Phylogenetic Analysis of Libyan Thyme (Thymus Capitatus) Inferred from The Morphological Traits

Authors

  • Ezzudin S. Ali Department of Horticulture, Faculty of Agriculture, Omer Al-Mukhtar University, Libya
  • Hesaien M. Mustafa Department of Environmental Sciences, Faculty of Natural Resources, Omer Al-Mukhtar University, Libya
  • Khansa A. Omaar Department of Environmental Sciences, Faculty of Natural Resources, Omer Al-Mukhtar University, Libya

DOI:

https://doi.org/10.54172/mjsc.v37i4.978

Keywords:

Thymus capitatus, morphological trait, flower measurements, clustering analysis, genetic diversity

Abstract

The genetic diversity of wild thyme (Thymus capitatus) which growing  in southern parts of Al-Jabal Al-Akhdar region, Libya was studied by using cluster analysis of morphological traits (flower measurements). This study was aimed to establish the phylogenetic relationships based on floral parameters among accessions of thyme (T.capitatus). The five populations (accessions) of Libyan thyme were assigned into two clusters (clades) at the critical distance value of 22%. The 1stcluster  contained three populations that were included white-flowered, dotted white-flowered and violet-flowered accession, then the 1st cluster was divided into two sub-clusters by the critical distance value of 5%, the first sub-cluster contained two populations (white-flowered, dotted white-flowered accession). While, the second sub-cluster contained one population (violet-flowered accession). The 2nd cluster contained two populations which were purple-flowered and mosaic-flowered accessions. In conclusion, The flower measurements can be a preliminary tool to classify Libyan thyme (T.capitatus), and  floral parameters can be used in the classification of Libyan thyme accessions (populations).

Downloads

Download data is not yet available.

References

Ali, E. S., Mustafa, H. M., & Blkasem, K. A. O. (2019). Morphological variation of Libyan carob (Ceratonia siliqua L.). Al-Mukhtar Journal of Sciences, 34(2), 126-133. DOI: https://doi.org/10.54172/mjsc.v34i2.77

Ali, S. E. and Mustafa, M. H. (2020). Phylogenetics of some Arabic Olive (Oleaeuropaea, L.) Cultivars Based on Morpholgical Data. Libyan Journal of Basic Sciences, 12(1): 42- 50.

Al-Mustafa, A. and Al-Thunibat, O. (2008). Antioxidant activity of some Jordanian medicinal plant used traditionally for treatment of diabetes. Pak. J. of Bio. Sci., 11(3): 351-358. DOI: https://doi.org/10.3923/pjbs.2008.351.358

Alves, T. M. d. A., Silva, A. F., Brandão, M., Grandi, T. S. M., Smânia, E. d. F. A., Smânia Júnior, A., & Zani, C. L. (2000). Biological screening of Brazilian medicinal plants. Memórias do Instituto Oswaldo Cruz, 95, 367-373. DOI: https://doi.org/10.1590/S0074-02762000000300012

Ayed, R. B., Ennouri, K., Hassen, H. B., Triki, M., & Rebai, A. (2015). Comparison between DNA-based, pomological and chemical markers accomplished by bioinformatic tools to distinguish within Tunisian olive cultivars. Journal of Fundamental and Applied Sciences, 7(3), 408-421. DOI: https://doi.org/10.4314/jfas.v7i3.8

Baker, R. H., Yu, X., & DeSalle, R. (1998). Assessing the relative contribution of molecular and morphological characters in simultaneous analysis trees. Molecular Phylogenetics and Evolution, 9(3), 427-436. DOI: https://doi.org/10.1006/mpev.1998.0519

Bateman, R. M., Hilton, J., & Rudall, P. J. (2006). Morphological and molecular phylogenetic context of the angiosperms: contrasting the ‘top-down’and ‘bottom-up’approaches used to infer the likely characteristics of the first flowers. Journal of Experimental Botany, 57(13), 3471-3503. DOI: https://doi.org/10.1093/jxb/erl128

Bremer B., Bremer, K., Chase, M. W., Fay, M. F., Reveal, J. L., and Soltis, D. E.(2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. , 161(2): 105–121. DOI: https://doi.org/10.1111/j.1095-8339.2009.00996.x

