Published February 28, 2022 | Version v1
Dataset Open

Global Lagrangian dataset of Marine litter

  • 1. Florida State University

Contributors

Data curator:

  • 1. Florida State University

Description

Global Lagrangian dataset of Marine litter

This dataset regroups 12 yearly files (global-marine-litter-[2010–2021].nc) combining monthly releases of 32,300 particles initially distributed across the globe following global Mismanaged Plastic Waste (MPW) inputs. The particles are advected with OceanParcels (Delandmeter, P and E van Sebille, 2019) using ocean surface velocity, a wind drag coefficient of 1%, and a small random walk component with a uniform horizontal turbulent diffusion coefficient of Kh = 1m2s-1 representing unresolved turbulent motions in the ocean (see Chassignet et al. 2021 for more details).

Global oceanic current and atmospheric wind

Ocean surface velocities are obtained from GOFS3.1, a global ocean reanalysis based on the HYbrid Coordinate Ocean Model (HYCOM) and the Navy Coupled Ocean Data Assimilation (NCODA; Chassignet et al., 2009; Metzger et al., 2014). NCODA uses a three-dimensional (3D) variational scheme and assimilates satellite and altimeter observations as well as in-situ temperature and salinity measurements from moored buoys, Expendable Bathythermographs (XBTs), Argo floats (Cummings and Smedstad, 2013). Surface information is projected downward into the water column using Improved Synthetic Ocean Profiles (Helber et al., 2013). The horizontal resolution and the temporal frequency for the GOF3.1 outputs are 1/12° (8 km at the equator, 6 km at mid-latitudes) and 3-hourly, respectively. Details on the validation of the ocean circulation model are available in Metzger et al. (2017).

Wind velocities are obtained from JRA55, the Japanese 55-year atmospheric reanalysis. The JRA55, which spans from 1958 to the present, is the longest third-generation reanalysis that uses the full observing system and a 4D advanced data assimilation variational scheme. The horizontal resolution of JRA55 is about 55 km and the temporal frequency is 3-hourly (see Tsujino et al. (2018) for more details).

Marine Litter Sources

The marine litter sources are obtained by combining MPW direct inputs from coastal regions, which are defined as areas within 50 km of the coastline (Lebreton and Andrady 2019), and indirect inputs from inland regions via rivers (Lebreton et al. 2017). 

File Format

The locations (lon, lat), the corresponding weight (tons), and the source (1: land, 0: river) associated with the 32,300 particles are described in the file initial-location-global.csv. The particle trajectories are regrouped into yearly files (marine-litter-[2010–2021].nc) which contain 12 monthly releases, resulting in a total of 387,600 trajectories per file. More precisely, in each of the yearly files, the first 32,300 lines contain the trajectories of particles released on January 1st, then lines 32,301–64,600 contain the trajectories of particles released on February 1st, and so on. The trajectories are recorded daily and are advected from their release until 2021-12-31, resulting in longer time series for earlier years of the dataset. 

References

Chassignet, E. P., Hurlburt, H. E., Metzger, E. J., Smedstad, O. M., Cummings, J., Halliwell, G. R., et al. (2009). U.S. GODAE: global ocean prediction with the hybrid coordinate ocean model (HYCOM). Oceanography 22, 64–75. doi: 10.5670/oceanog.2009.39

Chassignet, E. P., Xu, X., and Zavala-Romero, O. (2021). Tracking Marine Litter With a Global Ocean Model: Where Does It Go? Where Does It Come From?. Frontiers in Marine Science, 8, 414, doi: 10.3389/fmars.2021.667591

Cummings, J. A., and Smedstad, O. M. (2013). “Chapter 13: variational data assimilation for the global ocean”, in Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, eds S. Park and L. Xu (Berlin: Springer), 303–343. doi: 10.1007/978-3-642-35088-7_13

Delandmeter, P., and van Sebille, E. (2019). The Parcels v2.0 Lagrangian framework: new field interpolation schemes. Geosci. Model Dev. 12, 3571–3584. doi: 10.5194/gmd-12-3571-2019

Helber, R. W., Townsend, T. L., Barron, C. N., Dastugue, J. M., and Carnes, M. R. (2013). Validation Test Report for the Improved Synthetic Ocean Profile (ISOP) System, Part I: Synthetic Profile Methods and Algorithm. NRL Memo. Report, NRL/MR/7320—13-9364 Hancock, MS: Stennis Space Center.

