plantas. Ann Edafol Agrobiol 30: 207-229. [In Spanish].

Estaún V, Camprubí A, Poner EJ, 2002. Selecting arbuscular mycorrhizal fungi for field application. In: Mycorrrhizal technology in agriculture. From genes to bioproducts (Gianinazzi S, Schüepp H, Barea JM, Haselwandter K, eds). Birkhäuser Verlag, Berlin, Germany. pp: 249-259.

Eymar E, López-Vela D, Cadahia C, 2000. Fertirrigación de coníferas y rosal. In: Fertirrigación: cultivos hortícolas y ornamentales (Cadahia C, ed.). Ediciones Mundi-Prensa, Madrid, Spain. pp: 419-463. [In Spanish].

Garmendia I, Goicoechea N, Aguirreolea J, 2004. Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against verticillium wilt. Biol Control 31: 296-305. http://dx.doi.org/10.1016/j.biocontrol.2004.04.015

Garmendia I, Goicoechea N, Aguirreolea J, 2005. Moderate drought influences the effect of arbuscular mycorrhizal fungi as biocontrol agents against Verticillium-induced wilt in pepper. Mycorrhiza 15: 345-356. http://dx.doi.org/10.1007/s00572-004-0336-z PMid:16001290

Gaur A, Gaur A, Adholeya A, 2000. Growth and flowering in Petunia hybrida, Callistephus chinensis and Impatiens balsamina inoculated with mixed AM inocula or chemical fertilizers in a soil of low P fertility. Sci Hortic 84: 151-162. http://dx.doi.org/10.1016/S0304-4238(99)00105-3

Green CD, Stodola A, Augé RM, 1998. Transpiration of detached leaves from mycorrhizal and nonmycorrhizal cowpea and rose plants given varying abscisic acid, pH, calcium, and phosphorus. Mycorrhiza 8: 93-99. http://dx.doi.org/10.1007/s005720050218

Hayman DS, Barea JM, Azcón R, 1976. Vesicular-arbuscular mycorrhiza in southern Spain: its distribution in crops growing in soil of different fertility. Phytopathol Mediterr 15: 1-6.

Hewitt EJ, 1966. Sand and water culture methods used in the study of plant nutrition. Commonwealth Agricultural Bureaux, London, Technical Communication No. 22, 2nd ed. rev.

INFOAGRO, 2010. El cultivo de rosas para corte. Available in http://www.infoagro.com/flores/flores/rosas.htm [10 December 2010]. [In Spanish].

Jarvis CE, Walker JRL, 1993. Simultaneous, rapid, spectrophotometric determination of total starch, amylose and amylopectin. J Sci Food Agric 63: 53-57. http://dx.doi.org/10.1002/jsfa.2740630109

Koltai H, 2010. Mycorrhiza in floriculture: difficulties and opportunities. Symbiosis 53: 55-63. http://dx.doi.org/10.1007/s13199-010-0090-2

Lichtenthaler HK, 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148: 350-382. http://dx.doi.org/10.1016/0076-6879(87)48036-1

Meir D, Pivonia S, Levita R, Dori I, Ganot L, 2010. Application of mycorrhizae to ornamental horticultural crops: lisianthus (Eustoma gradiflorum) as a test case. Span J Agric Res 8(S1): 5-10.

Muller R, Stummann BM, Andersen AS, 2001. Comparison of postharvest properties of closely related miniature rose cultivars (Rosa hybrida L.). Sci Hortic 91: 325-338. http://dx.doi.org/10.1016/S0304-4238(01)00252-7

Nowak J, 2004. Effects of arbuscular mycorrhizal fungi and organic fertilization on growth, flowering, nutrient uptake, photosynthesis and transpiration of geranium (Pelargonium hortorum L. H. Bailey “Tango Orange”). Symbiosis 37: 259-266.

Parke JL, Kaeppler SA, 2000. Effects of genetic differences among crop species and cultivars upon the arbuscular mycorrhizal symbiosis. In: Arbuscular mycorrhiza: physiology and function (Kapulnik Y, Douds DD, eds). Kluwer Acad Publ, Boston, USA. pp:131-146.

Perner H, Schwarz D, Bruns C, Mäder P, George E, 2007. Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17: 469-474. http://dx.doi.org/10.1007/s00572-007-0116-7 PMid:17318595

Phillips JM, Hayman DS, 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55: 158-161. http://dx.doi.org/10.1016/S0007-1536(70)80110-3

Pinior A, Grunewaldt-Stöcker G, Von Alten H, Strasser RJ, 2005. Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 15: 596-605. http://dx.doi.org/10.1007/s00572-005-0001-1 PMid:16133256

Scagel CF, 2001. Cultivar specific effect of mycorrhizal fungi on the rooting of miniature rose cuttings. J Environ Hort 19: 15-20.

Scagel CF, 2003. Inoculation with arbuscular mycorrhizal fungi alters nutrient allocation and flowering of Freesia × hybrida. J Environ Hort 21: 196-205.

Scagel CF, 2004a. Inoculation with vesicular-arbuscular mycorrhizal fungi and rhizobacteria alters nutrient allocation and flowering of harlequin flower. HortTecnology 14: 39-48.

Scagel CF, 2004b. Soil pasteurization and mycorrhizal inoculation alter flower production and corm composition of Brodiaea laxa “Queen Fabiola”. HortScience 39: 1432-1497.

Scagel CF, 2004c. Changes in cutting composition during early stages of adventious rooting of miniature rose altered by inoculation with arbuscular mycorrhizal fungi. J Am Soc Hort Sci 129: 624-634.

Scagel CF, Schreiner RP, 2006. Phosphorus supply alters tuber composition, flower production, and mycorrhizal responsiveness of container-grown hybrid Zantedeschia. Plant Soil 283: 323-337. http://dx.doi.org/10.1007/s11104-006-0022-3

Schenck NC, 1982. Methods and principles of mycorrhizal research. The American Phytopathological Society, St. Paul, MN, USA.

Séstak Z, Càtsky J, Jarvis P, 1971. Plant phosynthetic production. Manual of methods. Dr Junk Publ, The Hague, The Netherlands.

Smith SE, Read DJ, 2008. Growth and carbon economy of arbuscular mycorrhizal symbionts. In: Mycorrhizal symbiosis (Smith SE, Read DJ, eds.). Academic Press, London, UK. pp: 117-144. http://dx.doi.org/10.1016/B978-012370526-6.50006-4

Sohn BK, Kim KY, Chung SJ, Kim WS, Park SM, Kang JG, Rim YS, Cho JS, Kim TH, Lee JH, 2003. Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum. Sci Hortic 98: 173-183. http://dx.doi.org/10.1016/S0304-4238(02)00210-8

Yemm EW, Willis AJ, 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57: 508-514. PMid:13181867    PMCid:1269789

Published
2012-02-29
How to Cite
Garmendia, I., & Mangas, V. J. (2012). Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial-like conditions. Spanish Journal of Agricultural Research, 10(1), 166-174. https://doi.org/10.5424/sjar/2012101-156-11
Section
Plant production (Field and horticultural crops)