Bounatirou, S., Smiti, S., Miguel, M. G., Faleiro, L., Rejeb, M., Neffati, M., Costa, M., Figueiredo, A., Barroso, J., & Pedro, L. (2007). Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food chemistry, 105(1), 146-155. DOI: https://doi.org/10.1016/j.foodchem.2007.03.059

Bowe, L. M., Coat, G., & DePamphilis, C. W. (2000). Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proceedings of the National Academy of Sciences, 97(8), 4092-4097. DOI: https://doi.org/10.1073/pnas.97.8.4092

Coombs, E. A., Donoghue, M. J., & McGinley, R. J. (1981). Characters, computers, and cladograms: A review of the Berkeley cladistics workshop. Systematic Botany, 359-372. DOI: https://doi.org/10.2307/2418448

Cracraft, J., & Donoghue, M. J. (2004). Charting the tree of life. Assembling the Tree of Life, 1-4.

Crane, P. R. (1985). Phylogenetic analysis of seed plants and the origin of angiosperms. Annals of the Missouri Botanical Garden, 716-793. DOI: https://doi.org/10.2307/2399221

Daly, D. C., Cameron, K. M., & Stevenson, D. W. (2001). Plant systematics in the age of genomics. Plant physiology, 127(4), 1328-1333. DOI: https://doi.org/10.1104/pp.010788

Davis, J. I., Simmons, M. P., Stevenson, D. W., & Wendel, J. F. (1998). Data decisiveness, data quality, and incongruence in phylogenetic analysis: an example from the monocotyledons using mitochondrial atp A sequences. Systematic Biology, 47(2), 282-310. DOI: https://doi.org/10.1080/106351598260923

Donoghue, P. C., & Yang, Z. (2016). The evolution of methods for establishing evolutionary timescales. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1699), 20160020. DOI: https://doi.org/10.1098/rstb.2016.0020

Doyle, J. A. (2013). Phylogenetic analyses and morphological innovations in land plants. Annual Plant Reviews online, 1-50. DOI: https://doi.org/10.1002/9781118305881.ch1

Doyle, J. A., & Donoghue, M. J. (1986). Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. The Botanical Review, 52(4), 321-431. DOI: https://doi.org/10.1007/BF02861082

Doyle, J. A., & Endress, P. K. (2000). Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. International Journal of Plant Sciences, 161(S6), S121-S153. DOI: https://doi.org/10.1086/317578

Doyle, J. A., Endress, P. K., & Upchurch, G. R. (2008). Early Cretaceous monocots: a phylogenetic evaluation. Sborník Národního muzea v Praze. Acta Musei nationalis Pragae, 64(2-4), 61-87.

Doyle, J. J., & Luckow, M. A. (2003). The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant physiology, 131(3), 900-910. DOI: https://doi.org/10.1104/pp.102.018150

Duncan, T., Phillips, R. B., & Wagner Jr, W. H. (1980). A comparison of branching diagrams derived by various phenetic and cladistic methods. Systematic Botany, 264-293. DOI: https://doi.org/10.2307/2418373

Ebrahimi, S. N., Hadian, J., Mirjalili, M., Sonboli, A., & Yousefzadi, M. (2008). Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages. Food chemistry, 110(4), 927-931. DOI: https://doi.org/10.1016/j.foodchem.2008.02.083

Endress, P. K., & Doyle, J. A. (2009). Reconstructing the ancestral angiosperm flower and its initial specializations. American Journal of Botany, 96(1), 22-66. DOI: https://doi.org/10.3732/ajb.0800047

Endress, P. K., & Igersheim, A. (2000). Gynoecium structure and evolution in basal angiosperms. International Journal of Plant Sciences, 161(S6), S211-S223. DOI: https://doi.org/10.1086/317572

Ennouri, K., Rayda, B., Ercisli, S., Fathi, B., & Triki, M. A. (2017). Evaluation of variability in Tunisian Olea europaea L. accessions using morphological characters and computational approaches. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(1), 262-269. DOI: https://doi.org/10.15835/nbha45110662