Metzger, E. J., Smedstad, O. M., Thoppil, P. G., Hurlburt, H. E., Cummings, J. A., Wallcraft, A. J., et al. (2014). US Navy operational global ocean and Arctic ice prediction systems. Oceanography 27, 32–43, doi: 10.5670/oceanog.2014.66.

Metzger, E., Helber, R. W., Hogan, P. J., Posey, P. G., Thoppil, P. G., Townsend, T. L., et al. (2017). Global Ocean Forecast System 3.1 validation test. Technical Report. NRL/MR/7320–17-9722. Hancock, MS: Stennis Space Center, 61.

Lebreton, L., and Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 5:6, doi: 10.1057/s41599-018-0212-7.

Lebreton, L., van der Zwet, J., Damsteeg, J. W., Slat, B., Andrady, A., and Reisser, J. (2017). River plastic emissions to the world’s oceans. Nat. Commun. 8:15611, doi: 10.1038/ncomms15611.

Tsujino H., S. Urakawa, H. Nakano, R.J. Small, W.M. Kim, S.G. Yeager, G. Danabasoglu, T. Suzuki, J.L. Bamber, M. Bentsen, C. Böning, A. Bozec, E.P. Chassignet, E. Curchitser, F. Boeira Dias, P.J. Durack, S.M. Griffies, Y. Harada, M. Ilicak, S.A. Josey, C. Kobayashi, S. Kobayashi, Y. Komuro, W.G. Large, J. Le Sommer, S.J. Marsland, S. Masina, M. Scheinert, H. Tomita, M. Valdivieso, and D. Yamazaki, 2018. JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do). Ocean Modelling, 130, 79-139, doi: 10.1016/j.ocemod.2018.07.002.

Notes

The work was supported by the United Nations Environment Program (UNEP) small scale funding agreements SSFA/2019/1345 and SSFA/2020/2665.

Files

initial-locations-global.csv

Files (88.4 GB)

Name Size Download all
md5:2d5754fe663b3d5434ca6d92554905c1
13.6 GB Download
md5:d214e7b7ba9de600d938a4469babdced
12.5 GB Download
md5:7523d05db515d1a2e6220e0649e9735e
11.3 GB Download
md5:2730aa2aba0302f731d7ffe0791d5070
10.2 GB Download
md5:f1ca493a6995bef14c90c76b60d4f2a2
9.1 GB Download
md5:f5e1a19252e76c90d48061283ec0449c
7.9 GB Download
md5:2a4a1717a3bbd6cb134599d48f5d29e7
6.8 GB Download
md5:5ba51d75c32ef16641c71b5b2094f5e5
5.7 GB Download
md5:df6f2aab6427c890c2fb4910a87dfe34
4.5 GB Download
md5:b1ade32f780458cc81ac2f2ec8cd428e
3.4 GB Download
md5:cc16b4bb5fc0e8c20ca8d7161c567220
2.3 GB Download
md5:c9c1f96b941b254ca12b030de23a12c2
1.1 GB Download
md5:a4342bfd9114d8966f409b0f878d46c2
1.5 MB Preview Download

Additional details

Related works

Describes
Journal article: 10.3389/fmars.2021.667591 (DOI)

References

  • Chassignet, E. P., Xu, X., & Zavala-Romero, O. (2021), Tracking Marine Litter With a Global Ocean Model: Where Does It Go? Where Does It Come From?