Figueiredo, A. C., Barroso, J. G., Pedro, L. G., Salgueiro, L., Miguel, M. G., & Faleiro, M. L. (2008). Portuguese Thymbra and Thymus species volatiles: chemical composition and biological activities. Current Pharmaceutical Design, 14(29), 3120-3140. DOI: https://doi.org/10.2174/138161208786404218

Forte, A., Ignatov, A., Ponomarenko, V., Dorokhov, D., & Savelyev, N. (2002). Phylogeny of the Malus (apple tree) species, inferred from the morphological traits and molecular DNA analysis. Russian Journal of Genetics, 38(10), 1150-1161. DOI: https://doi.org/10.1023/A:1020648720175

Giribet, G. (2015). Morphology should not be forgotten in the era of genomics–a phylogenetic perspective. Zoologischer Anzeiger-A Journal of Comparative Zoology, 256, 96-103. DOI: https://doi.org/10.1016/j.jcz.2015.01.003

Grayer, R. J., & Harborne, J. B. (1994). A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry, 37(1), 19-42. DOI: https://doi.org/10.1016/0031-9422(94)85005-4

Gruenwald, J., Brendler, T., & Jaenicke, C. (2004). Physicians Desk Reference (PDR) for Herbal Medicines. Thirth Edition. Montvale, New Jersey: Thomson. Medical Economics Company.

Hall, J. C., Sytsma, K. J., & Iltis, H. H. (2002). Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. American Journal of Botany, 89(11), 1826-1842. DOI: https://doi.org/10.3732/ajb.89.11.1826

Hennig, W. (1966). Phylogenetic systematics. Urbana, IL. IL: University of Illinois Press.[Google Scholar].

Hillis, D., & Wiens, J. (2000). Molecules versus morphology in systematics: conflicts, artifacts, and misconceptions. Phylogenetic analysis of morphological data, 1-19.

Hu, G.-X., Takano, A., Drew, B. T., Liu, E.-D., Soltis, D. E., Soltis, P. S., Peng, H., & Xiang, C.-L. (2018). Phylogeny and staminal evolution of Salvia (Lamiaceae, Nepetoideae) in East Asia. Annals of botany, 122(4), 649-668. DOI: https://doi.org/10.1093/aob/mcy104

Kalemba, D., & Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. Current medicinal chemistry, 10(10), 813-829. DOI: https://doi.org/10.2174/0929867033457719

Keating, J. N., Sansom, R. S., Sutton, M. D., Knight, C. G., & Garwood, R. J. (2020). Morphological phylogenetics evaluated using novel evolutionary simulations. Systematic Biology, 69(5), 897-912. DOI: https://doi.org/10.1093/sysbio/syaa012

Kenrick, P., & Crane, P. R. (1997). The origin and early evolution of plants on land. Nature, 389(6646), 33-39. DOI: https://doi.org/10.1038/37918

Kim, J. H., Guiry, M. D., Oak, J. H., Choi, D. S., Kang, S. H., Chung, H., & Choi, H. G. (2007). Phylogenetic relationships within the tribe Janieae (Corallinales, Rhodophyta) based on molecular and morphological data: a reappraisal of Jania 1. Journal of phycology, 43(6), 1310-1319. DOI: https://doi.org/10.1111/j.1529-8817.2007.00410.x

Lee, M. S., & Palci, A. (2015). Morphological phylogenetics in the genomic age. Current Biology, 25(19), R922-R929. DOI: https://doi.org/10.1016/j.cub.2015.07.009

Leht, M. (2009). Phylogenetics of Vicia (Fabaceae) based on morphological data. Feddes Repertorium, 120(7‐8), 379-393. DOI: https://doi.org/10.1002/fedr.200911117

Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50(6), 913-925. DOI: https://doi.org/10.1080/106351501753462876

Luna, I., & Ochoterena, H. (2004). Phylogenetic relationships of the genera of Theaceae based on morphology. Cladistics, 20(3), 223-270. DOI: https://doi.org/10.1111/j.1096-0031.2004.00024.x

Manly, B. F. (1986). Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Researches on Population Ecology, 28(2), 201-218. DOI: https://doi.org/10.1007/BF02515450

Manos, P. S., Miller, R. E., & Wilkin, P. (2001). Phylogenetic analysis of Ipomoea, Argyreia, Stictocardia, and Turbina suggests a generalized model of morphological evolution in morning glories. Systematic Botany, 26(3), 585-602.

Mathews, S. (2009). Phylogenetic relationships among seed plants: persistent questions and the limits of molecular data. American Journal of Botany, 96(1), 228-236. DOI: https://doi.org/10.3732/ajb.0800178

Renzaglia, K. S., Schuette, S., Duff, R. J., Ligrone, R., Shaw, A. J., Mishler, B. D., & Duckett, J. G. (2007). Bryophyte phylogeny: advancing the molecular and morphological frontiers. The bryologist, 179-213. DOI: https://doi.org/10.1639/0007-2745(2007)110[179:BPATMA]2.0.CO;2

Ricci, D., Fraternale, D., Giamperi, L., Bucchini, A., Epifano, F., Burini, G., & Curini, M. (2005). Chemical composition, antimicrobial and antioxidant activity of the essential oil of Teucrium marum (Lamiaceae). Journal of ethnopharmacology, 98(1-2), 195-200. DOI: https://doi.org/10.1016/j.jep.2005.01.022

Schneider, H., Pryer, K. M., Cranfill, R., Smith, A., & Wolf, P. (2002). Evolution of vascular plant body plans: a phylogenetic perspective. Developmental genetics and plant evolution, 330-364. DOI: https://doi.org/10.1201/9781420024982.ch17

Schneider, H., Smith, A. R., & Pryer, K. M. (2009). Is morphology really at odds with molecules in estimating fern phylogeny? Systematic Botany, 34(3), 455-475. DOI: https://doi.org/10.1600/036364409789271209

Soltis, D. E., & Soltis, P. S. (2003). The role of phylogenetics in comparative genetics. Plant physiology, 132(4), 1790-1800. DOI: https://doi.org/10.1104/pp.103.022509

Soltis, E. D., & Soltis, P. S. (2000). Contributions of plant molecular systematics to studies of molecular evolution. Plant Molecular Biology, 42(1), 45-75. DOI: https://doi.org/10.1023/A:1006371803911

Soreng, R. J., Peterson, P. M., Romaschenko, K., Davidse, G., Teisher, J. K., Clark, L. G., Barberá, P., Gillespie, L. J., & Zuloaga, F. O. (2017). A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. Journal of Systematics and evolution, 55(4), 259-290. DOI: https://doi.org/10.1111/jse.12262

SWECO, (1986).Land survey, mapping and pasture survey for 550,000 hectares of south Jabel El-Akhdar area. Socialist People's Libyan Arab Jamahiriya. Secretariat for Agricultural Reclamation and Land Development. Contract No. 15/90/81. Final report. S-100 26, Stockholm, Sweden..

Wiens, J. J. (2004). The role of morphological data in phylogeny reconstruction. Systematic Biology, 53(4), 653-661. DOI: https://doi.org/10.1080/10635150490472959

Wodniok, S., Brinkmann, H., Glöckner, G., Heidel, A. J., Philippe, H., Melkonian, M., & Becker, B. (2011). Origin of land plants: do conjugating green algae hold the key? BMC Evolutionary Biology, 11(1), 1-10. DOI: https://doi.org/10.1186/1471-2148-11-104

Zhi-Qin, Z., & Pankai-Yu, H.-Y. (2003). Phylogenetic analyses of Paeonia section Moutan (treepeonies, Paeoniaceae) based on morphological data. Journal of Systematics and evolution, 41(5), 436.

Downloads

Published

2022-12-31

How to Cite

Ali, E. S., Mustafa, H. M., & Omaar, K. A. (2022). Phylogenetic Analysis of Libyan Thyme (Thymus Capitatus) Inferred from The Morphological Traits. Al-Mukhtar Journal of Sciences, 37(4), 385–393. https://doi.org/10.54172/mjsc.v37i4.978

Issue

Section

Research Articles

Categories